You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF and Margaritis I: Dietary copper and human health: Current evidence and unresolved issues. J Trace Elem Med Biol. 35:107–115. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Huang F, Lu X, Kuai L, Ru Y, Jiang J, Song J, Chen S, Mao L, Li Y, Li B, et al: Dual-Site Biomimetic Cu/Zn-MOF for atopic dermatitis catalytic therapy via suppressing FcүR-mediated phagocytosis. J Am Chem Soc. 146:3186–3199. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ash D, Sudhahar V, Youn SW, Okur MN, Das A, O'Bryan JP, McMenamin M, Hou Y, Kaplan JH, Fukai T and Ushio-Fukai M: The P-type ATPase transporter ATP7A promotes angiogenesis by limiting autophagic degradation of VEGFR2. Nat Commun. 12:30912021. View Article : Google Scholar : PubMed/NCBI | |
|
Ding H, Gao YS, Wang Y, Hu C, Sun Y and Zhang C: Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Stem Cells Dev. 23:990–1000. 2014. View Article : Google Scholar : | |
|
Akhtar H, Alhamoudi FH, Marshall J, Ashton T, Darr JA, Rehman IU, Chaudhry AA and Reilly G: Synthesis of cerium, zirconium, and copper doped zinc oxide nanoparticles as potential biomaterials for tissue engineering applications. Heliyon. 10:e291502024. View Article : Google Scholar : PubMed/NCBI | |
|
Han J, Luo J, Wang C, Kapilevich L and Zhang XA: Roles and mechanisms of copper homeostasis and cuproptosis in osteoarticular diseases. Biomed Pharmacother. 174:1165702024. View Article : Google Scholar : PubMed/NCBI | |
|
Wei M, Huang Q, Dai Y, Zhou H, Cui Y, Song W, Di D, Zhang R, Li C, Wang Q and Jing T: Manganese, iron, copper, and selenium co-exposure and osteoporosis risk in Chinese adults. J Trace Elem Med Biol. 72:1269892022. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao T, Ackerman CM, Carroll EC, Jia S, Hoagland A, Chan J, Thai B, Liu CS, Isacoff EY and Chang CJ: Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system. Nat Chem Biol. 14:655–663. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Benatar M, Robertson J and Andersen PM: Amyotrophic lateral sclerosis caused by SOD1 variants: From genetic discovery to disease prevention. Lancet Neurol. 24:77–86. 2025. View Article : Google Scholar | |
|
Horvath R, Kemp JP, Tuppen HA, Hudson G, Oldfors A, Marie SK, Moslemi AR, Servidei S, Holme E, Shanske S, et al: Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain. 132(Pt 11): 3165–3174. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Qu Y, Zhan Q, Du S, Ding Y, Fang B, Du W, Wu Q, Yu H, Li L and Huang W: Catalysis-based specific detection and inhibition of tyrosinase and their application. J Pharm Anal. 10:414–425. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Foehr R, Anderson K, Dombrowski O, Foehr A and Foehr ED: Dysregulation of extracellular matrix and lysyl oxidase in Ehlers-Danlos syndrome type IV skin fibroblasts. Orphanet J Rare Dis. 19:92024. View Article : Google Scholar : PubMed/NCBI | |
|
Wassenberg T, Deinum J, van Ittersum FJ, Kamsteeg EJ, Pennings M, Verbeek MM, Wevers RA, van Albada ME, Kema IP, Versmissen J, et al: Clinical presentation and long-term follow-up of dopamine beta hydroxylase deficiency. J Inherit Metab Dis. 44:554–565. 2021. View Article : Google Scholar | |
|
De Feyter S, Beyens A and Callewaert B: ATP7A-related copper transport disorders: A systematic review and definition of the clinical subtypes. J Inherit Metab Dis. 46:163–173. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Stalke A, Behrendt A, Hennig F, Gohlke H, Buhl N, Reinkens T, Baumann U, Schlegelberger B, Illig T, Pfister ED and Skawran B: Functional characterization of novel or yet uncharacterized ATP7B missense variants detected in patients with clinical Wilson's disease. Clin Genet. 104:174–185. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Ma J, Wang R, Luo Y, Zheng S and Wang X: Zinc transporter 1 functions in copper uptake and cuproptosis. Cell Metab. 36:2118–2129 e6. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ohgami RS, Campagna DR, McDonald A and Fleming MD: The Steap proteins are metalloreductases. Blood. 108:1388–1394. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Wyman S, Simpson RJ, McKie AT and Sharp PA: Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett. 582:1901–1906. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kleven MD, Dlakic M and Lawrence CM: Characterization of a Single b-type Heme, FAD, and metal binding sites in the transmembrane domain of six-transmembrane epithelial antigen of the prostate (STEAP) family proteins. J Biol Chem. 290:22558–22569. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kirsipuu T, Zadorožnaja A, Smirnova J, Friedemann M, Plitz T, Tõugu V and Palumaa P: Copper(II)-binding equilibria in human blood. Sci Rep. 10:56862020. View Article : Google Scholar : PubMed/NCBI | |
|
Linder MC: Ceruloplasmin and other copper binding components of blood plasma and their functions: An update. Metallomics. 8:887–905. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Moriya M, Ho YH, Grana A, Nguyen L, Alvarez A, Jamil R, Ackland ML, Michalczyk A, Hamer P, Ramos D, et al: Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism. Am J Physiol Cell Physiol. 295:C708–C721. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Liu N, Lo LS, Askary SH, Jones L, Kidane TZ, Trang T, Nguyen M, Goforth J, Chu YH, Vivas E, et al: Transcuprein is a macroglobulin regulated by copper and iron availability. J Nutr Biochem. 18:597–608. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Hodgkinson V, Zhu S, Weisman GA and Petris MJ: Advances in the understanding of mammalian copper transporters. Adv Nutr. 2:129–137. 2011. View Article : Google Scholar : | |
|
Chen L, Li N, Zhang M, Sun M, Bian J, Yang B, Li Z, Wang J, Li F, Shi X, et al: APEX2-based proximity labeling of Atox1 Identifies CRIP2 as a nuclear copper-binding protein that regulates autophagy activation. Angew Chem Int Ed Engl. 60:25346–25355. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
González-Ballesteros MM, Sánchez-Sánchez L, Espinoza-Guillén A, Espinal-Enríquez J, Mejía C, Hernández-Lemus E and Ruiz-Azuara L: Antitumoral and antimetastatic activity by mixed chelate copper(II) Compounds (Casiopeínas®) on triple-negative breast cancer, in vitro and in vivo models. Int J Mol Sci. 25:88032024. View Article : Google Scholar | |
|
Kuo YM, Gybina AA, Pyatskowit JW, Gitschier J and Prohaska JR: Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J Nutr. 136:21–26. 2006. View Article : Google Scholar | |
|
Vizcaíno C, Mansilla S and Portugal J: Sp1 transcription factor: A long-standing target in cancer chemotherapy. Pharmacol Ther. 152:111–124. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Xue Q, Kang R, Klionsky DJ, Tang D, Liu J and Chen X: Copper metabolism in cell death and autophagy. Autophag. 19:2175–2195. 2023. View Article : Google Scholar | |
|
Liang ZD, Tsai WB, Lee MY, Savaraj N and Kuo MT: Specificity protein 1 (sp1) oscillation is involved in copper homeostasis maintenance by regulating human high-affinity copper transporter 1 expression. Mol Pharmacol. 81:455–464. 2012. View Article : Google Scholar : | |
|
Ohse VA, Klotz LO and Priebs J: Copper homeostasis in the model organism C. elegans. Cells. 13:7272024. View Article : Google Scholar : PubMed/NCBI | |
|
Hatori Y and Lutsenko S: The role of copper chaperone Atox1 in coupling redox homeostasis to intracellular copper distribution. Antioxidants (Basel). 5:252016. View Article : Google Scholar : PubMed/NCBI | |
|
Lutsenko S, Barnes NL, Bartee MY and Dmitriev OY: Function and regulation of human copper-transporting ATPases. Physiol Rev. 87:1011–1046. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sturtz LA, Diekert K, Jensen LT, Lill R and Culotta VC: A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem. 276:38084–38089. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Branicky R, Noë A and Hekimi S: Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 217:1915–1928. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z, St Clair D and Batinic-Haberle I: Manganese superoxide dismutase, MnSOD and its mimics. Biochim Biophys Acta. 1822:794–814. 2012. View Article : Google Scholar : | |
|
Boyd SD, Calvo JS, Liu L, Ullrich MS, Skopp A, Meloni G and Winkler DD: The yeast copper chaperone for copper-zinc superoxide dismutase (CCS1) is a multifunctional chaperone promoting all levels of SOD1 maturation. J Biol Chem. 294:1956–1966. 2019. View Article : Google Scholar : | |
|
Ding Y, Chen Y, Wu Z, Yang N, Rana K, Meng X, Liu B, Wan H and Qian W: SsCox17, a copper chaperone, is required for pathogenic process and oxidative stress tolerance of Sclerotinia sclerotiorum. Plant Sci. 322:1113452022. View Article : Google Scholar : PubMed/NCBI | |
|
Banci L, Bertini I, Ciofi-Baffoni S, Hadjiloi T, Martinelli M and Palumaa P: Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer. Proc Natl Acad Sci USA. 105:6803–6808. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, et al: Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat Rev Cancer. 22:102–113. 2022. View Article : Google Scholar : | |
|
McCann C, Quinteros M, Adelugba I, Morgada MN, Castelblanco AR, Davis EJ, Lanzirotti A, Hainer SJ, Vila AJ, Navea JG and Padilla-Benavides T: The mitochondrial Cu(+) transporter PiC2 (SLC25A3) is a target of MTF1 and contributes to the development of skeletal muscle in vitro. Front Mol Biosci. 9:10379412022. View Article : Google Scholar : PubMed/NCBI | |
|
van Rensburg MJ, van Rooy M, Bester MJ, Serem JC, Venter C and Oberholzer HM: Oxidative and haemostatic effects of copper, manganese and mercury, alone and in combination at physiologically relevant levels: An ex vivo study. Hum Exp Toxicol. 38:419–433. 2019. View Article : Google Scholar | |
|
Ruturaj, Mishra M, Saha S, Maji S, Rodriguez-Boulan E, Schreiner R and Gupta A: Regulation of the apico-basolateral trafficking polarity of the homologous copper-ATPases ATP7A and ATP7B. J Cell Sci. 137:jcs2612582024. View Article : Google Scholar | |
|
Guttmann S, Nadzemova O, Grünewald I, Lenders M, Brand E, Zibert A and Schmidt HH: ATP7B knockout disturbs copper and lipid metabolism in Caco-2 cells. PLoS One. 15:e02300252020. View Article : Google Scholar : PubMed/NCBI | |
|
Dmitriev OY and Patry J: Structure and mechanism of the human copper transporting ATPases: Fitting the pieces into a moving puzzle. Biochim Biophys Acta Biomembr. 1866:1843062024. View Article : Google Scholar : PubMed/NCBI | |
|
Percival SS: Copper and immunity. Am J Clin Nutr. 67(5 Suppl): 1064S–1068S. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Jonny, Sitepu EC, Nidom CA, Wirjopranoto S, Sudiana IK, Ansori ANM and Putranto TA: Ex vivo-generated tolerogenic dendritic cells: Hope for a definitive therapy of autoimmune diseases. Curr Issues Mol Biol. 46:4035–4048. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Backal A, Velinov M, Garcia J and Louis CL: Novel, likely pathogenic variant in ATP7A associated with Menkes disease diagnosed with ultrarapid genome sequencing. BMJ Case Rep. 17:e2597922024. View Article : Google Scholar : PubMed/NCBI | |
|
Tümer Z and Møller LB: Menkes disease. Eur J Hum Genet. 18:511–518. 2010. View Article : Google Scholar : | |
|
Moller LB, Mogensen M, Weaver DD and Pedersen PA: Occipital horn syndrome as a result of splice site mutations in ATP7A. no activity of ATP7A splice variants missing exon 10 or exon 15. Front Mol Neurosci. 14:5322912021. View Article : Google Scholar : PubMed/NCBI | |
|
Batzios S, Tal G, DiStasio AT, Peng Y, Charalambous C, Nicolaides P, Kamsteeg EJ, Korman SH, Mandel H, Steinbach PJ, et al: Newly identified disorder of copper metabolism caused by variants in CTR1, a high-affinity copper transporter. Hum Mol Genet. 31:4121–4130. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Garnica A, Chan WY and Rennert O: Copper-histidine treatment of Menkes disease. J Pediatr. 125:336–338. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Moini M, To U and Schilsky ML: Recent advances in Wilson disease. Transl Gastroenterol Hepatol. 6:212021. View Article : Google Scholar : PubMed/NCBI | |
|
Weiss KH, Członkowska A, Hedera P and Ferenci P: WTX101 - an investigational drug for the treatment of Wilson disease. Expert Opin Investig Drugs. 27:561–567. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kreuder J, Otten A, Fuder H, Tümer Z, Tønnesen T, Horn N and Dralle D: Clinical and biochemical consequences of copper-histidine therapy in Menkes disease. Eur J Pediatr. 152:828–832. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Christodoulou J, Danks DM, Sarkar B, Baerlocher KE, Casey R, Horn N, Tümer Z and Clarke JT: Early treatment of Menkes disease with parenteral copper-histidine: Long-term follow-up of four treated patients. Am J Med Genet. 76:154–164. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Ramchandani D, Berisa M, Tavarez DA, Li Z, Miele M, Bai Y, Lee SB, Ban Y, Dephoure N, Hendrickson RC, et al: Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis. Nat Commun. 12:73112021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu B, Wang S, Li R, Chen K, He L, Deng M, Kannappan V, Zha J, Dong H and Wang W: Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2. Cell Death Dis. 8:e27972017. View Article : Google Scholar | |
|
Theophanides T and Anastassopoulou J: Copper and carcinogenesis. Crit Rev Oncol Hematol. 42:57–64. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong CC, Zhao T, Hogstrand C, Chen F, Song CC and Luo Z: Copper (Cu) induced changes of lipid metabolism through oxidative stress-mediated autophagy and Nrf2/PPARγ pathways. J Nutr Biochem. 100:1088832022. View Article : Google Scholar | |
|
Wang Q, Sun Y, Zhao A, Cai X, Yu A, Xu Q, Liu W, Zhang N, Wu S, Chen Y and Wang W: High dietary copper intake induces perturbations in the gut microbiota and affects host ovarian follicle development. Ecotoxicol Environ Saf. 255:1148102023. View Article : Google Scholar : PubMed/NCBI | |
|
Tsang T, Posimo JM, Gudiel AA, Cicchini M, Feldser DM and Brady DC: Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol. 22:412–424. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Conforti RA, Delsouc MB, Zorychta E, Telleria CM and Casais M: Copper in gynecological diseases. Int J Mol Sci. 24:175782023. View Article : Google Scholar : PubMed/NCBI | |
|
Compston A: Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver, by S. A. Kinnier Wilson, (From the National Hospital, and the Laboratory of the National Hospital, Queen Square, London) Brain 1912: 34; 295-509. Brain. 132:1997–2001. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kipker N, Alessi K, Bojkovic M, Padda I and Parmar MS: Neurological-type wilson disease: Epidemiology, clinical manifestations, diagnosis, and management. Cureus. 15:e381702023.PubMed/NCBI | |
|
Członkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH and Schilsky ML: Wilson disease. Nat Rev Dis Primers. 4:212018. View Article : Google Scholar | |
|
Kirk FT, Munk DE, Swenson ES, Quicquaro AM, Vendelbo MH, Larsen A, Schilsky ML, Ott P and Sandahl TD: Effects of tetrathiomolybdate on copper metabolism in healthy volunteers and in patients with Wilson disease. J Hepatol. 80:586–595. 2024. View Article : Google Scholar | |
|
Bruha R, Marecek Z, Pospisilova L, Nevsimalova S, Vitek L, Martasek P, Nevoral J, Petrtyl J, Urbanek P, Jiraskova A and Ferenci P: Long-term follow-up of Wilson disease: natural history, treatment, mutations analysis and phenotypic correlation. Liver Int. 31:83–91. 2011. View Article : Google Scholar | |
|
Członkowska A, Litwin T, Karliński M, Dziezyc K, Chabik G and Czerska M: D-penicillamine versus zinc sulfate as first-line therapy for Wilson's disease. Eur J Neurol. 21:599–606. 2014. View Article : Google Scholar | |
|
Brewer GJ: Practical recommendations and new therapies for Wilson's disease. Drugs. 50:240–249. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Xie J, Yang Y, Gao Y and He J: Cuproptosis: Mechanisms and links with cancers. Mol Cancer. 22:462023. View Article : Google Scholar : PubMed/NCBI | |
|
Członkowska A and Litwin T: Wilson disease - currently used anticopper therapy. Handb Clin Neurol. 142:181–191. 2017. View Article : Google Scholar | |
|
Lambert C, Beraldo H, Lievre N, Garnier-Suillerot A, Dorlet P and Salerno M: Bis(thiosemicarbazone) copper complexes: Mechanism of intracellular accumulation. J Biol Inorg Chem. 18:59–69. 2013. View Article : Google Scholar | |
|
Ayton S and Bush AI: β-amyloid: The known unknowns. Ageing Res Rev. 65:1012122021. View Article : Google Scholar | |
|
Egan MF, Kost J, Voss T, Mukai Y, Aisen PS, Cummings JL, Tariot PN, Vellas B, van Dyck CH, Boada M, et al: Randomized Trial of Verubecestat for Prodromal Alzheimer's Disease. N Engl J Med. 380:1408–1420. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R, Sun X, Aisen PS, et al: Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N Engl J Med. 370:311–321. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, et al: Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N Engl J Med. 370:322–333. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J and van der Flier WM: Alzheimer's disease. Lancet. 397:1577–1590. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mazur T, Malik M and Bienko DC: The impact of chelating compounds on Cu(2+), Fe(2+)/(3+), and Zn(2+) ions in Alzheimer's disease treatment. J Inorg Biochem. 257:1126012024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Church SJ, Patassini S, Begley P, Waldvogel HJ, Curtis MA, Faull RLM, Unwin RD and Cooper GJS: Evidence for widespread, severe brain copper deficiency in Alzheimer's dementia. Metallomics. 9:1106–1119. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rembach A, Hare DJ, Lind M, Fowler CJ, Cherny RA, McLean C, Bush AI, Masters CL and Roberts BR: Decreased copper in Alzheimer's disease brain is predominantly in the soluble extractable fraction. Int J Alzheimers Dis. 2013:6232412013.PubMed/NCBI | |
|
Scholefield M, Church SJ, Xu J and Cooper GJS: Metallomic analysis of brain tissues distinguishes between cases of dementia with Lewy bodies, Alzheimer's disease, and Parkinson's disease dementia. Front Neurosci. 18:14123562024. View Article : Google Scholar : PubMed/NCBI | |
|
Squitti R, Simonelli I, Ventriglia M, Siotto M, Pasqualetti P, Rembach A, Doecke J and Bush AI: Meta-analysis of serum non-ceruloplasmin copper in Alzheimer's disease. J Alzheimers Dis. 38:809–822. 2014. View Article : Google Scholar | |
|
Jiao Y and Yang P: Mechanism of copper(II) inhibiting Alzheimer's amyloid beta-peptide from aggregation: A molecular dynamics investigation. J Phys Chem B. 111:7646–7655. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Gomes LM, Vieira RP, Jones MR, Wang MC, Dyrager C, Souza-Fagundes EM, Da Silva JG, Storr T and Beraldo H: 8-Hydroxyquinoline Schiff-base compounds as antioxidants and modulators of copper-mediated Aβ peptide aggregation. J Inorg Biochem. 139:106–116. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Pedersen JT, Østergaard J, Rozlosnik N, Gammelgaard B and Heegaard NH: Cu(II) mediates kinetically distinct, non-amyloidogenic aggregation of amyloid-beta peptides. J Biol Chem. 286:26952–26963. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Reybier K, Ayala S, Alies B, Rodrigues JV, Bustos Rodriguez S, La Penna G, Collin F, Gomes CM, Hureau C and Faller P: Free Superoxide is an intermediate in the production of H2O2 by Copper(I)-Aβ Peptide and O2. Angew Chem Int Ed Engl. 55:1085–1089. 2016. View Article : Google Scholar | |
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, Ill-Raga G and Muñoz FJ: The dual role of amyloid beta-peptide in oxidative stress and inflammation: Unveiling Their connections in Alzheimer's disease etiopathology. Antioxidants (Basel). 13:12082024. View Article : Google Scholar : PubMed/NCBI | |
|
Xia Y, Dore V, Fripp J, Bourgeat P, Laws SM, Fowler CJ, Rainey-Smith SR, Martins RN, Rowe C, Masters CL, et al: Association of basal forebrain atrophy with cognitive decline in early Alzheimer disease. Neurology. 103:e2096262024. View Article : Google Scholar : PubMed/NCBI | |
|
Lang M, Fan Q, Wang L, Zheng Y, Xiao G, Wang X, Wang W, Zhong Y and Zhou B: Inhibition of human high-affinity copper importer Ctr1 orthologous in the nervous system of Drosophila ameliorates Aβ42-induced Alzheimer's disease-like symptoms. Neurobiol Aging. 34:2604–2612. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ceccom J, Coslédan F, Halley H, Francès B, Lassalle JM and Meunier B: Copper chelator induced efficient episodic memory recovery in a non-transgenic Alzheimer's mouse model. PLoS One. 2012(7): e431052012. View Article : Google Scholar | |
|
Quinn JF, Harris CJ, Cobb KE, Domes C, Ralle M, Brewer G and Wadsworth TL: A copper-lowering strategy attenuates amyloid pathology in a transgenic mouse model of Alzheimer's disease. J Alzheimers Dis. 21:903–914. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Jiang X, Li Y, Yu H, Li S, Zhang Z, Xu H, Yang Y, Liu G, Zhu F, et al: Low-dose oral copper treatment changes the hippocampal phosphoproteomic profile and perturbs mitochondrial function in a mouse model of Alzheimer's disease. Free Radic Biol Med. 135:144–156. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yao D, Jing T, Niu L, Huang X, Wang Y, Deng X and Wang M: Amyloidogenesis induced by diet cholesterol and copper in a model mouse for Alzheimer's disease and protection effects of zinc and fluvastatin. Brain Res Bull. 143:1–8. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Maynard CJ, Cappai R, Volitakis I, Laughton KM, Masters CL, Bush AI and Li QX: Chronic exposure to high levels of zinc or copper has little effect on brain metal homeostasis or Abeta accumulation in transgenic APP-C100 mice. Cell Mol Neurobiol. 29:757–767. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Acevedo KM, Hung YH, Dalziel AH, Li QX, Laughton K, Wikhe K, Rembach A, Roberts B, Masters CL, Bush AI and Camakaris J: Copper promotes the trafficking of the amyloid precursor protein. J Biol Chem. 286:8252–8262. 2011. View Article : Google Scholar : | |
|
Borchardt T, Camakaris J, Cappai R, Masters CL, Beyreuther K and Multhaup G: Copper inhibits beta-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion. Biochem J. 344:461–467. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Afsar A, Chacon Castro MDC, Soladogun AS and Zhang L: Recent development in the understanding of molecular and cellular mechanisms underlying the etiopathogenesis of Alzheimer's disease. Int J Mol Sci. 24:72582023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman JS, Wang Y, Wang J, Chen J, Li Y and Wang H: Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. Drug Resist Updat. 72:1010182024. View Article : Google Scholar | |
|
Kumar V, Singh AP, Wheeler N, Galindo CL and Kim JJ: Safety profile of D-penicillamine: A comprehensive pharmacovigilance analysis by FDA adverse event reporting system. Expert Opin Drug Saf. 20:1443–1450. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lee EJ, Woo MH, Moon JS and Ko JS: Efficacy and safety of D-penicillamine, trientine, and zinc in pediatric Wilson disease patients. Orphanet J Rare Dis. 19:2612024. View Article : Google Scholar : PubMed/NCBI | |
|
Perez DR, Sklar LA and Chigaev A: Clioquinol: To harm or heal. Pharmacol Ther. 199:155–163. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Relkin N: Testing the mettle of PBT2 for Alzheimer's disease. Lancet Neurol. 7:762–763. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Daniel KG, Chen D, Orlu S, Cui QC, Miller FR and Dou QP: Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res. 7:R897–R908. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Crouch PJ, Hung LW, Adlard PA, Cortes M, Lal V, Filiz G, Perez KA, Nurjono M, Caragounis A, Du T, et al: Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc Natl Acad Sci USA. 106:381–386. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Schimmer AD: Clioquinol - a novel copper-dependent and independent proteasome inhibitor. Curr Cancer Drug Targets. 11:325–331. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Costello LC and Franklin RB: A proposed efficacious treatment with clioquinol (Zinc Ionophore) and Cabergoline (Prolactin Dopamine Agonist) for the treatment of terminal androgen-independent prostate cancer. Why and How? J Clin Res Oncol. Feb 27–2019.Epub ahead of print. PubMed/NCBI | |
|
Donnelly PS, Caragounis A, Du T, Laughton KM, Volitakis I, Cherny RA, Sharples RA, Hill AF, Li QX, Masters CL, et al: Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-beta peptide. J Biol Chem. 283:4568–4577. 2008. View Article : Google Scholar | |
|
Drew SC: Chelator PBT2 forms a ternary Cu(2+) Complex with β-Amyloid That has high stability but low specificity. Int J Mol Sci. 24:92672023. View Article : Google Scholar | |
|
Scholefield M, Patassini S, Xu J and Cooper GJS: Widespread selenium deficiency in the brain of cases with Huntington's disease presents a new potential therapeutic target. Ebiomedicine. 97:1048242023. View Article : Google Scholar : PubMed/NCBI | |
|
Upadhyay A, Chhangani D, Rao NR, Kofler J, Vassar R, Rincon-Limas DE and Savas JN: Amyloid fibril proteomics of AD brains reveals modifiers of aggregation and toxicity. Mol Neurodegener. 18:612023. View Article : Google Scholar : PubMed/NCBI | |
|
Hands SL, Mason R, Sajjad MU, Giorgini F and Wyttenbach A: Metallothioneins and copper metabolism are candidate therapeutic targets in Huntington's disease. Biochem Soc Trans. 38:552–558. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Z, Song M, Ren J, Liang L, Mao G and Chen M: Copper homeostasis and cuproptosis in central nervous system diseases. Cell Death Dis. 15:8502024. View Article : Google Scholar : PubMed/NCBI | |
|
Cherny RA, Ayton S, Finkelstein DI, Bush AI, McColl G and Massa SM: PBT2 Reduces Toxicity in a C. elegans Model of polyQ aggregation and extends lifespan, reduces striatal atrophy and improves motor performance in the R6/2 mouse model of Huntington's disease. J Huntingtons Dis. 1:211–219. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E and Obeso JA: Initial clinical manifestations of Parkinson's disease: Features and pathophysiological mechanisms. Lancet Neurol. 8:1128–1139. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Davies KM, Hare DJ, Cottam V, Chen N, Hilgers L, Halliday G, Mercer JF and Double KL: Localization of copper and copper transporters in the human brain. Metallomics. 5:43–51. 2013. View Article : Google Scholar | |
|
Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P and Marsden CD: Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J Neurochem. 52:1830–1836. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Ayton S, Lei P, Duce JA, Wong BX, Sedjahtera A, Adlard PA, Bush AI and Finkelstein DI: Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Ann Neurol. 73:554–559. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bisaglia M and Bubacco L: Copper ions and Parkinson's disease: Why Is homeostasis so relevant? Biomolecules. 10:1952020. View Article : Google Scholar : PubMed/NCBI | |
|
Hemmati-Dinarvand M, Saedi S, Valilo M, Kalantary-Charvadeh A, Alizadeh Sani M, Kargar R, Safari H and Samadi N: Oxidative stress and Parkinson's disease: Conflict of oxidant-antioxidant systems. Neurosci Lett. 709:1342962019. View Article : Google Scholar : PubMed/NCBI | |
|
Trist BG, Davies KM, Cottam V, Genoud S, Ortega R, Roudeau S, Carmona A, De Silva K, Wasinger V, Lewis SJG, et al: Amyotrophic lateral sclerosis-like superoxide dismutase 1 proteinopathy is associated with neuronal loss in Parkinson's disease brain. Acta Neuropathol. 134:113–127. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang MS, Liang JH, Yang MJ, Ren YR, Cheng DH, Wu QH, He Y and Yin J: Low serum superoxide dismutase is associated with a high risk of cognitive impairment after mild acute ischemic stroke. Front Aging Neurosci. 14:8341142022. View Article : Google Scholar : PubMed/NCBI | |
|
Quinn PMJ, Moreira PI, Ambrósio AF and Alves CH: PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol Commun. 8:1892020. View Article : Google Scholar : PubMed/NCBI | |
|
Cummins N and Götz J: Shedding light on mitophagy in neurons: What is the evidence for PINK1/Parkin mitophagy in vivo? Cell Mol Life Sci. 75:1151–1162. 2018. View Article : Google Scholar | |
|
Aschner M, Skalny AV, Lu R, Martins AC, Tizabi Y, Nekhoroshev SV, Santamaria A, Sinitskiy AI and Tinkov AA: Mitochondrial pathways of copper neurotoxicity: Focus on mitochondrial dynamics and mitophagy. Front Mol Neurosci. 17:15048022024. View Article : Google Scholar : PubMed/NCBI | |
|
Ling Z, Ge X, Jin C, Song Z, Zhang H, Fu Y, Zheng K, Xu R and Jiang H: Copper doped bioactive glass promotes matrix vesicles-mediated biomineralization via osteoblast mitophagy and mitochondrial dynamics during bone regeneration. Bioact Mater. 46:195–212. 2024. | |
|
Synhaivska O, Bhattacharya S, Campioni S, Thompson D and Nirmalraj PN: Single-particle resolution of copper-associated annular α-synuclein oligomers reveals potential therapeutic targets of neurodegeneration. ACS Chem Neurosci. 13:1410–1421. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Triscott J, Rose Pambid M and Dunn SE: Concise review: Bullseye: Targeting cancer stem cells to improve the treatment of gliomas by repurposing disulfiram. Stem Cells. 33:1042–1046. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kannappan V, Ali M, Small B, Rajendran G, Elzhenni S, Taj H, Wang W and Dou QP: Recent advances in repurposing disulfiram and disulfiram derivatives as copper-dependent anticancer agents. Front Mol Biosci. 8:7413162021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Q, Zhang Y, Lu L, Zhang H, Zhao C, Pu Y and Yin L: Copper induces microglia-mediated neuroinflammation through ROS/NF-κB pathway and mitophagy disorder. Food Chem Toxicol. 168:1133692022. View Article : Google Scholar | |
|
Chidambaram SB, Anand N, Varma SR, Ramamurthy S, Vichitra C, Sharma A, Mahalakshmi AM and Essa MM: Superoxide dismutase and neurological disorders. IBRO Neurosci Rep. 16:373–394. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Cukierman DS, Pinheiro AB, Castiñeiras-Filho SL, da Silva AS, Miotto MC, De Falco A, de P Ribeiro T, Maisonette S, da Cunha AL, Hauser-Davis RA, et al: A moderate metal-binding hydrazone meets the criteria for a bioinorganic approach towards Parkinson's disease: Therapeutic potential, blood-brain barrier crossing evaluation and preliminary toxicological studies. J Inorg Biochem. 170:160–168. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Vavere AL and Lewis JS: Cu-ATSM: A radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans. 4893–4902. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Ikawa M, Okazawa H, Kudo T, Kuriyama M, Fujibayashi Y and Yoneda M: Evaluation of striatal oxidative stress in patients with Parkinson's disease using [62Cu]ATSM PET. Nucl Med Biol. 38:945–951. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hung LW, Villemagne VL, Cheng L, Sherratt NA, Ayton S, White AR, Crouch PJ, Lim S, Leong SL, Wilkins S, et al: The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease. J Exp Med. 209:837–854. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Rowlands BD, Trist BG, Karozis C, Schaffer G, Mor D, Harwood R, Rosolen SA, Cottam V, Persson-Carboni F, Richardson M, et al: Copper supplementation mitigates Parkinson-like wild-type SOD1 pathology and nigrostriatal degeneration in a novel mouse model. Acta Neuropathol Commun. 13:1332025. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Chalabi A and Hardiman O: The epidemiology of ALS: A conspiracy of genes, environment and time. Nat Rev Neurol. 9:617–628. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Min JH, Sarlus H and Harris RA: Copper toxicity and deficiency: The vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci. 17:14081592024. View Article : Google Scholar : PubMed/NCBI | |
|
Moriyama H and Yokota T: Recent progress of antisense oligonucleotide therapy for superoxide-dismutase-1-mutated amyotrophic lateral sclerosis: Focus on tofersen. Genes (Basel). 15:13422024. View Article : Google Scholar : PubMed/NCBI | |
|
Jerusalem F, Pohl C, Karitzky J and Ries F: ALS. Neurology. 47(Suppl 4): S218–S220. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, et al: Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science. 264:1772–1775. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI | |
|
Ansori ANM, Widyananda MH, Antonius Y, Murtadlo AAA, Kharisma VD, Wiradana PA, Sahadewa S, Durry FD, Maksimiuk N, Rebezov M and Zainul R: A review of cancer-related hypercalcemia: Pathophysiology, current treatments, and future directions. J Med Pharm Chem Res. 6:944–952. 2024. | |
|
Wu T, Sempos CT, Freudenheim JL, Muti P and Smit E: Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol. 14:195–201. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Hyvönen MT, Ucal S, Pasanen M, Peräniemi S, Weisell J, Khomutov M, Khomutov AR, Vepsäläinen J, Alhonen L and Keinänen TA: Triethylenetetramine modulates polyamine and energy metabolism and inhibits cancer cell proliferation. Biochem J. 473:1433–1441. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Pavithra V, Sathisha TG, Kasturi K, Mallika DS, Amos SJ and Ragunatha S: Serum levels of metal ions in female patients with breast cancer. J Clin Diagn Res. 9:BC25–c27. 2015.PubMed/NCBI | |
|
Jakhmola V, Parashar T, Ghildiyal P, Ansori ANM, Sharma RK, Rao NGR, Kalra K, Singh N, Nainwal N, Singh RK, et al: An in silico study to explore the role of EGFR in ovarian cancer. Pharmacog J. 14:817–821. 2022. View Article : Google Scholar | |
|
Zhang X and Yang Q: Association between serum copper levels and lung cancer risk: A meta-analysis. J Int Med Res. 46:4863–4873. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Saleh SAK, Adly HM, Abdelkhaliq AA and Nassir AM: Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients. Curr Urol. 14:44–49. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Atakul T, Altinkaya SO, Abas BI and Yenisey C: Serum copper and zinc levels in patients with endometrial cancer. Biol Trace Elem Res. 195:46–54. 2020. View Article : Google Scholar | |
|
Fang AP, Chen PY, Wang XY, Liu ZY, Zhang DM, Luo Y, Liao GC, Long JA, Zhong RH, Zhou ZG, et al: Serum copper and zinc levels at diagnosis and hepatocellular carcinoma survival in the Guangdong liver cancer cohort. Int J Cancer. 144:2823–2832. 2019. View Article : Google Scholar | |
|
Lun X, Wells JC, Grinshtein N, King JC, Hao X, Dang NH, Wang X, Aman A, Uehling D, Datti A, et al: Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma. Clin Cancer Res. 22:3860–3875. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Chen F, Chen J, Chan S, He Y, Liu W and Zhang G: Disulfiram/copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways. Cancers (Basel). 12:1382020. View Article : Google Scholar : PubMed/NCBI | |
|
Mcauslan BR and Reilly W: Endothelial cell phagokinesis in response to specific metal ions. Exp Cell Res. 130:147–157. 1980. View Article : Google Scholar : PubMed/NCBI | |
|
Narayanan G, R BS, Vuyyuru H, Muthuvel B and Konerirajapuram Natrajan S: CTR1 Silencing inhibits angiogenesis by limiting copper entry into endothelial cells. PLoS One. 8:e719822013. View Article : Google Scholar : PubMed/NCBI | |
|
Mandinov L, Mandinova A, Kyurkchiev S, Kyurkchiev D, Kehayov I, Kolev V, Soldi R, Bagala C, de Muinck ED, Lindner V, et al: Copper chelation represses the vascular response to injury. Proc Natl Acad Sci USA. 100:6700–6705. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Nurzynska A, Klimek K, Swierzycka I, Palka K and Ginalska G: Porous curdlan-based hydrogels modified with copper ions as potential dressings for prevention and management of bacterial wound infection-an in vitro assessment. Polymers (Basel). 12:18932020. View Article : Google Scholar : PubMed/NCBI | |
|
Badet J, Soncin F, Guitton JD, Lamare O, Cartwright T and Barritault D: Specific binding of angiogenin to calf pulmonary artery endothelial cells. Proc Natl Acad Sci USA. 86:8427–8431. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao YN, Chen LH, Yang XL, Dong JY, Wu WB, Chen D, Geng RM, Ke NW and Liu J: Inhibition of copper transporter-1 by ammonium tetrathiocarbolybdate in the treatment of pancreatic cancer. Sichuan Da Xue Xue Bao Yi Xue Ban. 51:643–649. 2020.In Chinese. PubMed/NCBI | |
|
Pan Q, Bao LW and Merajver SD: Tetrathiomolybdate inhibits angiogenesis and metastasis through suppression of the NFkappaB signaling cascade. Mol Cancer Res. 1:701–706. 2003.PubMed/NCBI | |
|
Pan Q, Kleer CG, van Golen KL, Irani J, Bottema KM, Bias C, De Carvalho M, Mesri EA, Robins DM, Dick RD, et al: Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res. 62:4854–4859. 2002.PubMed/NCBI | |
|
Li Y, Fang M, Xu Z and Li X: Tetrathiomolybdate as an old drug in a new use: As a chemotherapeutic sensitizer for non-small cell lung cancer. J Inorg Biochem. 233:1118652022. View Article : Google Scholar : PubMed/NCBI | |
|
Crowe A, Jackaman C, Beddoes KM, Ricciardo B and Nelson DJ: Rapid copper acquisition by developing murine mesothelioma: Decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration. PLoS One. 8:e736842013. View Article : Google Scholar : PubMed/NCBI | |
|
Cosimo RD, Scarpelli A, Lappano R, Pisano A, Santolla MF, De Marco P, Cirillo F, Cappello AR, Dolce V, Belfiore A, et al: Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget. 6:34158–34177. 2015. View Article : Google Scholar | |
|
Mammoto T, Jiang A, Jiang E, Panigrahy D, Kieran MW and Mammoto A: Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression. Am J Pathol. 183:1293–1305. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Baldari S, Di Rocco G, Heffern MC, Su TA, Chang CJ and Toietta G: Effects of copper chelation on BRAF(V600E) positive colon carcinoma cells. Cancers (Basel). 11:6592019. View Article : Google Scholar : PubMed/NCBI | |
|
Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, Knapp S, Xiao K, Campbell SL, Thiele DJ and Counter CM: Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature. 509:492–496. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Brady DC, Crowe MS, Greenberg DN and Counter CM: Copper chelation inhibits BRAFV600E-driven melanomagenesis and counters resistance to BRAFV600E and MEK1/2 inhibitors. Cancer Res. 77:6240–6252. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ross MO, Xie Y, Owyang RC, Ye C, Zbihley ONP, Lyu R, Wu T, Wang P, Karginova O, Olopade OI, et al: PTPN2 copper-sensing relays copper level fluctuations into EGFR/CREB activation and associated CTR1 transcriptional repression. Nat Commun. 15:69472024. View Article : Google Scholar : PubMed/NCBI | |
|
Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM, Mercatelli D, Rouaen JRC, Shen S, Murray JE, et al: Intratumoral copper modulates PD-L1 expression and influences tumor immune evasion. Cancer Res. 80:4129–4144. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu M, Casio M, Range DE, Sosa JA and Counter CM: Copper chelation as targeted therapy in a mouse model of oncogenic BRAF-Driven papillary thyroid cancer. Clin Cancer Res. 24:4271–4281. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Akins NS, Nielson TC and Le HV: Inhibition of glycolysis and glutaminolysis: An emerging drug discovery approach to combat cancer. Curr Top Med Chem. 18:494–504. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Carneiro BA and El-Deiry WS: Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Achmad AB, Proboningrat A, Ansori ANM, Fadholly A, Rochmi SE, Samsudin RR, Hidayatik N, Hendarti GA and Jayanti S: Stem bark ethanolic extract of Pinus merkusii induces caspase 9-mediated apoptosis in HeLa cells. Open Vet J. 14:2628–2633. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Weinlich R, Oberst A, Beere HM and Green DR: Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol. 18:127–136. 2017. View Article : Google Scholar | |
|
Bergsbaken T, Fink SL and Cookson BT: Pyroptosis: Host cell death and inflammation. Nat Rev Microbiol. 7:99–109. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Gao W, Huang Z, Duan J, Nice EC, Lin J and Huang C: Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol Oncol. 15:3527–3544. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Pan C, Ji Z, Wang Q, Zhang Z, Wang Z, Li C, Lu S and Ge P: Cuproptosis: Mechanisms, biological significance, and advances in disease treatment-A systematic review. CNS Neurosci Ther. 30:e700392024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Z, Wang L, Chen L, Zhang Y and Shi P: Induction of cell cycle arrest via the p21, p27-cyclin E,A/Cdk2 pathway in SMMC-7721 hepatoma cells by clioquinol. Acta Pharm. 65:463–471. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, et al: Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 15:681–689. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tardito S, Bassanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, Bussolati O, Franchi-Gazzola R and Marchiò L: Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J Am Chem Soc. 133:6235–6242. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Tardito S, Barilli A, Bassanetti I, Tegoni M, Bussolati O, Franchi-Gazzola R, Mucchino C and Marchiò L: Copper-dependent cytotoxicity of 8-hydroxyquinoline derivatives correlates with their hydrophobicity and does not require caspase activation. J Med Chem. 55:10448–10459. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Nagai M, Vo NH, Shin Ogawa L, Chimmanamada D, Inoue T, Chu J, Beaudette-Zlatanova BC, Lu R, Blackman RK, Barsoum J, et al: The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic Biol Med. 52:2142–2150. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Shimada K, Reznik E, Stokes ME, Krishnamoorthy L, Bos PH, Song Y, Quartararo CE, Pagano NC, Carpizo DR, deCarvalho AC, et al: Copper-binding small molecule induces oxidative stress and cell-cycle arrest in glioblastoma-patient-derived cells. Cell Chem Biol. 25:585–594 e7. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yip NC, Fombon IS, Liu P, Brown S, Kannappan V, Armesilla AL, Xu B, Cassidy J, Darling JL and Wang W: Disulfiram modulated ROS-MAPK and NFĸB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer. 104:1564–1574. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chen D, Cui QC, Yang H and Dou QP: Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. 66:10425–10433. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Liu N, Huang H, Dou QP and Liu J: Inhibition of 19S proteasome-associated deubiquitinases by metal-containing compounds. Oncoscience. 2:457–466. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Baldari S, Di Rocco G and Toietta G: Current biomedical use of copper chelation therapy. Int J Mol Sci. 21:10692020. View Article : Google Scholar : PubMed/NCBI | |
|
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li P, Sun Q, Bai S, Wang H and Zhao L: Combination of the cuproptosis inducer disulfiram and anti-PD-L1 abolishes NSCLC resistance by ATP7B to regulate the HIF-1 signaling pathway. Int J Mol Med. 53:192024. View Article : Google Scholar : | |
|
Huang N, Feng Y, Liu Y, Zhang Y, Liu L, Zhang B, Zhang T, Su Z, Xue L and Wu ZB: Disulfiram mediated anti-tumour effect in pituitary neuroendocrine tumours by inducing cuproptosis. Int Immunopharmacol. 134:1121592024. View Article : Google Scholar : PubMed/NCBI | |
|
Guo B, Yang F, Zhang L, Zhao Q, Wang W, Yin L, Chen D, Wang M, Han S, Xiao H and Xing N: Cuproptosis induced by ROS responsive nanoparticles with elesclomol and copper combined with αPD-L1 for enhanced cancer immunotherapy. Adv Mater. 35:e22122672023. View Article : Google Scholar | |
|
Sun L, Zhang Y, Yang B, Sun S, Zhang P, Luo Z, Feng T, Cui Z, Zhu T, Li Y, et al: Lactylation of METTL16 promotes cuproptosis via m(6)A-modification on FDX1 mRNA in gastric cancer. Nat Commun. 14:65232023. View Article : Google Scholar : PubMed/NCBI | |
|
Buccarelli M, D'Alessandris QG, Matarrese P, Mollinari C, Signore M, Cappannini A, Martini M, D'Aliberti P, De Luca G, Pedini F, et al: Elesclomol-induced increase of mitochondrial reactive oxygen species impairs glioblastoma stem-like cell survival and tumor growth. J Exp Clin Cancer Res. 40:2282021. View Article : Google Scholar : PubMed/NCBI | |
|
Solmonson A and DeBerardinis RJ: Lipoic acid metabolism and mitochondrial redox regulation. J Biol Chem. 293:7522–7530. 2018. View Article : Google Scholar : | |
|
Harris IS, Endress JE, Coloff JL, Selfors LM, McBrayer SK, Rosenbluth JM, Takahashi N, Dhakal S, Koduri V, Oser MG, et al: Deubiquitinases maintain protein homeostasis and survival of cancer cells upon glutathione depletion. Cell Metab. 29:1166–1181.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou S, Kachhap S and Singh KK: Mitochondrial impairment in p53-deficient human cancer cells. Mutagenesis. 18:287–292. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F and Hwang PM: p53 regulates mitochondrial respiration. Science. 312:1650–1653. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Saleem A, Adhihetty PJ and Hood DA: Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiol Genomics. 37:58–66. 2009. View Article : Google Scholar | |
|
Zhang C, Lin M, Wu R, Wang X, Yang B, Levine AJ, Hu W and Feng Z: Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci USA. 108:16259–16264. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Contractor T and Harris CR: p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res. 72:560–567. 2012. View Article : Google Scholar | |
|
Bischoff ME, Shamsaei B, Yang J, Secic D, Vemuri B, Reisz JA, D'Alessandro A, Bartolacci C, Adamczak R, Schmidt L, et al: Copper drives remodeling of metabolic state and progression of clear cell renal cell carcinoma. Cancer Discov. 15:401–426. 2025. View Article : Google Scholar : | |
|
Gan Y, Liu T, Feng W, Wang L, Li LI and Ning Y: Drug repositioning of disulfiram induces endometrioid epithelial ovarian cancer cell death via the both apoptosis and cuproptosis pathways. Oncol Res. 31:333–343. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Luo B, Wu X and Tang Z: Cuproptosis and cuproptosis-related genes: Emerging potential therapeutic targets in breast cancer. Biochim Biophys Acta Rev Cancer. 1878:1890132023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu T, Zhou Z, Zhang M, Lang P, Li J, Liu Z, Zhang Z, Li L and Zhang L: Cuproptosis-immunotherapy using PD-1 overexpressing T cell membrane-coated nanosheets efficiently treats tumor. J Control Release. 362:502–512. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lu X, Deng W, Wang S, Zhao S, Zhu B, Bai B, Mao Y, Lin J, Yi Y, Xie Z, et al: PEGylated Elesclomol@Cu(II)-based Metal-organic framework with effective nanozyme performance and cuproptosis induction efficacy for enhanced PD-L1-based immunotherapy. Mater Today Bio. 29:1013172024. View Article : Google Scholar | |
|
Hasinoff BB, Wu X, Yadav AA, Patel D, Zhang H, Wang DS, Chen ZS and Yalowich JC: Cellular mechanisms of the cytotoxicity of the anticancer drug elesclomol and its complex with Cu(II). Biochem Pharmacol. 93:266–276. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jiao Y, Hannafon BN and Ding WQ: Disulfiram's anticancer activity: Evidence and mechanisms. Anticancer Agents Med Chem. 16:1378–1384. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Xie L, Gong J, He Z, Zhang W and Wang H, Wu S, Wang X, Sun P, Cai L, Wu Z and Wang H: A copper-manganese based nanocomposite induces cuproptosis and potentiates anti-tumor immune responses. Small. 21:e24121742025. View Article : Google Scholar : PubMed/NCBI | |
|
Deng L, Liu T, Liu CA, Zhang Q, Song MM, Lin SQ, Wang YM, Zhang QS and Shi HP: The association of metabolic syndrome score trajectory patterns with risk of all cancer types. Cancer. 130:2150–2159. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Song M, Liu T, Liu H, Zhang Q, Zhang Q, Wang Y, Ma X, Cao L and Shi H: Association between metabolic syndrome, C-reactive protein, and the risk of primary liver cancer: A large prospective study. BMC Cancer. 22:8532022. View Article : Google Scholar : PubMed/NCBI | |
|
Gathirua-Mwangi WG, Song Y, Monahan PO, Champion VL and Zollinger TW: Associations of metabolic syndrome and C-reactive protein with mortality from total cancer, obesity-linked cancers and breast cancer among women in NHANES III. Int J Cancer. 143:535–542. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Springer C, Humayun D and Skouta R: Cuproptosis: Unraveling the mechanisms of copper-induced cell death and its implication in cancer therapy. Cancers (Basel). 16:6472024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Li Y, Yin Y, Song M, Wang F and Jiang G: Cu Nanowires trigger efficient cuproptosis via special intracellular distribution and excessive Cu Ion release. Nano Lett. 24:11446–11453. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Shao R, Visser I, Fros JJ and Yin X: Versatility of the zinc-finger antiviral protein (ZAP) As a modulator of viral infections. Int J Biol Sci. 20:4585–4600. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang N, Yu X, Xie J and Xu H: New insights into the role of ferritin in iron homeostasis and neurodegenerative diseases. Mol Neurobiol. 58:2812–2823. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ermini ML and Voliani V: Antimicrobial nano-agents: The copper age. ACS Nano. 15:6008–6029. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu X, Chen X, Lin C, Yi Y, Zhao S, Zhu B, Deng W, Wang X, Xie Z, Rao S, et al: Elesclomol loaded copper oxide nanoplatform triggers cuproptosis to enhance antitumor immunotherapy. Adv Sci (Weinh). 11:e23099842024. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng P, Zhou C, Lu L, Liu B and Ding Y: Elesclomol: A copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res. 41:2712022. View Article : Google Scholar : PubMed/NCBI | |
|
Woźniak-Budych MJ, Staszak K and Staszak M: Copper and copper-based nanoparticles in medicine-perspectives and challenges. Molecules. 28:66872023. View Article : Google Scholar | |
|
Brewer GJ: Tetrathiomolybdate anticopper therapy for Wilson's disease inhibits angiogenesis, fibrosis and inflammation. J Cell Mol Med. 7:11–20. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Kim YJ, Tsang T, Anderson GR, Posimo JM and Brady DC: Inhibition of BCL2 family members increases the efficacy of copper chelation in BRAFV600E-Driven melanoma. Cancer Res. 80:1387–1400. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ishida S, McCormick F, Smith-McCune K and Hanahan D: Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell. 17:574–583. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lin X, Chen W, Li B, Zhao Z, Yu Z, Zhao XY, Zhou X, Feng Z, Lin C and Cao W: Targeting intratumoral copper inhibits tumor progression via p62-Mediated EZH2 degradation and potentiates Anti-PD-1 immunotherapy in oral squamous cell carcinoma. Adv Sci (Weinh). Jul 28–2025.Epub ahead of print. View Article : Google Scholar | |
|
Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, Kroemer G, Chen X, Tang D and Liu J: Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 19:1982–1996. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li F, Wu X, Liu H, Liu M, Yue Z, Wu Z, Liu L and Li F: Copper depletion strongly enhances ferroptosis via mitochondrial perturbation and reduction in antioxidative mechanisms. Antioxidants (Basel). 11:20842022. View Article : Google Scholar : PubMed/NCBI | |
|
Derseh HB, Perera KUE, Dewage SNV, Stent A, Koumoundouros E, Organ L, Pagel CN and Snibson KJ: Tetrathiomolybdate treatment attenuates bleomycin-induced angiogenesis and lung pathology in a sheep model of pulmonary fibrosis. Front Pharmacol. 12:7009022021. View Article : Google Scholar : PubMed/NCBI | |
|
Brewer GJ: The promise of copper lowering therapy with tetrathiomolybdate in the cure of cancer and in the treatment of inflammatory disease. J Trace Elem Med Biol. 28:372–378. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Qiu H, Mao L, Wang B, Li N, Fan Y, Weng P, Hu S, Dong X, Qin X, et al: Ammonium tetrathiomolybdate triggers autophagy-dependent NRF2 activation in vascular endothelial cells. Cell Death Dis. 13:7332022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang T, Lu W, Cheng Z, Wang L, Jiang Z, Yue Y, Jiang P, Xia Z, He L, Wang F, et al: Oral engineered extracellular vesicles based on ion exchange strategy for multipronged management of Wilson's disease complicated with reproductive dysfunction therapy. Adv Sci (Weinh). 12:e016892025. View Article : Google Scholar : PubMed/NCBI | |
|
Ke Y, Wu C, Zeng Y, Chen M, Li Y, Xie C, Zhou Y, Zhong Y and Yu H: Radiosensitization of clioquinol combined with zinc in the nasopharyngeal cancer stem-like cells by inhibiting autophagy in vitro and in vivo. Int J Biol Sci. 16:777–789. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Yanase K, Namisaki T, Yamazaki M, Tsujinoue H, Imazu H and Fukui H: The copper-chelating agent, trientine, attenuates liver enzyme-altered preneoplastic lesions in rats by angiogenesis suppression. Oncol Rep. 10:1369–1373. 2003.PubMed/NCBI | |
|
Yang M, Wu X, Hu J, Wang Y, Wang Y, Zhang L, Huang W, Wang X, Li N, Liao L, et al: COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma. J Hepatol. 76:1138–1150. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Li W, Patel SS, Cong J, Zhang N, Sabbatino F, Liu X, Qi Y, Huang P, Lee H, et al: Blocking the formation of radiation-induced breast cancer stem cells. Oncotarget. 5:3743–3755. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L, Meng F, Dong L, Block CJ, Mitchell AV, Wu J, Jang H, Chen W, Polin L, Yang Q, et al: Disulfiram and BKM120 in combination with chemotherapy impede tumor progression and delay tumor recurrence in tumor initiating cell-rich TNBC. Sci Rep. 9:2362019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun T, Yang W, Toprani SM, Guo W, He L, DeLeo AB, Ferrone S, Zhang G, Wang E, Lin Z, et al: Induction of immunogenic cell death in radiation-resistant breast cancer stem cells by repurposing anti-alcoholism drug disulfiram. Cell Commun Signal. 18:362020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou P, Qin J, Zhou C, Wan G, Liu Y, Zhang M, Yang X, Zhang N and Wang Y: Multifunctional nanoparticles based on a polymeric copper chelator for combination treatment of metastatic breast cancer. Biomaterials. 195:86–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hu H, Hua S, Lu F, Zhang W, Zhang Z, Cui J, Lei X, Xia J, Xu F and Zhou M: Mucous permeable nanoparticle for inducing cuproptosis-like death in broad-spectrum bacteria for nebulized treatment of acute pneumonia. Adv Sci (Weinh). 12:e24085802025. View Article : Google Scholar : PubMed/NCBI | |
|
Wu A, Yin N, Li Z, Zhang X, Zhang Z, Zhong T, Xia F, Pan J, Wang D, Liu L and Dong J: FDX1 facilitates elesclomol-induced cuproptosis and promotes glioblastoma development via transcription factor NFKB1. Biochem Pharmacol. 241:1171862025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Lu K, Jiang X, Wei Q, Zhu L, Wang X, Jin H and Feng L: Ferroptosis inducers enhanced cuproptosis induced by copper ionophores in primary liver cancer. J Exp Clin Cancer Res. 42:1422023. View Article : Google Scholar : PubMed/NCBI | |
|
Zulkifli M, Spelbring AN, Zhang Y, Soma S, Chen S, Li L, Le T, Shanbhag V, Petris MJ, Chen TY, et al: FDX1-dependent and independent mechanisms of elesclomol-mediated intracellular copper delivery. Proc Natl Acad Sci USA. 120:e22167221202023. View Article : Google Scholar : PubMed/NCBI | |
|
Chisholm CL, Wang H, Wong AH, Vazquez-Ortiz G, Chen W, Xu X and Deng CX: Ammonium tetrathiomolybdate treatment targets the copper transporter ATP7A and enhances sensitivity of breast cancer to cisplatin. Oncotarget. 7:84439–84452. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Feng L, Wu TZ, Guo XR, Wang YJ, Wang XJ, Liu SX, Zhang R, Ma Y, Tan NH, Bian JL and Wang Z: Discovery of natural resorcylic acid lactones as novel potent copper ionophores covalently targeting PRDX1 to induce cuproptosis for triple-negative breast cancer therapy. ACS Cent Sci. 11:357–370. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Wen H, Qu C, Wang Z, Gao H, Liu W, Wang H, Sun H, Gu J, Yang Z and Wang X: Cuproptosis enhances docetaxel chemosensitivity by inhibiting autophagy via the DLAT/mTOR pathway in prostate cancer. FASEB J. 37:e231452023. View Article : Google Scholar : PubMed/NCBI | |
|
Ahire JJ, Neveling DP and Dicks LMT: Polyacrylonitrile (PAN) nanofibres spun with copper nanoparticles: An anti-Escherichia coli membrane for water treatment. Appl Microbiol Biotechnol. 102:7171–7181. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cendrowska-Pinkosz M, Krauze M, Juśkiewicz J, Fotschki B and Ognik K: The influence of copper nanoparticles on neurometabolism marker levels in the brain and intestine in a rat model. Int J Mol Sci. 24:113212023. View Article : Google Scholar : PubMed/NCBI | |
|
Geng X, Liu K, Wang J, Su X, Shi Y and Zhao L: Preparation of ultra-small copper nanoparticles-loaded self-healing hydrogels with antibacterial, inflammation-suppressing and angiogenesis-enhancing properties for promoting diabetic wound healing. Int J Nanomedicine. 18:3339–3358. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Tai Z, Liu W, Luo Y, Wu Y, Lin S, Liu M, Gao B and Liu JX: Copper overload impairs hematopoietic stem and progenitor cell proliferation via prompting HSF1/SP1 aggregation and the subsequently downregulating FOXM1-Cytoskeleton axis. iScience. 26:1064062023. View Article : Google Scholar : PubMed/NCBI | |
|
Petruzzelli R and Polishchuk RS: Activity and trafficking of copper-transporting ATPases in tumor development and defense against platinum-based drugs. Cells. 8:10802019. View Article : Google Scholar : PubMed/NCBI | |
|
Nayagam JS, Jeyaraj R, Foskett P, Dhawan A, Ala A, Joshi D, Bomford A and Thompson RJ: ATP7B genotype and chronic liver disease treatment outcomes in wilson disease: Worse survival with loss-of-function variants. Clin Gastroenterol Hepatol. 21:1323–1329.e4. 2023. View Article : Google Scholar | |
|
Wang Y, Li D, Xu K, Wang G and Zhang F: Copper homeostasis and neurodegenerative diseases. Neural Regen Res. 20:3124–3143. 2025. View Article : Google Scholar : | |
|
Chan N, Willis A, Kornhauser N, Ward MM, Lee SB, Nackos E, Seo BR, Chuang E, Cigler T, Moore A, et al: Influencing the tumor microenvironment: A phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clin Cancer Res. 23:666–676. 2017. View Article : Google Scholar | |
|
Yang Z, Su W, Wei X, Pan Y, Xing M, Niu L, Feng B, Kong W, Ren X, Huang F, et al: Hypoxia inducible factor-1α drives cancer resistance to cuproptosis. Cancer Cell. 43:937–954.e9. 2025. View Article : Google Scholar | |
|
Zhang J, Han H, Wang L, Wang W, Yang M and Qin Y: Overcoming the therapeutic resistance of hepatomas by targeting the tumor microenvironment. Front Oncol. 12:9889562022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Ma S, Wu H, Zheng L, Yi Y, Liu G, Li B, Sun J, Du Y, Wang B, et al: Zonated copper-driven breast cancer progression countered by a copper-depleting nanoagent for immune and metabolic reprogramming. Adv Sci (Weinh). 12:e24124342025. View Article : Google Scholar : PubMed/NCBI |