|
1
|
Schulze MB and Stefan N: Metabolically
healthy obesity: From epidemiology and mechanisms to clinical
implications. Nat Rev Endocrinol. 20:633–646. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zhang P, Watari K and Karin M: Innate
immune cells link dietary cues to normal and abnormal metabolic
regulation. Nat Immunol. 26:29–41. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Moris D, Barfield R, Chan C, Chasse S,
Stempora L, Xie J, Plichta JK, Thacker J, Harpole DH, Purves T, et
al: Immune phenotype and postoperative complications after elective
surgery. Ann Surg. 278:873–882. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Barbosa P, Pinho A, Lázaro A, Paula D,
Tralhão JG, Paiva A, Pereira MJ, Carvalho E and Laranjeira P:
Bariatric surgery induces alterations in the immune profile of
peripheral blood T cells. Biomolecules. 14:2192024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mohammadzadeh N, Razavi S and Ebrahimipour
G: Impact of bariatric surgery on gut microbiota composition in
obese patients compared to healthy controls. AMB Express.
14:1152024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Rivera-Carranza T, Azaola-Espinosa A,
Bojalil-Parra R, Zúñiga-León E, León-Téllez-Girón A,
Rojano-Rodríguez ME and Nájera-Medina O: Immunometabolic changes
following gastric bypass and sleeve gastrectomy: A comparative
study. Obes Surg. 35:481–495. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Shaikh SR, Beck MA, Alwarawrah Y and
MacIver NJ: Emerging mechanisms of obesity-associated immune
dysfunction. Nat Rev Endocrinol. 20:136–148. 2024. View Article : Google Scholar
|
|
8
|
Hart A, Sun Y, Titcomb TJ, Liu B, Smith
JK, Correia MLG, Snetselaar LG, Zhu Z and Bao W: Association
between preoperative serum albumin levels with risk of death and
postoperative complications after bariatric surgery: A
retrospective cohort study. Surg Obes Relat Dis. 18:928–934. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hart JWH, Takken R, Hogewoning CRC, Biter
LU, Apers JA, Zengerink H, Dunkelgrün M and Verhoef C: Markers for
major complications at day-one postoperative in fast-track
metabolic surgery: Updated metabolic checklist. Obes Surg.
33:3008–3016. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Riva-Moscoso A, Martinez-Rivera RN,
Cotrina-Susanibar G, Príncipe-Meneses FS, Urrunaga-Pastor D,
Salinas-Sedo G and Toro-Huamanchumo CJ: Factors associated with
nutritional deficiency biomarkers in candidates for bariatric
surgery: A cross-sectional study in a peruvian high-resolution
clinic. Nutrients. 14:822021. View Article : Google Scholar
|
|
11
|
Giovenzana A, Bezzecchi E, Bichisecchi A,
Cardellini S, Ragogna F, Pedica F, Invernizzi F, Di Filippo L,
Tomajer V, Aleotti F, et al: Fat-to-blood recirculation of
partially dysfunctional PD-1(+)CD4 Tconv cells is associated with
dysglycemia in human obesity. iScience. 27:1090322024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ma Q, Ran H, Li Y, Lu Y, Liu X, Huang H,
Yang W, Yu L, Chen P, Huang X, et al: Circulating Th1/17 cells
serve as a biomarker of disease severity and a target for early
intervention in AChR-MG patients. Clin Immunol. 218:1084922020.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wood S, Branch J, Vasquez P, DeGuzman MM,
Brown A, Sagcal-Gironella AC, Singla S, Ramirez A and Vogel TP:
Th17/1 and ex-Th17 cells are detected in patients with
polyarticular juvenile arthritis and increase following treatment.
Pediatr Rheumatol Online J. 22:322024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Shirakawa K and Sano M: Drastic
transformation of visceral adipose tissue and peripheral CD4 T
cells in obesity. Front Immunol. 13:10447372023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Elkins C, Ye C, Sivasami P, Mulpur R,
Diaz-Saldana PP, Peng A, Xu M, Chiang YP, Moll S, Rivera-Rodriguez
DE, et al: Obesity reshapes regulatory T cells in the visceral
adipose tissue by disrupting cellular cholesterol homeostasis. Sci
Immunol. 10:eadl49092025. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wijngaarden LH, Taselaar AE, Nuijten F,
van der Harst E, Klaassen RA, Kuijper TM, Jongbloed F, Ambagtsheer
G, Klepper M, Ijzermans JNM, et al: T and B cell composition and
cytokine producing capacity before and after bariatric surgery.
Front Immunol. 13:8882782022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fernández-Ruiz I: Obesity alters
cholesterol homeostasis in regulatory T cells of visceral adipose
tissue. Nat Rev Cardiol. 22:1462025. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Villarreal-Calderon JR, Cuellar-Tamez R,
Castillo EC, Luna-Ceron E, García-Rivas G and Elizondo-Montemayor
L: Metabolic shift precedes the resolution of inflammation in a
cohort of patients undergoing bariatric and metabolic surgery. Sci
Rep. 11:121272021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Jalilvand A, Blaszczak A, Bradley D, Liu
J, Wright V, Needleman B, Hsueh W and Noria S: Low visceral adipose
tissue regulatory T cells are associated with higher comorbidity
severity in patients undergoing bariatric surgery. Surg Endosc.
35:3131–3138. 2021. View Article : Google Scholar
|
|
20
|
Frasca D: Obesity accelerates age defects
in human B cells and induces autoimmunity. Immunometabolism.
4:e2200102022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Artimovič P, Špaková I, Macejková E,
Pribulová T, Rabajdová M, Mareková M and Zavacká M: The ability of
microRNAs to regulate the immune response in ischemia/reperfusion
inflammatory pathways. Genes Immun. 25:277–296. 2024. View Article : Google Scholar
|
|
22
|
Šlisere B, Arisova M, Aizbalte O, Salmiņa
MM, Zolovs M, Levenšteins M, Mukāns M, Troickis I, Meija L,
Lejnieks A, et al: Distinct B cell profiles characterise healthy
weight and obesity pre- and post-bariatric surgery. Int J Obes
(Lond). 47:970–978. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Naujoks W, Quandt D, Hauffe A, Kielstein
H, Bähr I and Spielmann J: Characterization of surface receptor
expression and cytotoxicity of human NK cells and NK cell subsets
in overweight and obese humans. Front Immunol. 11:5732002020.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bähr I, Spielmann J, Quandt D and
Kielstein H: Obesity-associated alterations of natural killer cells
and immunosurveillance of cancer. Front Immunol. 11:2452020.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Haugstøyl ME, Cornillet M, Strand K,
Stiglund N, Sun D, Lawrence-Archer L, Hjellestad ID, Busch C,
Mellgren G, Björkström NK and Fernø J: Phenotypic diversity of
human adipose tissue-resident NK cells in obesity. Front Immunol.
14:11303702023. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang YY, Chang EQ, Zhu RL, Liu XZ, Wang
GZ, Li NT, Zhang W, Zhou J, Wang XD, Sun MY and Zhang JQ: An atlas
of dynamic peripheral blood mononuclear cell landscapes in human
perioperative anaesthesia/surgery. Clin Transl Med. 12:e6632022.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gihring A, Gärtner F, Mayer L, Roth A,
Abdelrasoul H, Kornmann M, Elad L and Knippschild U: Influence of
bariatric surgery on the peripheral blood immune system of female
patients with morbid obesity revealed by high-dimensional mass
cytometry. Front Immunol. 14:11318932023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Satoh M and Iwabuchi K: Contribution of
NKT cells and CD1d-expressing cells in obesity-associated adipose
tissue inflammation. Front Immunol. 15:13658432024. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Alhamawi RM, Almutawif YA, Aloufi BH,
Alotaibi JF, Alharbi MF, Alsrani NM, Alinizy RM, Almutairi WS,
Alaswad WA, Eid HMA and Mumena WA: Free sugar intake is associated
with reduced proportion of circulating invariant natural killer T
cells among women experiencing overweight and obesity. Front
Immunol. 15:13583412024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Van Kaer L, Parekh VV and Wu L: Invariant
natural killer T cells: Bridging innate and adaptive immunity. Cell
Tissue Res. 343:43–55. 2011. View Article : Google Scholar
|
|
31
|
Zhou HY, Feng X, Wang LW, Zhou R, Sun H,
Chen X, Lu RB, Huang Y, Guo Q and Luo XH: Bone marrow immune cells
respond to fluctuating nutritional stress to constrain weight
regain. Cell Metab. 35:1915–1930.e8. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Radushev V, Karkossa I, Berg J, von Bergen
M, Engelmann B, Rolle-Kampczyk U, Blüher M, Wagner U, Schubert K
and Rossol M: Dysregulated cytokine and oxidative response in
hyper-glycolytic monocytes in obesity. Front Immunol.
15:14165432024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Blaszkiewicz M, Gunsch G, Willows JW,
Gardner ML, Sepeda JA, Sas AR and Townsend KL: Adipose tissue
myeloid-lineage neuroimmune cells express genes important for
neural plasticity and regulate adipose innervation. Front
Endocrinol (Lausanne). 13:8649252022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hinte LC, Castellano-Castillo D, Ghosh A,
Melrose K, Gasser E, Noé F, Massier L, Dong H, Sun W, Hoffmann A,
et al: Adipose tissue retains an epigenetic memory of obesity after
weight loss. Nature. 636:457–465. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sciarretta F, Ninni A, Zaccaria F,
Chiurchiù V, Bertola A, Karlinsey K, Jia W, Ceci V, Di Biagio C, Xu
Z, et al: Lipid-associated macrophages reshape BAT cell identity in
obesity. Cell Rep. 43:1144472024. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Luo JH, Wang FX, Zhao JW, Yang CL, Rong
SJ, Lu WY, Chen QJ, Zhou Q, Xiao J, Wang YN, et al: PDIA3 defines a
novel subset of adipose macrophages to exacerbate the development
of obesity and metabolic disorders. Cell Metab. 36:2262–2280.e5.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
He C, Hu C, He WZ, Sun YC, Jiang Y, Liu L,
Hou J, Chen KX, Jiao YR, Huang M, et al: Macrophage-derived
extracellular vesicles regulate skeletal stem/progenitor Cell
lineage fate and bone deterioration in obesity. Bioact Mater.
36:508–523. 2024.PubMed/NCBI
|
|
38
|
Yang T, Zhang Y, Duan C, Liu H, Wang D,
Liang Q, Chen X, Ma J, Cheng K, Chen Y, et al: CD300E(+)
macrophages facilitate liver regeneration after splenectomy in
decompensated cirrhotic patients. Exp Mol Med. 57:72–85. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bader JE, Wolf MM, Lupica-Tondo GL, Madden
MZ, Reinfeld BI, Arner EN, Hathaway ES, Steiner KK, Needle GA,
Hatem Z, et al: Author Correction: Obesity induces PD-1 on
macrophages to suppress anti-tumour immunity. Nature. 631:E162024.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu W, Li B, Liu D, Zhao B, Sun G and Ding
J: Obesity correlates with the immunosuppressive ILC2s-MDSCs axis
in advanced breast cancer. Immun Inflamm Dis. 12:e11962024.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yang Q, Yu B, Kang J, Li A and Sun J:
Obesity promotes tumor immune evasion in ovarian cancer through
increased production of myeloid-derived suppressor cells via IL-6.
Cancer Manag Res. 13:7355–7363. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Divoux A, Moutel S, Poitou C, Lacasa D,
Veyrie N, Aissat A, Arock M, Guerre-Millo M and Clément K: Mast
cells in human adipose tissue: link with morbid obesity,
inflammatory status, and diabetes. J Clin Endocrinol Metab.
97:E1677–E1685. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Liu J, Divoux A, Sun J, Zhang J, Clément
K, Glickman JN, Sukhova GK, Wolters PJ, Du J, Gorgun CZ, et al:
Genetic deficiency and pharmacological stabilization of mast cells
reduce diet-induced obesity and diabetes in mice. Nat Med.
15:940–945. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Milling S: Adipokines and the control of
mast cell functions: From obesity to inflammation? Immunology.
158:1–2. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Arivazhagan L, Ruiz HH, Wilson RA,
Manigrasso MB, Gugger PF, Fisher EA, Moore KJ, Ramasamy R and
Schmidt AM: An eclectic cast of cellular actors orchestrates innate
immune responses in the mechanisms driving obesity and metabolic
perturbation. Circ Res. 126:1565–1589. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Chen J, Liu X, Zou Y, Gong J, Ge Z, Lin X,
Zhang W, Huang H, Zhao J, Saw PE, et al: A high-fat diet promotes
cancer progression by inducing gut microbiota-mediated leucine
production and PMN-MDSC differentiation. Proc Natl Acad Sci USA.
121:e23067761212024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li C, Wang G, Sivasami P, Ramirez RN,
Zhang Y, Benoist C and Mathis D: Interferon-α-producing
plasmacytoid dendritic cells drive the loss of adipose tissue
regulatory T cells during obesity. Cell Metab. 33:1610–1623.e5.
2021. View Article : Google Scholar
|
|
48
|
Zhang J, Chen X, Liu W, Zhang C, Xiang Y,
Liu S and Zhou Z: Metabolic surgery improves the unbalanced
proportion of peripheral blood myeloid dendritic cells and T
lymphocytes in obese patients. Eur J Endocrinol. 185:819–829. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
McAuliffe PF, Efron PA, Scumpia PO, Uchida
T, Mutschlecner SC, Rout WR, Moldawer LL and Cendan JC: Varying
blood monocyte and dendritic cell responses after laparoscopic
versus open gastric bypass surgery. Obes Surg. 15:1424–1431. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhao X, Wang Q, Wang W and Lu S: Increased
neutrophil extracellular traps caused by diet-induced obesity delay
fracture healing. FASEB J. 38:e701262024. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lyu H, Fan N, Wen H, Zhang X, Mao H, Bian
Q and Chen J: Interplay between BMI, neutrophil, triglyceride and
uric acid: A case-control study and bidirectional multivariate
mendelian randomization analysis. Nutr Metab (Lond). 22:72025.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Roberts CF and Sheu EG: Low density, high
impact? Neutrophil changes in obesity and bariatric surgery.
EBioMedicine. 79:1039882022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chi PJ, Wu KT, Chen PJ, Chen CY, Su YC,
Yang CY and Chen JH: The serial changes of Neutrophile-Lymphocyte
Ratio and correlation to weight loss after Laparoscopic Sleeve
Gastrectomy. Front Surg. 9:9398572022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hu Y and Chakarov S: Eosinophils in
obesity and obesity-associated disorders. Discov Immunol.
2:kyad0222023. View Article : Google Scholar
|
|
55
|
Oliveira MC, Silveira ALM, de Oliveira
ACC, Lana JP, Costa KA, Vieira É LM, Pinho V, Teixeira MM,
Merabtene F, Marcelin G, et al: Eosinophils protect from metabolic
alterations triggered by obesity. Metabolism. 146:1556132023.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Deiss-Yehiely N, Lidor A and Hillman L:
Outcomes of patients with eosinophilic esophagitis undergoing
bariatric surgery. J Gastrointest Surg. 28:1706–1708. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yuan B, Huang L, Yan M, Zhang S, Zhang Y,
Jin B, Ma Y and Luo Z: Adiponectin downregulates TNF-α expression
in degenerated intervertebral discs. Spine (Phila Pa 1976).
43:E381–E389. 2018. View Article : Google Scholar
|
|
58
|
Bader JE, Wolf MM, Lupica-Tondo GL, Madden
MZ, Reinfeld BI, Arner EN, Hathaway ES, Steiner KK, Needle GA,
Hatem Z, et al: Obesity induces PD-1 on macrophages to suppress
anti-tumour immunity. Nature. 630:968–975. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Desharnais L, Walsh LA and Quail DF:
Exploiting the obesity-associated immune microenvironment for
cancer therapeutics. Pharmacol Ther. 229:1079232022. View Article : Google Scholar
|
|
60
|
Pasquarelli-do-Nascimento G, Machado SA,
de Carvalho JMA and Magalhães KG: Obesity and adipose tissue impact
on T-cell response and cancer immune checkpoint blockade therapy.
Immunother Adv. 2:ltac0152022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Villarreal-Calderón JR, Cuéllar RX,
Ramos-González MR, Rubio-Infante N, Castillo EC,
Elizondo-Montemayor L and García-Rivas G: Interplay between the
adaptive immune system and insulin resistance in weight loss
induced by bariatric surgery. Oxid Med Cell Longev.
2019:39407392019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Conroy MJ, Dunne MR, Donohoe CL and
Reynolds JV: Obesity-associated cancer: An immunological
perspective. Proc Nutr Soc. 75:125–138. 2016. View Article : Google Scholar
|
|
63
|
Wang Z, Aguilar EG, Luna JI, Dunai C,
Khuat LT, Le CT, Mirsoian A, Minnar CM, Stoffel KM, Sturgill IR, et
al: Paradoxical effects of obesity on T cell function during tumor
progression and PD-1 checkpoint blockade. Nat Med. 25:141–151.
2019. View Article : Google Scholar :
|
|
64
|
Galyean S, Sawant D and Shin AC:
Immunometabolism, micronutrients, and bariatric surgery: The use of
transcriptomics and microbiota-targeted therapies. Mediators
Inflamm. 2020:88620342020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen DB and Wang W: Human placental
microRNAs and preeclampsia. Biol Reprod. 88:1302013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mehrdad M, Norouzy A, Safarian M, Nikbakht
HA, Gholamalizadeh M and Mahmoudi M: The antiviral immune defense
may be adversely influenced by weight loss through a calorie
restriction program in obese women. Am J Transl Res.
13:10404–10412. 2021.PubMed/NCBI
|
|
67
|
Ji J, Fotros D, Sohouli MH, Velu P, Fatahi
S and Liu Y: The effect of a ketogenic diet on inflammation-related
markers: a systematic review and meta-analysis of randomized
controlled trials. Nutr Rev. 83:40–58. 2025. View Article : Google Scholar
|
|
68
|
Nemet I and Monnier VM: Vitamin C
degradation products and pathways in the human lens. J Biol Chem.
286:37128–37136. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhu R, Craciun I, Bernhards-Werge J, Jalo
E, Poppitt SD, Silvestre MP, Huttunen-Lenz M, McNarry MA, Stratton
G, Handjiev S, et al: Age- and sex-specific effects of a long-term
lifestyle intervention on body weight and cardiometabolic health
markers in adults with prediabetes: results from the diabetes
prevention study PREVIEW. Diabetologia. 65:1262–1277. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Potenza L, Vallerini D, Barozzi P, Riva G,
Gilioli A, Forghieri F, Candoni A, Cesaro S, Quadrelli C, Maertens
J, et al: Mucorales-Specific T cells in patients with hematologic
malignancies. PLoS One. 11:e01491082016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Cheng SC, Quintin J, Cramer RA, Shepardson
KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao
NA, Aghajanirefah A, et al: mTOR- and HIF-1α-mediated aerobic
glycolysis as metabolic basis for trained immunity. Science.
345:12506842014. View Article : Google Scholar
|
|
72
|
Ke X, Fei F, Chen Y, Xu L, Zhang Z, Huang
Q, Zhang H, Yang H, Chen Z and Xing J: Hypoxia upregulates CD147
through a combined effect of HIF-1α and Sp1 to promote glycolysis
and tumor progression in epithelial solid tumors. Carcinogenesis.
33:1598–1607. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu L, Wang Y, Bai R, Yang K and Tian Z:
MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1α
regulation. Oncogenesis. 6:e3182017. View Article : Google Scholar
|
|
74
|
Zhou Z, Plug LG, Patente TA, de
Jonge-Muller ESM, Elmagd AA, van der Meulen-de Jong AE, Everts B,
Barnhoorn MC and Hawinkels LJAC: Increased stromal PFKFB3-mediated
glycolysis in inflammatory bowel disease contributes to intestinal
inflammation. Front Immunol. 13:9660672022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hu X, Xu Q, Wan H, Hu Y, Xing S, Yang H,
Gao Y and He Z: PI3K-Akt-mTOR/PFKFB3 pathway mediated lung
fibroblast aerobic glycolysis and collagen synthesis in
lipopolysaccharide-induced pulmonary fibrosis. Lab Invest.
100:801–811. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
He Q, Yin J, Zou B and Guo H: WIN55212-2
alleviates acute lung injury by inhibiting macrophage glycolysis
through the miR-29b-3p/FOXO3/PFKFB3 axis. Mol Immunol. 149:119–128.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhai GY, Qie SY, Guo QY, Qi Y and Zhou YJ:
sDR5-Fc inhibits macrophage M1 polarization by blocking the
glycolysis. J Geriatr Cardiol. 18:271–280. 2021.PubMed/NCBI
|
|
78
|
Hao S, Zhang S, Ye J, Chen L, Wang Y, Pei
S, Zhu Q, Xu J, Tao Y, Zhou N, et al: Goliath induces inflammation
in obese mice by linking fatty acid β-oxidation to glycolysis. EMBO
Rep. 24:e569322023. View Article : Google Scholar
|
|
79
|
Sandoval DA and Patti ME: Glucose
metabolism after bariatric surgery: Implications for T2DM remission
and hypoglycaemia. Nat Rev Endocrinol. 19:164–176. 2023. View Article : Google Scholar
|
|
80
|
Zhou D, Duan Z, Li Z, Ge F, Wei R and Kong
L: The significance of glycolysis in tumor progression and its
relationship with the tumor microenvironment. Front Pharmacol.
13:10917792022. View Article : Google Scholar :
|
|
81
|
DeBerardinis RJ and Chandel NS:
Fundamentals of cancer metabolism. Sci Adv. 2:e16002002016.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Cadassou O and Jordheim LP: OXPHOS
inhibitors, metabolism and targeted therapies in cancer. Biochem
Pharmacol. 211:1155312023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Pan Y, Tian T, Park CO, Lofftus SY, Mei S,
Liu X, Luo C, O'Malley JT, Gehad A, Teague JE, et al: Survival of
tissue-resident memory T cells requires exogenous lipid uptake and
metabolism. Nature. 543:252–256. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Donati G, Nicoli P, Verrecchia A,
Vallelonga V, Croci O, Rodighiero S, Audano M, Cassina L, Ghsein A,
Binelli G, et al: Oxidative stress enhances the therapeutic action
of a respiratory inhibitor in MYC-driven lymphoma. EMBO Mol Med.
15:e169102023. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Purhonen J, Klefström J and Kallijärvi J:
MYC-an emerging player in mitochondrial diseases. Front Cell Dev
Biol. 11:12576512023. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kawalekar OU, O'Connor RS, Fraietta JA,
Guo L, McGettigan SE, Posey AD Jr, Patel PR, Guedan S, Scholler J,
Keith B, et al: Distinct signaling of coreceptors regulates
specific metabolism pathways and impacts memory development in CAR
T cells. Immunity. 44:7122016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Leber A, Hontecillas R, Zoccoli-Rodriguez
V, Bienert C, Chauhan J and Bassaganya-Riera J: Activation of NLRX1
by NX-13 alleviates inflammatory bowel disease through
immunometabolic mechanisms in CD4(+) T cells. J Immunol.
203:3407–3415. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Verstockt B, Vermeire S, Peyrin-Biroulet
L, Mosig R, Feagan BG, Colombel JF, Siegmund B, Rieder F, Schreiber
S, Yarur A, et al: The safety, tolerability, pharmacokinetics, and
clinical efficacy of the NLRX1 agonist NX-13 in active ulcerative
colitis: Results of a phase 1b study. J Crohns Colitis. 18:762–772.
2024. View Article : Google Scholar :
|
|
89
|
Leone RD, Zhao L, Englert JM, Sun IM, Oh
MH, Sun IH, Arwood ML, Bettencourt IA, Patel CH, Wen J, et al:
Glutamine blockade induces divergent metabolic programs to overcome
tumor immune evasion. Science. 366:1013–1021. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Praharaj M, Shen F, Lee AJ, Zhao L,
Nirschl TR, Theodros D, Singh AK, Wang X, Adusei KM, Lombardo KA,
et al: Metabolic reprogramming of tumor-associated macrophages
using glutamine antagonist JHU083 drives tumor immunity in
myeloid-rich prostate and bladder cancers. Cancer Immunol Res.
12:854–875. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Geiger R, Rieckmann JC, Wolf T, Basso C,
Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, et
al: L-arginine modulates T cell metabolism and enhances survival
and anti-tumor activity. Cell. 167:829–842.e13. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wiel C, Le Gal K, Ibrahim MX, Jahangir CA,
Kashif M, Yao H, Ziegler DV, Xu X, Ghosh T, Mondal T, et al: BACH1
stabilization by antioxidants stimulates lung cancer metastasis.
Cell. 178:330–345.e22. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Guo D, Tong Y, Jiang X, Meng Y, Jiang H,
Du L, Wu Q, Li S, Luo S, Li M, et al: Aerobic glycolysis promotes
tumor immune evasion by hexokinase2-mediated phosphorylation of
IκBα. Cell Metab. 34:1312–1324.e6. 2022. View Article : Google Scholar
|
|
94
|
van der Kolk BW, Muniandy M, Kaminska D,
Alvarez M, Ko A, Miao Z, Valsesia A, Langin D, Vaittinen M,
Pääkkönen M, et al: Differential mitochondrial gene expression in
adipose tissue following weight loss induced by diet or bariatric
surgery. J Clin Endocrinol Metab. 106:1312–1324. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Xia W, Veeragandham P, Cao Y, Xu Y, Rhyne
TE, Qian J, Hung CW, Zhao P, Jones Y, Gao H, et al: Obesity causes
mitochondrial fragmentation and dysfunction in white adipocytes due
to RalA activation. Nat Metab. 6:273–289. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wu C, Liu Y, Liu W, Zou T, Lu S, Zhu C, He
L, Chen J, Fang L, Zou L, et al: NNMT-DNMT1 axis is essential for
maintaining cancer cell sensitivity to oxidative phosphorylation
inhibition. Adv Sci (Weinh). 10:e22026422022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
He P, Feng J, Xia X, Sun Y, He J, Guan T,
Peng Y, Zhang X, Liu M, Pang X and Chen Y: Discovery of a potent
and oral available complex I OXPHOS inhibitor that abrogates tumor
growth and circumvents MEKi resistance. J Med Chem. 66:6047–6069.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wu MM, Wang QM, Huang BY, Mai CT, Wang CL,
Wang TT and Zhang XJ: Dioscin ameliorates murine ulcerative colitis
by regulating macrophage polarization. Pharmacol Res.
172:1057962021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wu L, Zhang X, Zheng L, Zhao H, Yan G,
Zhang Q, Zhou Y, Lei J, Zhang J, Wang J, et al: RIPK3 orchestrates
fatty acid metabolism in tumor-associated macrophages and
hepatocarcinogenesis. Cancer Immunol Res. 8:710–721. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Shriver LP and Manchester M: Inhibition of
fatty acid metabolism ameliorates disease activity in an animal
model of multiple sclerosis. Sci Rep. 1:792011. View Article : Google Scholar :
|
|
101
|
Cao D, Khan Z, Li X, Saito S, Bernstein
EA, Victor AR, Ahmed F, Hoshi AO, Veiras LC, Shibata T, et al:
Macrophage angiotensin-converting enzyme reduces atherosclerosis by
increasing peroxisome proliferator-activated receptor α and
fundamentally changing lipid metabolism. Cardiovasc Res.
119:1825–1841. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Nomura M, Liu J, Yu ZX, Yamazaki T, Yan Y,
Kawagishi H, Rovira II, Liu C, Wolfgang MJ, Mukouyama YS and Finkel
T: Macrophage fatty acid oxidation inhibits atherosclerosis
progression. J Mol Cell Cardiol. 127:270–276. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Hinshaw DC, Hanna A, Lama-Sherpa T, Metge
B, Kammerud SC, Benavides GA, Kumar A, Alsheikh HA, Mota M, Chen D,
et al: Hedgehog signaling regulates metabolism and polarization of
mammary tumor-associated macrophages. Cancer Res. 81:5425–5437.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Liu PS, Chen YT, Li X, Hsueh PC, Tzeng SF,
Chen H, Shi PZ, Xie X, Parik S, Planque M, et al: CD40 signal
rewires fatty acid and glutamine metabolism for stimulating
macrophage anti-tumorigenic functions. Nat Immunol. 24:452–462.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
An L, Lu M, Xu W, Chen H, Feng L, Xie T,
Shan J, Wang S and Lin L: Qingfei oral liquid alleviates
RSV-induced lung inflammation by promoting fatty-acid-dependent
M1/M2 macrophage polarization via the Akt signaling pathway. J
Ethnopharmacol. 298:1156372022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bougarne N, Weyers B, Desmet SJ, Deckers
J, Ray DW, Staels B and De Bosscher K: Molecular actions of PPARα
in lipid metabolism and inflammation. Endocr Rev. 39:760–802. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wang D, Liu B, Tao W, Hao Z and Liu M:
Fibrates for secondary prevention of cardiovascular disease and
stroke. Cochrane Database Syst Rev. 2015:Cd0095802015.PubMed/NCBI
|
|
108
|
Lim SA, Wei J, Nguyen TM, Shi H, Su W,
Palacios G, Dhungana Y, Chapman NM, Long L, Saravia J, et al: Lipid
signalling enforces functional specialization of T(reg) cells in
tumours. Nature. 591:306–311. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu
C, Yang J, Zheng Y, Bruns C, Zhao Y, et al: Lipid metabolism in
cancer progression and therapeutic strategies. MedComm. 2:27–59.
2020. View Article : Google Scholar
|
|
110
|
Altman BJ, Stine ZE and Dang CV: From
Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev
Cancer. 16:619–34. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Cluntun AA, Lukey MJ, Cerione RA and
Locasale JW: Glutamine metabolism in cancer: Understanding the
heterogeneity. Trends Cancer. 3:169–180. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hensley CT, Wasti AT and DeBerardinis RJ:
Glutamine and cancer: Cell biology, physiology, and clinical
opportunities. J Clin Invest. 123:3678–3684. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Martinez-Outschoorn UE, Peiris-Pagés M,
Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A
therapeutic perspective. Nat Rev Clin Oncol. 14:1132017. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Oh MH, Sun IH, Zhao L, Leone RD, Sun IM,
Xu W, Collins SL, Tam AJ, Blosser RL, Patel CH, et al: Targeting
glutamine metabolism enhances tumor-specific immunity by modulating
suppressive myeloid cells. J Clin Invest. 130:3865–3884. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Pillai R, LeBoeuf SE, Hao Y, New C, Blum
JLE, Rashidfarrokhi A, Huang SM, Bahamon C, Wu WL, Karadal-Ferrena
B, et al: Glutamine antagonist DRP-104 suppresses tumor growth and
enhances response to checkpoint blockade in KEAP1 mutant lung
cancer. Sci Adv. 10:eadm98592024. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Liu N, Chen L, Yan M, Tao Q, Wu J, Chen J,
Chen X, Zhang W and Peng C: Eubacterium rectale improves the
efficacy of anti-PD1 immunotherapy in melanoma via
l-serine-mediated NK cell activation. Research (Wash D C).
6:01272023.PubMed/NCBI
|
|
117
|
Liu Y, Du Z, Li T, Zhang J, Cheng Y, Huang
J, Yang J, Wen L, Tian M, Yang M and Chen C: Lycorine eliminates
B-cell acute lymphoblastic leukemia cells by targeting PSAT1
through the serine/glycine metabolic pathway. Eur J Pharmacol.
961:1761622023. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Apostolova P and Pearce EL: Lactic acid
and lactate: Revisiting the physiological roles in the tumor
microenvironment. Trends Immunol. 43:969–977. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ma J, Tang L, Tan Y, Xiao J, Wei K, Zhang
X, Ma Y, Tong S, Chen J, Zhou N, et al: Lithium carbonate
revitalizes tumor-reactive CD8(+) T cells by shunting lactic acid
into mitochondria. Nat Immunol. 25:552–561. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Raud B, McGuire PJ, Jones RG, Sparwasser T
and Berod L: Fatty acid metabolism in CD8(+) T cell memory:
Challenging current concepts. Immunol Rev. 283:213–231. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Ferraz-Bannitz R, Welendorf CR, Coelho PO,
Salgado W Jr, Nonino CB, Beraldo RA and Foss-Freitas MC: Bariatric
surgery can acutely modulate ER-stress and inflammation on
subcutaneous adipose tissue in non-diabetic patients with obesity.
Diabetol Metab Syndr. 13:192021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Hatami M, Javanbakht MH, Haghighat N,
Sohrabi Z, Yavar R, Pazouki A and Farsani GM: Energy expenditure
related biomarkers following bariatric surgery: A prospective
six-month cohort study. BMC Surg. 24:1292024. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Vargas-Mendoza N, Morales-González A,
Madrigal-Santillán EO, Madrigal-Bujaidar E, Álvarez-González I,
García-Melo LF, Anguiano-Robledo L, Fregoso-Aguilar T and
Morales-Gonzalez JA: Antioxidant and adaptative response mediated
by Nrf2 during physical exercise. Antioxidants (Basel). 8:1962019.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Lo YC, Lee CF and Powell JD: Insight into
the role of mTOR and metabolism in T cells reveals new potential
approaches to preventing graft rejection. Curr Opin Organ
Transplant. 19:363–371. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
de Lange P, Lombardi A, Silvestri E,
Cioffi F, Giacco A, Iervolino S, Petito G, Senese R, Lanni A and
Moreno M: Physiological approaches targeting cellular and
mitochondrial pathways underlying adipose organ senescence. Int J
Mol Sci. 24:116762023. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Biobaku F, Ghanim H, Monte SV, Caruana JA
and Dandona P: Bariatric surgery: Remission of inflammation,
cardiometabolic benefits, and common adverse effects. J Endocr Soc.
4:bvaa0492020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Greto VL, Cvetko A, Štambuk T, Dempster
NJ, Kifer D, Deriš H, Cindrić A, Vučković F, Falchi M, Gillies RS,
et al: Extensive weight loss reduces glycan age by altering IgG
N-glycosylation. Int J Obes (Lond). 45:1521–1531. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Pribić T, Das JK, Đerek L, Belsky DW,
Orenduff M, Huffman KM, Kraus WE, Deriš H, Šimunović J, Štambuk T,
et al: A 2-year calorie restriction intervention may reduce
glycomic biological age biomarkers-a pilot study. NPJ Aging.
11:712025. View Article : Google Scholar
|
|
129
|
Haran A, Bergel M, Kleiman D, Hefetz L,
Israeli H, Weksler-Zangen S, Agranovich B, Abramovich I,
Ben-Haroush Schyr R, Gottlieb E and Ben-Zvi D: Differential effects
of bariatric surgery and caloric restriction on hepatic one-carbon
and fatty acid metabolism. iScience. 26:1070462023. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Kim ER, Yun JH, Kim HJ, Park HY, Heo Y,
Park YS, Park DJ and Koo SK: Evaluation of hormonal and circulating
inflammatory biomarker profiles in the year following bariatric
surgery. Front Endocrinol (Lausanne). 14:11716752023. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Savulescu-Fiedler I, Mihalcea R,
Dragosloveanu S, Scheau C, Baz RO, Caruntu A, Scheau AE, Caruntu C
and Benea SN: The interplay between obesity and inflammation. Life
(Basel). 14:8562024.PubMed/NCBI
|
|
132
|
Poitou C, Perret C, Mathieu F, Truong V,
Blum Y, Durand H, Alili R, Chelghoum N, Pelloux V, Aron-Wisnewsky
J, et al: Bariatric surgery induces disruption in inflammatory
signaling pathways mediated by immune cells in adipose tissue: A
RNA-Seq study. PLoS One. 10:e01257182015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Smith-Garvin JE, Koretzky GA and Jordan
MS: T cell activation. Annu Rev Immunol. 27:591–619. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Hafida S, Mirshahi T and Nikolajczyk BS:
The impact of bariatric surgery on inflammation: Quenching the fire
of obesity? Curr Opin Endocrinol Diabetes Obes. 23:373–378. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Popko K, Gorska E, Stelmaszczyk-Emmel A,
Plywaczewski R, Stoklosa A, Gorecka D, Pyrzak B and Demkow U:
Proinflammatory cytokines Il-6 and TNF-α and the development of
inflammation in obese subjects. Eur J Med Res. 15(Suppl 2):
S120–S122. 2010. View Article : Google Scholar
|
|
136
|
Reyes-Farias M, Fernández-García P,
Corrales P, González L, Soria-Gondek A, Martínez E, Pellitero S,
Tarascó J, Moreno P, Sumoy L, et al: Interleukin-16 is increased in
obesity and alters adipogenesis and inflammation in vitro. Front
Endocrinol (Lausanne). 15:13463172024. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Niewold TB, Lehman JS, Gunnarsson I, Meves
A and Oke V: Role of interleukin-16 in human diseases: a novel
potential therapeutic target. Front Immunol. 16:15240262025.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Jensen RT, Thuesen ACB, Huang Y, Stinson
SE, Juel HB, Madsbad S, Bendtsen F, Hansen T and Pedersen JS:
Changes in inflammatory markers following bariatric surgery and the
impact of the surgical procedure: A 12-month longitudinal study.
Obes Surg. 35:2626–2637. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Liu Y, Jin J, Chen Y, Chen C, Chen Z and
Xu L: Integrative analyses of biomarkers and pathways for adipose
tissue after bariatric surgery. Adipocyte. 9:384–400. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
McKernan K, Varghese M, Patel R and Singer
K: Role of TLR4 in the induction of inflammatory changes in
adipocytes and macrophages. Adipocyte. 9:212–222. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Teymournejad O, Li Z, Beesetty P, Yang C
and Montgomery CP: Toxin expression during Staphylococcus aureus
infection imprints host immunity to inhibit vaccine efficacy. NPJ
Vaccines. 8:32023. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Hajam IA, Tsai CM, Gonzalez C, Caldera JR,
Lázaro Díez M, Du X, Aralar A, Lin B, Duong W and Liu GY:
Pathobiont-induced suppressive immune imprints thwart T cell
vaccine responses. Nat Commun. 15:103352024. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Trougakos IP, Terpos E, Alexopoulos H,
Politou M, Paraskevis D, Scorilas A, Kastritis E, Andreakos E and
Dimopoulos MA: Adverse effects of COVID-19 mRNA vaccines: The spike
hypothesis. Trends Mol Med. 28:542–554. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Wang Y, Zheng Y, Kuang L, Yang K, Xie J,
Liu X, Shen S, Li X, Wu S, Yang Y, et al: Effects of probiotics in
patients with morbid obesity undergoing bariatric surgery: A
systematic review and meta-analysis. Int J Obes (Lond).
47:1029–1042. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Komorniak N, Kaczmarczyk M, Łoniewski I,
Martynova-Van Kley A, Nalian A, Wroński M, Kaseja K, Kowalewski B,
Folwarski M and Stachowska E: Analysis of the efficacy of diet and
short-term probiotic intervention on depressive symptoms in
patients after bariatric surgery: A randomized double-blind placebo
controlled pilot study. Nutrients. 15:49052023. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
O'Bryan LJ, Atkins KJ, Lipszyc A, Scott
DA, Silbert BS and Evered LA: Inflammatory biomarker levels after
propofol or sevoflurane anesthesia: A meta-analysis. Anesth Analg.
134:69–81. 2022. View Article : Google Scholar
|
|
147
|
Hashemian M, Sahebdad-Khabisi S, Honarvar
Z, Torabinejad Z, Taravati H, Mohammadi FD and Amirkhosravi L:
Effects of spinal versus general anesthesia on serum oxidative
stress markers and cytokine release after abdominal hysterectomy: A
non-randomized trial. Sci Rep. 15:302472025. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Fadahunsi N, Petersen J, Metz S, Jakobsen
A, Vad Mathiesen C, Silke Buch-Rasmussen A, Kurgan N, Kjærgaard
Larsen J, Andersen RC, Topilko T, et al: Targeting postsynaptic
glutamate receptor scaffolding proteins PSD-95 and PICK1 for
obesity treatment. Sci Adv. 10:eadg26362024. View Article : Google Scholar : PubMed/NCBI
|