Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2026 Volume 57 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 57 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Immune and metabolic remodeling following bariatric surgery: Implications for targeted immunotherapy (Review)

  • Authors:
    • Yiming Shao
    • Ke Song
    • Ruixin Yu
    • He Xiao
    • Chengjun Li
    • Yuling Deng
    • Yuan Zhang
    • Yixing Ren
  • View Affiliations / Copyright

    Affiliations: Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
    Copyright: © Shao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 5
    |
    Published online on: October 24, 2025
       https://doi.org/10.3892/ijmm.2025.5676
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Over the past few years, bariatric surgery has emerged as a potent remedy for obesity and its related metabolic issues, with its effects on peripheral immune cells garnering considerable attention. Obesity, recognized as a chronic metabolic condition, is intricately connected to dysfunctions spanning a range of immune cell types. Among peripheral immune cells, T cells, B cells and monocytes, obesity markedly alters their counts and functions, driving the inflammation and metabolic dysfunction characteristic of the condition. The modifications in these immune cell cohorts are inextricably intertwined with the augmentation of postoperative metabolic functions and have the potential to exert a salutary effect on complications associated with obesity. The present review primarily examined the latent influence of bariatric surgery on the number and function of peripheral immune cells, thereby offering novel perspectives and therapeutic targets for the immunotherapy of obesity.
View Figures

Figure 1

The changes in the composition and
function of immune cells in the gut under normal and obese
conditions. CX3CR1, C-X3-C motif chemokine receptor 1; MHCII, major
histocompatibility complex class II; CD, cluster of
differentiation; Treg, regulatory T cell; Th, T helper; IL,
interleukin; ILC, innate lymphoid cells; IgA, immunoglobulin A;
ASC, antibody-secreting cell; CCR2, C-C chemokine receptor 2; MAIT,
mucosal-associated invariant T; miRNA, microRNA.

Figure 2

How bariatric surgery influences
multiple organs such as the brain, adipose tissue, skeletal muscle,
small intestine and liver by affecting immune cells and factors,
ultimately leading to weight loss and increased insulin
sensitivity. DAMPS, damage-associated molecular patterns; NETs,
neutrophil extracellular traps; IL, interleukin; NOS2, nitric oxide
synthase 2; TNF, tumor necrosis factor; JNK, c-Jun N-terminal
kinase; NF-κB, nuclear factor-κB; IFN, interferon.
View References

1 

Schulze MB and Stefan N: Metabolically healthy obesity: From epidemiology and mechanisms to clinical implications. Nat Rev Endocrinol. 20:633–646. 2024. View Article : Google Scholar : PubMed/NCBI

2 

Zhang P, Watari K and Karin M: Innate immune cells link dietary cues to normal and abnormal metabolic regulation. Nat Immunol. 26:29–41. 2025. View Article : Google Scholar : PubMed/NCBI

3 

Moris D, Barfield R, Chan C, Chasse S, Stempora L, Xie J, Plichta JK, Thacker J, Harpole DH, Purves T, et al: Immune phenotype and postoperative complications after elective surgery. Ann Surg. 278:873–882. 2023. View Article : Google Scholar : PubMed/NCBI

4 

Barbosa P, Pinho A, Lázaro A, Paula D, Tralhão JG, Paiva A, Pereira MJ, Carvalho E and Laranjeira P: Bariatric surgery induces alterations in the immune profile of peripheral blood T cells. Biomolecules. 14:2192024. View Article : Google Scholar : PubMed/NCBI

5 

Mohammadzadeh N, Razavi S and Ebrahimipour G: Impact of bariatric surgery on gut microbiota composition in obese patients compared to healthy controls. AMB Express. 14:1152024. View Article : Google Scholar : PubMed/NCBI

6 

Rivera-Carranza T, Azaola-Espinosa A, Bojalil-Parra R, Zúñiga-León E, León-Téllez-Girón A, Rojano-Rodríguez ME and Nájera-Medina O: Immunometabolic changes following gastric bypass and sleeve gastrectomy: A comparative study. Obes Surg. 35:481–495. 2025. View Article : Google Scholar : PubMed/NCBI

7 

Shaikh SR, Beck MA, Alwarawrah Y and MacIver NJ: Emerging mechanisms of obesity-associated immune dysfunction. Nat Rev Endocrinol. 20:136–148. 2024. View Article : Google Scholar

8 

Hart A, Sun Y, Titcomb TJ, Liu B, Smith JK, Correia MLG, Snetselaar LG, Zhu Z and Bao W: Association between preoperative serum albumin levels with risk of death and postoperative complications after bariatric surgery: A retrospective cohort study. Surg Obes Relat Dis. 18:928–934. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Hart JWH, Takken R, Hogewoning CRC, Biter LU, Apers JA, Zengerink H, Dunkelgrün M and Verhoef C: Markers for major complications at day-one postoperative in fast-track metabolic surgery: Updated metabolic checklist. Obes Surg. 33:3008–3016. 2023. View Article : Google Scholar : PubMed/NCBI

10 

Riva-Moscoso A, Martinez-Rivera RN, Cotrina-Susanibar G, Príncipe-Meneses FS, Urrunaga-Pastor D, Salinas-Sedo G and Toro-Huamanchumo CJ: Factors associated with nutritional deficiency biomarkers in candidates for bariatric surgery: A cross-sectional study in a peruvian high-resolution clinic. Nutrients. 14:822021. View Article : Google Scholar

11 

Giovenzana A, Bezzecchi E, Bichisecchi A, Cardellini S, Ragogna F, Pedica F, Invernizzi F, Di Filippo L, Tomajer V, Aleotti F, et al: Fat-to-blood recirculation of partially dysfunctional PD-1(+)CD4 Tconv cells is associated with dysglycemia in human obesity. iScience. 27:1090322024. View Article : Google Scholar : PubMed/NCBI

12 

Ma Q, Ran H, Li Y, Lu Y, Liu X, Huang H, Yang W, Yu L, Chen P, Huang X, et al: Circulating Th1/17 cells serve as a biomarker of disease severity and a target for early intervention in AChR-MG patients. Clin Immunol. 218:1084922020. View Article : Google Scholar : PubMed/NCBI

13 

Wood S, Branch J, Vasquez P, DeGuzman MM, Brown A, Sagcal-Gironella AC, Singla S, Ramirez A and Vogel TP: Th17/1 and ex-Th17 cells are detected in patients with polyarticular juvenile arthritis and increase following treatment. Pediatr Rheumatol Online J. 22:322024. View Article : Google Scholar : PubMed/NCBI

14 

Shirakawa K and Sano M: Drastic transformation of visceral adipose tissue and peripheral CD4 T cells in obesity. Front Immunol. 13:10447372023. View Article : Google Scholar : PubMed/NCBI

15 

Elkins C, Ye C, Sivasami P, Mulpur R, Diaz-Saldana PP, Peng A, Xu M, Chiang YP, Moll S, Rivera-Rodriguez DE, et al: Obesity reshapes regulatory T cells in the visceral adipose tissue by disrupting cellular cholesterol homeostasis. Sci Immunol. 10:eadl49092025. View Article : Google Scholar : PubMed/NCBI

16 

Wijngaarden LH, Taselaar AE, Nuijten F, van der Harst E, Klaassen RA, Kuijper TM, Jongbloed F, Ambagtsheer G, Klepper M, Ijzermans JNM, et al: T and B cell composition and cytokine producing capacity before and after bariatric surgery. Front Immunol. 13:8882782022. View Article : Google Scholar : PubMed/NCBI

17 

Fernández-Ruiz I: Obesity alters cholesterol homeostasis in regulatory T cells of visceral adipose tissue. Nat Rev Cardiol. 22:1462025. View Article : Google Scholar : PubMed/NCBI

18 

Villarreal-Calderon JR, Cuellar-Tamez R, Castillo EC, Luna-Ceron E, García-Rivas G and Elizondo-Montemayor L: Metabolic shift precedes the resolution of inflammation in a cohort of patients undergoing bariatric and metabolic surgery. Sci Rep. 11:121272021. View Article : Google Scholar : PubMed/NCBI

19 

Jalilvand A, Blaszczak A, Bradley D, Liu J, Wright V, Needleman B, Hsueh W and Noria S: Low visceral adipose tissue regulatory T cells are associated with higher comorbidity severity in patients undergoing bariatric surgery. Surg Endosc. 35:3131–3138. 2021. View Article : Google Scholar

20 

Frasca D: Obesity accelerates age defects in human B cells and induces autoimmunity. Immunometabolism. 4:e2200102022. View Article : Google Scholar : PubMed/NCBI

21 

Artimovič P, Špaková I, Macejková E, Pribulová T, Rabajdová M, Mareková M and Zavacká M: The ability of microRNAs to regulate the immune response in ischemia/reperfusion inflammatory pathways. Genes Immun. 25:277–296. 2024. View Article : Google Scholar

22 

Šlisere B, Arisova M, Aizbalte O, Salmiņa MM, Zolovs M, Levenšteins M, Mukāns M, Troickis I, Meija L, Lejnieks A, et al: Distinct B cell profiles characterise healthy weight and obesity pre- and post-bariatric surgery. Int J Obes (Lond). 47:970–978. 2023. View Article : Google Scholar : PubMed/NCBI

23 

Naujoks W, Quandt D, Hauffe A, Kielstein H, Bähr I and Spielmann J: Characterization of surface receptor expression and cytotoxicity of human NK cells and NK cell subsets in overweight and obese humans. Front Immunol. 11:5732002020. View Article : Google Scholar : PubMed/NCBI

24 

Bähr I, Spielmann J, Quandt D and Kielstein H: Obesity-associated alterations of natural killer cells and immunosurveillance of cancer. Front Immunol. 11:2452020. View Article : Google Scholar : PubMed/NCBI

25 

Haugstøyl ME, Cornillet M, Strand K, Stiglund N, Sun D, Lawrence-Archer L, Hjellestad ID, Busch C, Mellgren G, Björkström NK and Fernø J: Phenotypic diversity of human adipose tissue-resident NK cells in obesity. Front Immunol. 14:11303702023. View Article : Google Scholar : PubMed/NCBI

26 

Wang YY, Chang EQ, Zhu RL, Liu XZ, Wang GZ, Li NT, Zhang W, Zhou J, Wang XD, Sun MY and Zhang JQ: An atlas of dynamic peripheral blood mononuclear cell landscapes in human perioperative anaesthesia/surgery. Clin Transl Med. 12:e6632022. View Article : Google Scholar : PubMed/NCBI

27 

Gihring A, Gärtner F, Mayer L, Roth A, Abdelrasoul H, Kornmann M, Elad L and Knippschild U: Influence of bariatric surgery on the peripheral blood immune system of female patients with morbid obesity revealed by high-dimensional mass cytometry. Front Immunol. 14:11318932023. View Article : Google Scholar : PubMed/NCBI

28 

Satoh M and Iwabuchi K: Contribution of NKT cells and CD1d-expressing cells in obesity-associated adipose tissue inflammation. Front Immunol. 15:13658432024. View Article : Google Scholar : PubMed/NCBI

29 

Alhamawi RM, Almutawif YA, Aloufi BH, Alotaibi JF, Alharbi MF, Alsrani NM, Alinizy RM, Almutairi WS, Alaswad WA, Eid HMA and Mumena WA: Free sugar intake is associated with reduced proportion of circulating invariant natural killer T cells among women experiencing overweight and obesity. Front Immunol. 15:13583412024. View Article : Google Scholar : PubMed/NCBI

30 

Van Kaer L, Parekh VV and Wu L: Invariant natural killer T cells: Bridging innate and adaptive immunity. Cell Tissue Res. 343:43–55. 2011. View Article : Google Scholar

31 

Zhou HY, Feng X, Wang LW, Zhou R, Sun H, Chen X, Lu RB, Huang Y, Guo Q and Luo XH: Bone marrow immune cells respond to fluctuating nutritional stress to constrain weight regain. Cell Metab. 35:1915–1930.e8. 2023. View Article : Google Scholar : PubMed/NCBI

32 

Radushev V, Karkossa I, Berg J, von Bergen M, Engelmann B, Rolle-Kampczyk U, Blüher M, Wagner U, Schubert K and Rossol M: Dysregulated cytokine and oxidative response in hyper-glycolytic monocytes in obesity. Front Immunol. 15:14165432024. View Article : Google Scholar : PubMed/NCBI

33 

Blaszkiewicz M, Gunsch G, Willows JW, Gardner ML, Sepeda JA, Sas AR and Townsend KL: Adipose tissue myeloid-lineage neuroimmune cells express genes important for neural plasticity and regulate adipose innervation. Front Endocrinol (Lausanne). 13:8649252022. View Article : Google Scholar : PubMed/NCBI

34 

Hinte LC, Castellano-Castillo D, Ghosh A, Melrose K, Gasser E, Noé F, Massier L, Dong H, Sun W, Hoffmann A, et al: Adipose tissue retains an epigenetic memory of obesity after weight loss. Nature. 636:457–465. 2024. View Article : Google Scholar : PubMed/NCBI

35 

Sciarretta F, Ninni A, Zaccaria F, Chiurchiù V, Bertola A, Karlinsey K, Jia W, Ceci V, Di Biagio C, Xu Z, et al: Lipid-associated macrophages reshape BAT cell identity in obesity. Cell Rep. 43:1144472024. View Article : Google Scholar : PubMed/NCBI

36 

Luo JH, Wang FX, Zhao JW, Yang CL, Rong SJ, Lu WY, Chen QJ, Zhou Q, Xiao J, Wang YN, et al: PDIA3 defines a novel subset of adipose macrophages to exacerbate the development of obesity and metabolic disorders. Cell Metab. 36:2262–2280.e5. 2024. View Article : Google Scholar : PubMed/NCBI

37 

He C, Hu C, He WZ, Sun YC, Jiang Y, Liu L, Hou J, Chen KX, Jiao YR, Huang M, et al: Macrophage-derived extracellular vesicles regulate skeletal stem/progenitor Cell lineage fate and bone deterioration in obesity. Bioact Mater. 36:508–523. 2024.PubMed/NCBI

38 

Yang T, Zhang Y, Duan C, Liu H, Wang D, Liang Q, Chen X, Ma J, Cheng K, Chen Y, et al: CD300E(+) macrophages facilitate liver regeneration after splenectomy in decompensated cirrhotic patients. Exp Mol Med. 57:72–85. 2025. View Article : Google Scholar : PubMed/NCBI

39 

Bader JE, Wolf MM, Lupica-Tondo GL, Madden MZ, Reinfeld BI, Arner EN, Hathaway ES, Steiner KK, Needle GA, Hatem Z, et al: Author Correction: Obesity induces PD-1 on macrophages to suppress anti-tumour immunity. Nature. 631:E162024. View Article : Google Scholar : PubMed/NCBI

40 

Liu W, Li B, Liu D, Zhao B, Sun G and Ding J: Obesity correlates with the immunosuppressive ILC2s-MDSCs axis in advanced breast cancer. Immun Inflamm Dis. 12:e11962024. View Article : Google Scholar : PubMed/NCBI

41 

Yang Q, Yu B, Kang J, Li A and Sun J: Obesity promotes tumor immune evasion in ovarian cancer through increased production of myeloid-derived suppressor cells via IL-6. Cancer Manag Res. 13:7355–7363. 2021. View Article : Google Scholar : PubMed/NCBI

42 

Divoux A, Moutel S, Poitou C, Lacasa D, Veyrie N, Aissat A, Arock M, Guerre-Millo M and Clément K: Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. J Clin Endocrinol Metab. 97:E1677–E1685. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Liu J, Divoux A, Sun J, Zhang J, Clément K, Glickman JN, Sukhova GK, Wolters PJ, Du J, Gorgun CZ, et al: Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med. 15:940–945. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Milling S: Adipokines and the control of mast cell functions: From obesity to inflammation? Immunology. 158:1–2. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Arivazhagan L, Ruiz HH, Wilson RA, Manigrasso MB, Gugger PF, Fisher EA, Moore KJ, Ramasamy R and Schmidt AM: An eclectic cast of cellular actors orchestrates innate immune responses in the mechanisms driving obesity and metabolic perturbation. Circ Res. 126:1565–1589. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Chen J, Liu X, Zou Y, Gong J, Ge Z, Lin X, Zhang W, Huang H, Zhao J, Saw PE, et al: A high-fat diet promotes cancer progression by inducing gut microbiota-mediated leucine production and PMN-MDSC differentiation. Proc Natl Acad Sci USA. 121:e23067761212024. View Article : Google Scholar : PubMed/NCBI

47 

Li C, Wang G, Sivasami P, Ramirez RN, Zhang Y, Benoist C and Mathis D: Interferon-α-producing plasmacytoid dendritic cells drive the loss of adipose tissue regulatory T cells during obesity. Cell Metab. 33:1610–1623.e5. 2021. View Article : Google Scholar

48 

Zhang J, Chen X, Liu W, Zhang C, Xiang Y, Liu S and Zhou Z: Metabolic surgery improves the unbalanced proportion of peripheral blood myeloid dendritic cells and T lymphocytes in obese patients. Eur J Endocrinol. 185:819–829. 2021. View Article : Google Scholar : PubMed/NCBI

49 

McAuliffe PF, Efron PA, Scumpia PO, Uchida T, Mutschlecner SC, Rout WR, Moldawer LL and Cendan JC: Varying blood monocyte and dendritic cell responses after laparoscopic versus open gastric bypass surgery. Obes Surg. 15:1424–1431. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Zhao X, Wang Q, Wang W and Lu S: Increased neutrophil extracellular traps caused by diet-induced obesity delay fracture healing. FASEB J. 38:e701262024. View Article : Google Scholar : PubMed/NCBI

51 

Lyu H, Fan N, Wen H, Zhang X, Mao H, Bian Q and Chen J: Interplay between BMI, neutrophil, triglyceride and uric acid: A case-control study and bidirectional multivariate mendelian randomization analysis. Nutr Metab (Lond). 22:72025. View Article : Google Scholar : PubMed/NCBI

52 

Roberts CF and Sheu EG: Low density, high impact? Neutrophil changes in obesity and bariatric surgery. EBioMedicine. 79:1039882022. View Article : Google Scholar : PubMed/NCBI

53 

Chi PJ, Wu KT, Chen PJ, Chen CY, Su YC, Yang CY and Chen JH: The serial changes of Neutrophile-Lymphocyte Ratio and correlation to weight loss after Laparoscopic Sleeve Gastrectomy. Front Surg. 9:9398572022. View Article : Google Scholar : PubMed/NCBI

54 

Hu Y and Chakarov S: Eosinophils in obesity and obesity-associated disorders. Discov Immunol. 2:kyad0222023. View Article : Google Scholar

55 

Oliveira MC, Silveira ALM, de Oliveira ACC, Lana JP, Costa KA, Vieira É LM, Pinho V, Teixeira MM, Merabtene F, Marcelin G, et al: Eosinophils protect from metabolic alterations triggered by obesity. Metabolism. 146:1556132023. View Article : Google Scholar : PubMed/NCBI

56 

Deiss-Yehiely N, Lidor A and Hillman L: Outcomes of patients with eosinophilic esophagitis undergoing bariatric surgery. J Gastrointest Surg. 28:1706–1708. 2024. View Article : Google Scholar : PubMed/NCBI

57 

Yuan B, Huang L, Yan M, Zhang S, Zhang Y, Jin B, Ma Y and Luo Z: Adiponectin downregulates TNF-α expression in degenerated intervertebral discs. Spine (Phila Pa 1976). 43:E381–E389. 2018. View Article : Google Scholar

58 

Bader JE, Wolf MM, Lupica-Tondo GL, Madden MZ, Reinfeld BI, Arner EN, Hathaway ES, Steiner KK, Needle GA, Hatem Z, et al: Obesity induces PD-1 on macrophages to suppress anti-tumour immunity. Nature. 630:968–975. 2024. View Article : Google Scholar : PubMed/NCBI

59 

Desharnais L, Walsh LA and Quail DF: Exploiting the obesity-associated immune microenvironment for cancer therapeutics. Pharmacol Ther. 229:1079232022. View Article : Google Scholar

60 

Pasquarelli-do-Nascimento G, Machado SA, de Carvalho JMA and Magalhães KG: Obesity and adipose tissue impact on T-cell response and cancer immune checkpoint blockade therapy. Immunother Adv. 2:ltac0152022. View Article : Google Scholar : PubMed/NCBI

61 

Villarreal-Calderón JR, Cuéllar RX, Ramos-González MR, Rubio-Infante N, Castillo EC, Elizondo-Montemayor L and García-Rivas G: Interplay between the adaptive immune system and insulin resistance in weight loss induced by bariatric surgery. Oxid Med Cell Longev. 2019:39407392019. View Article : Google Scholar : PubMed/NCBI

62 

Conroy MJ, Dunne MR, Donohoe CL and Reynolds JV: Obesity-associated cancer: An immunological perspective. Proc Nutr Soc. 75:125–138. 2016. View Article : Google Scholar

63 

Wang Z, Aguilar EG, Luna JI, Dunai C, Khuat LT, Le CT, Mirsoian A, Minnar CM, Stoffel KM, Sturgill IR, et al: Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med. 25:141–151. 2019. View Article : Google Scholar :

64 

Galyean S, Sawant D and Shin AC: Immunometabolism, micronutrients, and bariatric surgery: The use of transcriptomics and microbiota-targeted therapies. Mediators Inflamm. 2020:88620342020. View Article : Google Scholar : PubMed/NCBI

65 

Chen DB and Wang W: Human placental microRNAs and preeclampsia. Biol Reprod. 88:1302013. View Article : Google Scholar : PubMed/NCBI

66 

Mehrdad M, Norouzy A, Safarian M, Nikbakht HA, Gholamalizadeh M and Mahmoudi M: The antiviral immune defense may be adversely influenced by weight loss through a calorie restriction program in obese women. Am J Transl Res. 13:10404–10412. 2021.PubMed/NCBI

67 

Ji J, Fotros D, Sohouli MH, Velu P, Fatahi S and Liu Y: The effect of a ketogenic diet on inflammation-related markers: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 83:40–58. 2025. View Article : Google Scholar

68 

Nemet I and Monnier VM: Vitamin C degradation products and pathways in the human lens. J Biol Chem. 286:37128–37136. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Zhu R, Craciun I, Bernhards-Werge J, Jalo E, Poppitt SD, Silvestre MP, Huttunen-Lenz M, McNarry MA, Stratton G, Handjiev S, et al: Age- and sex-specific effects of a long-term lifestyle intervention on body weight and cardiometabolic health markers in adults with prediabetes: results from the diabetes prevention study PREVIEW. Diabetologia. 65:1262–1277. 2022. View Article : Google Scholar : PubMed/NCBI

70 

Potenza L, Vallerini D, Barozzi P, Riva G, Gilioli A, Forghieri F, Candoni A, Cesaro S, Quadrelli C, Maertens J, et al: Mucorales-Specific T cells in patients with hematologic malignancies. PLoS One. 11:e01491082016. View Article : Google Scholar : PubMed/NCBI

71 

Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A, et al: mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 345:12506842014. View Article : Google Scholar

72 

Ke X, Fei F, Chen Y, Xu L, Zhang Z, Huang Q, Zhang H, Yang H, Chen Z and Xing J: Hypoxia upregulates CD147 through a combined effect of HIF-1α and Sp1 to promote glycolysis and tumor progression in epithelial solid tumors. Carcinogenesis. 33:1598–1607. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Liu L, Wang Y, Bai R, Yang K and Tian Z: MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1α regulation. Oncogenesis. 6:e3182017. View Article : Google Scholar

74 

Zhou Z, Plug LG, Patente TA, de Jonge-Muller ESM, Elmagd AA, van der Meulen-de Jong AE, Everts B, Barnhoorn MC and Hawinkels LJAC: Increased stromal PFKFB3-mediated glycolysis in inflammatory bowel disease contributes to intestinal inflammation. Front Immunol. 13:9660672022. View Article : Google Scholar : PubMed/NCBI

75 

Hu X, Xu Q, Wan H, Hu Y, Xing S, Yang H, Gao Y and He Z: PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. Lab Invest. 100:801–811. 2020. View Article : Google Scholar : PubMed/NCBI

76 

He Q, Yin J, Zou B and Guo H: WIN55212-2 alleviates acute lung injury by inhibiting macrophage glycolysis through the miR-29b-3p/FOXO3/PFKFB3 axis. Mol Immunol. 149:119–128. 2022. View Article : Google Scholar : PubMed/NCBI

77 

Zhai GY, Qie SY, Guo QY, Qi Y and Zhou YJ: sDR5-Fc inhibits macrophage M1 polarization by blocking the glycolysis. J Geriatr Cardiol. 18:271–280. 2021.PubMed/NCBI

78 

Hao S, Zhang S, Ye J, Chen L, Wang Y, Pei S, Zhu Q, Xu J, Tao Y, Zhou N, et al: Goliath induces inflammation in obese mice by linking fatty acid β-oxidation to glycolysis. EMBO Rep. 24:e569322023. View Article : Google Scholar

79 

Sandoval DA and Patti ME: Glucose metabolism after bariatric surgery: Implications for T2DM remission and hypoglycaemia. Nat Rev Endocrinol. 19:164–176. 2023. View Article : Google Scholar

80 

Zhou D, Duan Z, Li Z, Ge F, Wei R and Kong L: The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front Pharmacol. 13:10917792022. View Article : Google Scholar :

81 

DeBerardinis RJ and Chandel NS: Fundamentals of cancer metabolism. Sci Adv. 2:e16002002016. View Article : Google Scholar : PubMed/NCBI

82 

Cadassou O and Jordheim LP: OXPHOS inhibitors, metabolism and targeted therapies in cancer. Biochem Pharmacol. 211:1155312023. View Article : Google Scholar : PubMed/NCBI

83 

Pan Y, Tian T, Park CO, Lofftus SY, Mei S, Liu X, Luo C, O'Malley JT, Gehad A, Teague JE, et al: Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature. 543:252–256. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Donati G, Nicoli P, Verrecchia A, Vallelonga V, Croci O, Rodighiero S, Audano M, Cassina L, Ghsein A, Binelli G, et al: Oxidative stress enhances the therapeutic action of a respiratory inhibitor in MYC-driven lymphoma. EMBO Mol Med. 15:e169102023. View Article : Google Scholar : PubMed/NCBI

85 

Purhonen J, Klefström J and Kallijärvi J: MYC-an emerging player in mitochondrial diseases. Front Cell Dev Biol. 11:12576512023. View Article : Google Scholar : PubMed/NCBI

86 

Kawalekar OU, O'Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey AD Jr, Patel PR, Guedan S, Scholler J, Keith B, et al: Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 44:7122016. View Article : Google Scholar : PubMed/NCBI

87 

Leber A, Hontecillas R, Zoccoli-Rodriguez V, Bienert C, Chauhan J and Bassaganya-Riera J: Activation of NLRX1 by NX-13 alleviates inflammatory bowel disease through immunometabolic mechanisms in CD4(+) T cells. J Immunol. 203:3407–3415. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Verstockt B, Vermeire S, Peyrin-Biroulet L, Mosig R, Feagan BG, Colombel JF, Siegmund B, Rieder F, Schreiber S, Yarur A, et al: The safety, tolerability, pharmacokinetics, and clinical efficacy of the NLRX1 agonist NX-13 in active ulcerative colitis: Results of a phase 1b study. J Crohns Colitis. 18:762–772. 2024. View Article : Google Scholar :

89 

Leone RD, Zhao L, Englert JM, Sun IM, Oh MH, Sun IH, Arwood ML, Bettencourt IA, Patel CH, Wen J, et al: Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 366:1013–1021. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Praharaj M, Shen F, Lee AJ, Zhao L, Nirschl TR, Theodros D, Singh AK, Wang X, Adusei KM, Lombardo KA, et al: Metabolic reprogramming of tumor-associated macrophages using glutamine antagonist JHU083 drives tumor immunity in myeloid-rich prostate and bladder cancers. Cancer Immunol Res. 12:854–875. 2024. View Article : Google Scholar : PubMed/NCBI

91 

Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, et al: L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 167:829–842.e13. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, Ziegler DV, Xu X, Ghosh T, Mondal T, et al: BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 178:330–345.e22. 2019. View Article : Google Scholar : PubMed/NCBI

93 

Guo D, Tong Y, Jiang X, Meng Y, Jiang H, Du L, Wu Q, Li S, Luo S, Li M, et al: Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα. Cell Metab. 34:1312–1324.e6. 2022. View Article : Google Scholar

94 

van der Kolk BW, Muniandy M, Kaminska D, Alvarez M, Ko A, Miao Z, Valsesia A, Langin D, Vaittinen M, Pääkkönen M, et al: Differential mitochondrial gene expression in adipose tissue following weight loss induced by diet or bariatric surgery. J Clin Endocrinol Metab. 106:1312–1324. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Xia W, Veeragandham P, Cao Y, Xu Y, Rhyne TE, Qian J, Hung CW, Zhao P, Jones Y, Gao H, et al: Obesity causes mitochondrial fragmentation and dysfunction in white adipocytes due to RalA activation. Nat Metab. 6:273–289. 2024. View Article : Google Scholar : PubMed/NCBI

96 

Wu C, Liu Y, Liu W, Zou T, Lu S, Zhu C, He L, Chen J, Fang L, Zou L, et al: NNMT-DNMT1 axis is essential for maintaining cancer cell sensitivity to oxidative phosphorylation inhibition. Adv Sci (Weinh). 10:e22026422022. View Article : Google Scholar : PubMed/NCBI

97 

He P, Feng J, Xia X, Sun Y, He J, Guan T, Peng Y, Zhang X, Liu M, Pang X and Chen Y: Discovery of a potent and oral available complex I OXPHOS inhibitor that abrogates tumor growth and circumvents MEKi resistance. J Med Chem. 66:6047–6069. 2023. View Article : Google Scholar : PubMed/NCBI

98 

Wu MM, Wang QM, Huang BY, Mai CT, Wang CL, Wang TT and Zhang XJ: Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization. Pharmacol Res. 172:1057962021. View Article : Google Scholar : PubMed/NCBI

99 

Wu L, Zhang X, Zheng L, Zhao H, Yan G, Zhang Q, Zhou Y, Lei J, Zhang J, Wang J, et al: RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immunol Res. 8:710–721. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Shriver LP and Manchester M: Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis. Sci Rep. 1:792011. View Article : Google Scholar :

101 

Cao D, Khan Z, Li X, Saito S, Bernstein EA, Victor AR, Ahmed F, Hoshi AO, Veiras LC, Shibata T, et al: Macrophage angiotensin-converting enzyme reduces atherosclerosis by increasing peroxisome proliferator-activated receptor α and fundamentally changing lipid metabolism. Cardiovasc Res. 119:1825–1841. 2023. View Article : Google Scholar : PubMed/NCBI

102 

Nomura M, Liu J, Yu ZX, Yamazaki T, Yan Y, Kawagishi H, Rovira II, Liu C, Wolfgang MJ, Mukouyama YS and Finkel T: Macrophage fatty acid oxidation inhibits atherosclerosis progression. J Mol Cell Cardiol. 127:270–276. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Hinshaw DC, Hanna A, Lama-Sherpa T, Metge B, Kammerud SC, Benavides GA, Kumar A, Alsheikh HA, Mota M, Chen D, et al: Hedgehog signaling regulates metabolism and polarization of mammary tumor-associated macrophages. Cancer Res. 81:5425–5437. 2021. View Article : Google Scholar : PubMed/NCBI

104 

Liu PS, Chen YT, Li X, Hsueh PC, Tzeng SF, Chen H, Shi PZ, Xie X, Parik S, Planque M, et al: CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. Nat Immunol. 24:452–462. 2023. View Article : Google Scholar : PubMed/NCBI

105 

An L, Lu M, Xu W, Chen H, Feng L, Xie T, Shan J, Wang S and Lin L: Qingfei oral liquid alleviates RSV-induced lung inflammation by promoting fatty-acid-dependent M1/M2 macrophage polarization via the Akt signaling pathway. J Ethnopharmacol. 298:1156372022. View Article : Google Scholar : PubMed/NCBI

106 

Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B and De Bosscher K: Molecular actions of PPARα in lipid metabolism and inflammation. Endocr Rev. 39:760–802. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Wang D, Liu B, Tao W, Hao Z and Liu M: Fibrates for secondary prevention of cardiovascular disease and stroke. Cochrane Database Syst Rev. 2015:Cd0095802015.PubMed/NCBI

108 

Lim SA, Wei J, Nguyen TM, Shi H, Su W, Palacios G, Dhungana Y, Chapman NM, Long L, Saravia J, et al: Lipid signalling enforces functional specialization of T(reg) cells in tumours. Nature. 591:306–311. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, et al: Lipid metabolism in cancer progression and therapeutic strategies. MedComm. 2:27–59. 2020. View Article : Google Scholar

110 

Altman BJ, Stine ZE and Dang CV: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer. 16:619–34. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Cluntun AA, Lukey MJ, Cerione RA and Locasale JW: Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer. 3:169–180. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Hensley CT, Wasti AT and DeBerardinis RJ: Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J Clin Invest. 123:3678–3684. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A therapeutic perspective. Nat Rev Clin Oncol. 14:1132017. View Article : Google Scholar : PubMed/NCBI

114 

Oh MH, Sun IH, Zhao L, Leone RD, Sun IM, Xu W, Collins SL, Tam AJ, Blosser RL, Patel CH, et al: Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Clin Invest. 130:3865–3884. 2020. View Article : Google Scholar : PubMed/NCBI

115 

Pillai R, LeBoeuf SE, Hao Y, New C, Blum JLE, Rashidfarrokhi A, Huang SM, Bahamon C, Wu WL, Karadal-Ferrena B, et al: Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in KEAP1 mutant lung cancer. Sci Adv. 10:eadm98592024. View Article : Google Scholar : PubMed/NCBI

116 

Liu N, Chen L, Yan M, Tao Q, Wu J, Chen J, Chen X, Zhang W and Peng C: Eubacterium rectale improves the efficacy of anti-PD1 immunotherapy in melanoma via l-serine-mediated NK cell activation. Research (Wash D C). 6:01272023.PubMed/NCBI

117 

Liu Y, Du Z, Li T, Zhang J, Cheng Y, Huang J, Yang J, Wen L, Tian M, Yang M and Chen C: Lycorine eliminates B-cell acute lymphoblastic leukemia cells by targeting PSAT1 through the serine/glycine metabolic pathway. Eur J Pharmacol. 961:1761622023. View Article : Google Scholar : PubMed/NCBI

118 

Apostolova P and Pearce EL: Lactic acid and lactate: Revisiting the physiological roles in the tumor microenvironment. Trends Immunol. 43:969–977. 2022. View Article : Google Scholar : PubMed/NCBI

119 

Ma J, Tang L, Tan Y, Xiao J, Wei K, Zhang X, Ma Y, Tong S, Chen J, Zhou N, et al: Lithium carbonate revitalizes tumor-reactive CD8(+) T cells by shunting lactic acid into mitochondria. Nat Immunol. 25:552–561. 2024. View Article : Google Scholar : PubMed/NCBI

120 

Raud B, McGuire PJ, Jones RG, Sparwasser T and Berod L: Fatty acid metabolism in CD8(+) T cell memory: Challenging current concepts. Immunol Rev. 283:213–231. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Ferraz-Bannitz R, Welendorf CR, Coelho PO, Salgado W Jr, Nonino CB, Beraldo RA and Foss-Freitas MC: Bariatric surgery can acutely modulate ER-stress and inflammation on subcutaneous adipose tissue in non-diabetic patients with obesity. Diabetol Metab Syndr. 13:192021. View Article : Google Scholar : PubMed/NCBI

122 

Hatami M, Javanbakht MH, Haghighat N, Sohrabi Z, Yavar R, Pazouki A and Farsani GM: Energy expenditure related biomarkers following bariatric surgery: A prospective six-month cohort study. BMC Surg. 24:1292024. View Article : Google Scholar : PubMed/NCBI

123 

Vargas-Mendoza N, Morales-González A, Madrigal-Santillán EO, Madrigal-Bujaidar E, Álvarez-González I, García-Melo LF, Anguiano-Robledo L, Fregoso-Aguilar T and Morales-Gonzalez JA: Antioxidant and adaptative response mediated by Nrf2 during physical exercise. Antioxidants (Basel). 8:1962019. View Article : Google Scholar : PubMed/NCBI

124 

Lo YC, Lee CF and Powell JD: Insight into the role of mTOR and metabolism in T cells reveals new potential approaches to preventing graft rejection. Curr Opin Organ Transplant. 19:363–371. 2014. View Article : Google Scholar : PubMed/NCBI

125 

de Lange P, Lombardi A, Silvestri E, Cioffi F, Giacco A, Iervolino S, Petito G, Senese R, Lanni A and Moreno M: Physiological approaches targeting cellular and mitochondrial pathways underlying adipose organ senescence. Int J Mol Sci. 24:116762023. View Article : Google Scholar : PubMed/NCBI

126 

Biobaku F, Ghanim H, Monte SV, Caruana JA and Dandona P: Bariatric surgery: Remission of inflammation, cardiometabolic benefits, and common adverse effects. J Endocr Soc. 4:bvaa0492020. View Article : Google Scholar : PubMed/NCBI

127 

Greto VL, Cvetko A, Štambuk T, Dempster NJ, Kifer D, Deriš H, Cindrić A, Vučković F, Falchi M, Gillies RS, et al: Extensive weight loss reduces glycan age by altering IgG N-glycosylation. Int J Obes (Lond). 45:1521–1531. 2021. View Article : Google Scholar : PubMed/NCBI

128 

Pribić T, Das JK, Đerek L, Belsky DW, Orenduff M, Huffman KM, Kraus WE, Deriš H, Šimunović J, Štambuk T, et al: A 2-year calorie restriction intervention may reduce glycomic biological age biomarkers-a pilot study. NPJ Aging. 11:712025. View Article : Google Scholar

129 

Haran A, Bergel M, Kleiman D, Hefetz L, Israeli H, Weksler-Zangen S, Agranovich B, Abramovich I, Ben-Haroush Schyr R, Gottlieb E and Ben-Zvi D: Differential effects of bariatric surgery and caloric restriction on hepatic one-carbon and fatty acid metabolism. iScience. 26:1070462023. View Article : Google Scholar : PubMed/NCBI

130 

Kim ER, Yun JH, Kim HJ, Park HY, Heo Y, Park YS, Park DJ and Koo SK: Evaluation of hormonal and circulating inflammatory biomarker profiles in the year following bariatric surgery. Front Endocrinol (Lausanne). 14:11716752023. View Article : Google Scholar : PubMed/NCBI

131 

Savulescu-Fiedler I, Mihalcea R, Dragosloveanu S, Scheau C, Baz RO, Caruntu A, Scheau AE, Caruntu C and Benea SN: The interplay between obesity and inflammation. Life (Basel). 14:8562024.PubMed/NCBI

132 

Poitou C, Perret C, Mathieu F, Truong V, Blum Y, Durand H, Alili R, Chelghoum N, Pelloux V, Aron-Wisnewsky J, et al: Bariatric surgery induces disruption in inflammatory signaling pathways mediated by immune cells in adipose tissue: A RNA-Seq study. PLoS One. 10:e01257182015. View Article : Google Scholar : PubMed/NCBI

133 

Smith-Garvin JE, Koretzky GA and Jordan MS: T cell activation. Annu Rev Immunol. 27:591–619. 2009. View Article : Google Scholar : PubMed/NCBI

134 

Hafida S, Mirshahi T and Nikolajczyk BS: The impact of bariatric surgery on inflammation: Quenching the fire of obesity? Curr Opin Endocrinol Diabetes Obes. 23:373–378. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Popko K, Gorska E, Stelmaszczyk-Emmel A, Plywaczewski R, Stoklosa A, Gorecka D, Pyrzak B and Demkow U: Proinflammatory cytokines Il-6 and TNF-α and the development of inflammation in obese subjects. Eur J Med Res. 15(Suppl 2): S120–S122. 2010. View Article : Google Scholar

136 

Reyes-Farias M, Fernández-García P, Corrales P, González L, Soria-Gondek A, Martínez E, Pellitero S, Tarascó J, Moreno P, Sumoy L, et al: Interleukin-16 is increased in obesity and alters adipogenesis and inflammation in vitro. Front Endocrinol (Lausanne). 15:13463172024. View Article : Google Scholar : PubMed/NCBI

137 

Niewold TB, Lehman JS, Gunnarsson I, Meves A and Oke V: Role of interleukin-16 in human diseases: a novel potential therapeutic target. Front Immunol. 16:15240262025. View Article : Google Scholar : PubMed/NCBI

138 

Jensen RT, Thuesen ACB, Huang Y, Stinson SE, Juel HB, Madsbad S, Bendtsen F, Hansen T and Pedersen JS: Changes in inflammatory markers following bariatric surgery and the impact of the surgical procedure: A 12-month longitudinal study. Obes Surg. 35:2626–2637. 2025. View Article : Google Scholar : PubMed/NCBI

139 

Liu Y, Jin J, Chen Y, Chen C, Chen Z and Xu L: Integrative analyses of biomarkers and pathways for adipose tissue after bariatric surgery. Adipocyte. 9:384–400. 2020. View Article : Google Scholar : PubMed/NCBI

140 

McKernan K, Varghese M, Patel R and Singer K: Role of TLR4 in the induction of inflammatory changes in adipocytes and macrophages. Adipocyte. 9:212–222. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Teymournejad O, Li Z, Beesetty P, Yang C and Montgomery CP: Toxin expression during Staphylococcus aureus infection imprints host immunity to inhibit vaccine efficacy. NPJ Vaccines. 8:32023. View Article : Google Scholar : PubMed/NCBI

142 

Hajam IA, Tsai CM, Gonzalez C, Caldera JR, Lázaro Díez M, Du X, Aralar A, Lin B, Duong W and Liu GY: Pathobiont-induced suppressive immune imprints thwart T cell vaccine responses. Nat Commun. 15:103352024. View Article : Google Scholar : PubMed/NCBI

143 

Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, Scorilas A, Kastritis E, Andreakos E and Dimopoulos MA: Adverse effects of COVID-19 mRNA vaccines: The spike hypothesis. Trends Mol Med. 28:542–554. 2022. View Article : Google Scholar : PubMed/NCBI

144 

Wang Y, Zheng Y, Kuang L, Yang K, Xie J, Liu X, Shen S, Li X, Wu S, Yang Y, et al: Effects of probiotics in patients with morbid obesity undergoing bariatric surgery: A systematic review and meta-analysis. Int J Obes (Lond). 47:1029–1042. 2023. View Article : Google Scholar : PubMed/NCBI

145 

Komorniak N, Kaczmarczyk M, Łoniewski I, Martynova-Van Kley A, Nalian A, Wroński M, Kaseja K, Kowalewski B, Folwarski M and Stachowska E: Analysis of the efficacy of diet and short-term probiotic intervention on depressive symptoms in patients after bariatric surgery: A randomized double-blind placebo controlled pilot study. Nutrients. 15:49052023. View Article : Google Scholar : PubMed/NCBI

146 

O'Bryan LJ, Atkins KJ, Lipszyc A, Scott DA, Silbert BS and Evered LA: Inflammatory biomarker levels after propofol or sevoflurane anesthesia: A meta-analysis. Anesth Analg. 134:69–81. 2022. View Article : Google Scholar

147 

Hashemian M, Sahebdad-Khabisi S, Honarvar Z, Torabinejad Z, Taravati H, Mohammadi FD and Amirkhosravi L: Effects of spinal versus general anesthesia on serum oxidative stress markers and cytokine release after abdominal hysterectomy: A non-randomized trial. Sci Rep. 15:302472025. View Article : Google Scholar : PubMed/NCBI

148 

Fadahunsi N, Petersen J, Metz S, Jakobsen A, Vad Mathiesen C, Silke Buch-Rasmussen A, Kurgan N, Kjærgaard Larsen J, Andersen RC, Topilko T, et al: Targeting postsynaptic glutamate receptor scaffolding proteins PSD-95 and PICK1 for obesity treatment. Sci Adv. 10:eadg26362024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shao Y, Song K, Yu R, Xiao H, Li C, Deng Y, Zhang Y and Ren Y: Immune and metabolic remodeling following bariatric surgery: Implications for targeted immunotherapy (Review). Int J Mol Med 57: 5, 2026.
APA
Shao, Y., Song, K., Yu, R., Xiao, H., Li, C., Deng, Y. ... Ren, Y. (2026). Immune and metabolic remodeling following bariatric surgery: Implications for targeted immunotherapy (Review). International Journal of Molecular Medicine, 57, 5. https://doi.org/10.3892/ijmm.2025.5676
MLA
Shao, Y., Song, K., Yu, R., Xiao, H., Li, C., Deng, Y., Zhang, Y., Ren, Y."Immune and metabolic remodeling following bariatric surgery: Implications for targeted immunotherapy (Review)". International Journal of Molecular Medicine 57.1 (2026): 5.
Chicago
Shao, Y., Song, K., Yu, R., Xiao, H., Li, C., Deng, Y., Zhang, Y., Ren, Y."Immune and metabolic remodeling following bariatric surgery: Implications for targeted immunotherapy (Review)". International Journal of Molecular Medicine 57, no. 1 (2026): 5. https://doi.org/10.3892/ijmm.2025.5676
Copy and paste a formatted citation
x
Spandidos Publications style
Shao Y, Song K, Yu R, Xiao H, Li C, Deng Y, Zhang Y and Ren Y: Immune and metabolic remodeling following bariatric surgery: Implications for targeted immunotherapy (Review). Int J Mol Med 57: 5, 2026.
APA
Shao, Y., Song, K., Yu, R., Xiao, H., Li, C., Deng, Y. ... Ren, Y. (2026). Immune and metabolic remodeling following bariatric surgery: Implications for targeted immunotherapy (Review). International Journal of Molecular Medicine, 57, 5. https://doi.org/10.3892/ijmm.2025.5676
MLA
Shao, Y., Song, K., Yu, R., Xiao, H., Li, C., Deng, Y., Zhang, Y., Ren, Y."Immune and metabolic remodeling following bariatric surgery: Implications for targeted immunotherapy (Review)". International Journal of Molecular Medicine 57.1 (2026): 5.
Chicago
Shao, Y., Song, K., Yu, R., Xiao, H., Li, C., Deng, Y., Zhang, Y., Ren, Y."Immune and metabolic remodeling following bariatric surgery: Implications for targeted immunotherapy (Review)". International Journal of Molecular Medicine 57, no. 1 (2026): 5. https://doi.org/10.3892/ijmm.2025.5676
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team