You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Myint ZW, Oo TH, Thein KZ, Tun AM and Saeed H: Copper deficiency anemia: Review article. Ann Hematol. 97:1527–1534. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mohammadifard N, Humphries KH, Gotay C, Mena-Sánchez G, Salas-Salvadó J, Esmaillzadeh A, Ignaszewski A and Sarrafzadegan N: Trace minerals intake: Risks and benefits for cardiovascular health. Crit Rev Food Sci Nutr. 59:1334–1346. 2019. View Article : Google Scholar | |
|
Chen X, Cai Q, Liang R, Zhang D, Liu X, Zhang M, Xiong Y, Xu M, Liu Q, Li P, et al: Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies. Cell Death Dis. 14:1052023. View Article : Google Scholar : PubMed/NCBI | |
|
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Yang X, Li W, Lin Y, Lin R, Cai X, Yan B, Xie B and Li J: Potential molecular and cellular mechanisms of the effects of cuproptosis-related genes in the cardiomyocytes of patients with diabetic heart failure: A bioinformatics analysis. Front Endocrinol (Lausanne). 15:13703872024. View Article : Google Scholar : PubMed/NCBI | |
|
Tan X, Xu S, Zeng Y, Qin Z, Yu F, Jiang H, Xu H, Li X, Wang X, Zhang G, et al: Identification of diagnostic signature and immune infiltration for ischemic cardiomyopathy based on cuproptosis-related genes through bioinformatics analysis and experimental validation. Int Immunopharmacol. 138:1125742024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YT, Xu XH, Lin L, Tian S and Wu GF: Identification of three cuproptosis-specific expressed genes as diagnostic biomarkers and therapeutic targets for atherosclerosis. Int J Med Sci. 20:836–848. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y and Miao J: An emerging role of defective copper metabolism in heart disease. Nutrients. 14:7002022. View Article : Google Scholar : PubMed/NCBI | |
|
Mason KE: A conspectus of research on copper metabolism and requirements of man. J Nutr. 109:1979–2066. 1979. View Article : Google Scholar : PubMed/NCBI | |
|
Pierson H, Yang H and Lutsenko S: Copper transport and disease: What can we learn from organoids? Annu Rev Nutr. 39:75–94. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, He J, Liu Z, Zhu X, Li Z, Chen A and Lu J: Cuproptosis: Mechanism, role, and advances in urological malignancies. Med Res Rev. 44:1662–1682. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu WQ, Lin WR, Yan L, Xu WH and Yang J: Copper homeostasis and cuproptosis in cancer immunity and therapy. Immunol Rev. 321:211–227. 2024. View Article : Google Scholar | |
|
Lee J, Peña MM, Nose Y and Thiele DJ: Biochemical characterization of the human copper transporter Ctr1. J Biol Chem. 277:4380–4387. 2002. View Article : Google Scholar | |
|
Arredondo M, Muñoz P, Mura CV and Nùñez MT: DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Am J Physiol Cell Physiol. 284:C1525–C1530. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Ross MO, Xie Y, Owyang RC, Ye C, Zbihley ONP, Lyu R, Wu T, Wang P, Karginova O, Olopade OI, et al: PTPN2 copper-sensing relays copper level fluctuations into EGFR/CREB activation and associated CTR1 transcriptional repression. Nat Commun. 15:69472024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Min J and Wang F: Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 7:3782022. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Ma J, Wang R, Luo Y, Zheng S and Wang X: Zinc transporter 1 functions in copper uptake and cuproptosis. Cell Metab. 36:2118–2129.e6. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Krężel A and Maret W: The bioinorganic chemistry of mammalian metallothioneins. Chem Rev. 121:14594–14648. 2021. View Article : Google Scholar | |
|
Yang D, Xiao P, Qiu B, Yu HF and Teng CB: Copper chaperone antioxidant 1: Multiple roles and a potential therapeutic target. J Mol Med (Berl). 101:527–542. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Perkal O, Qasem Z, Turgeman M, Schwartz R, Gevorkyan-Airapetov L, Pavlin M, Magistrato A, Major DT and Ruthstein S: Cu(I) controls conformational states in human Atox1 metallochaperone: An EPR and multiscale simulation study. J Phys Chem B. 124:4399–4411. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xue Q, Kang R, Klionsky DJ, Tang D, Liu J and Chen X: Copper metabolism in cell death and autophagy. Autophagy. 19:2175–2195. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Harris ED: Cellular copper transport and metabolism. Annu Rev Nutr. 20:291–310. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Lutsenko S, Barnes NL, Bartee MY and Dmitriev OY: Function and regulation of human copper-transporting ATPases. Physiol Rev. 87:1011–1046. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, Price DL, Rothstein J and Gitlin JD: Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA. 97:2886–2891. 2000. View Article : Google Scholar | |
|
Suzuki Y, Ali M, Fischer M and Riemer J: Human copper chaperone for superoxide dismutase 1 mediates its own oxidation-dependent import into mitochondria. Nat Commun. 4:24302013. View Article : Google Scholar : PubMed/NCBI | |
|
Bertinato J and L'Abbé MR: Copper modulates the degradation of copper chaperone for Cu,Zn superoxide dismutase by the 26 S proteosome. J Biol Chem. 278:35071–35078. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Sturtz LA, Diekert K, Jensen LT, Lill R and Culotta VC: A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem. 276:38084–38089. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Grasso M, Bond GJ, Kim YJ, Boyd S, Matson Dzebo M, Valenzuela S, Tsang T, Schibrowsky NA, Alwan KB, Blackburn NJ, et al: The copper chaperone CCS facilitates copper binding to MEK1/2 to promote kinase activation. J Biol Chem. 297:1013142021. View Article : Google Scholar : PubMed/NCBI | |
|
Garza NM, Swaminathan AB, Maremanda KP, Zulkifli M and Gohil VM: Mitochondrial copper in human genetic disorders. Trends Endocrinol Metab. 34:21–33. 2023. View Article : Google Scholar | |
|
Maxfield AB, Heaton DN and Winge DR: Cox17 is functional when tethered to the mitochondrial inner membrane. J Biol Chem. 279:5072–5080. 2004. View Article : Google Scholar | |
|
Sailer J, Nagel J, Akdogan B, Jauch AT, Engler J, Knolle PA and Zischka H: Deadly excess copper. Redox Biol. 75:1032562024. View Article : Google Scholar : PubMed/NCBI | |
|
Boyd SD, Ullrich MS, Skopp A and Winkler DD: Copper sources for Sod1 activation. Antioxidants (Basel). 9:5002020. View Article : Google Scholar : PubMed/NCBI | |
|
Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, Piccolo P, Paladino S, Baldantoni D, van IJzendoorn SC, Chan J, et al: Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev Cell. 29:686–700. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Doguer C, Ha JH and Collins JF: Intersection of iron and copper metabolism in the mammalian intestine and liver. Compr Physiol. 8:1433–1461. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
La Fontaine S and Mercer JF: Trafficking of the copper-ATPases, ATP7A and ATP7B: Role in copper homeostasis. Arch Biochem Biophys. 463:149–167. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Festa RA and Thiele DJ: Copper: An essential metal in biology. Curr Biol. 21:R877–R883. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Turnlund JR, Keyes WR, Anderson HL and Acord LL: Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am J Clin Nutr. 49:870–878. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
van den Berghe PVE and Klomp LWJ: Posttranslational regulation of copper transporters. J Biol Inorg Chem. 15:37–46. 2010. View Article : Google Scholar | |
|
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, et al: Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat Rev Cancer. 22:102–113. 2022. View Article : Google Scholar : | |
|
Yang L, Yang P, Lip GYH and Ren J: Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends Pharmacol Sci. 44:573–585. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chang W and Li P: Copper and diabetes: Current research and prospect. Mol Nutr Food Res. 67:e23004682023. View Article : Google Scholar : PubMed/NCBI | |
|
Jiayi H, Ziyuan T, Tianhua X, Mingyu Z, Yutong M, Jingyu W, Hongli Z and Li S: Copper homeostasis in chronic kidney disease and its crosstalk with ferroptosis. Pharmacol Res. 202:1071392024. View Article : Google Scholar : PubMed/NCBI | |
|
Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K and Petris MJ: Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res. 1868:1188932021. View Article : Google Scholar : | |
|
Lin CH, Chin Y, Zhou M, Sobol RW, Hung MC and Tan M: Protein lipoylation: Mitochondria, cuproptosis, and beyond. Trends Biochem Sci. 49:729–744. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gupte A and Mumper RJ: Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev. 35:32–46. 2009. View Article : Google Scholar | |
|
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman JS, Wang Y, Wang J, Chen J, Li Y and Wang H: Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. Drug Resist Updat. 72:1010182024. View Article : Google Scholar | |
|
Han J, Luo J, Wang C, Kapilevich L and Zhang XA: Roles and mechanisms of copper homeostasis and cuproptosis in osteoarticular diseases. Biomed Pharmacother. 174:1165702024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Yang A, Jia J, Popov YV, Schuppan D and You H: Lysyl oxidase (LOX) family members: Rationale and their potential as therapeutic targets for liver fibrosis. Hepatology. 72:729–741. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Doñate F, Juarez JC, Burnett ME, Manuia MM, Guan X, Shaw DE, Smith EL, Timucin C, Braunstein MJ, Batuman OA and Mazar AP: Identification of biomarkers for the antiangiogenic and antitumour activity of the superoxide dismutase 1 (SOD1) inhibitor tetrathiomolybdate (ATN-224). Br J Cancer. 98:776–783. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Tsui KH, Hsiao JH, Lin LT, Tsang YL, Shao AN, Kuo CH, Chang R, Wen ZH and Li CJ: The cross-communication of cuproptosis and regulated cell death in human pathophysiology. Int J Biol Sci. 20:218–230. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Han X, Zhang X, Liu Z, Liu H, Wu D, He Y, Yuan K, Lyu Y and Liu X: Copper-based nanotubes that enhance starvation therapy through cuproptosis for synergistic cancer treatment. Adv Sci (Weinh). 12:e041212025. View Article : Google Scholar : PubMed/NCBI | |
|
Yan C, Lv H, Feng Y, Li Y and Zhao Z: Inhalable nanoparticles with enhanced cuproptosis and cGAS-STING activation for synergistic lung metastasis immunotherapy. Acta Pharm Sin B. 14:3697–3710. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Tian Z, Zhang P, Zhen L, Meng Q, Sun B, Xu X, Jia T and Li S: The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease. Biomed Pharmacother. 163:1148302023. View Article : Google Scholar : PubMed/NCBI | |
|
Dreishpoon MB, Bick NR, Petrova B, Warui DM, Cameron A, Booker SJ, Kanarek N, Golub TR and Tsvetkov P: FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J Biol Chem. 299:1050462023. View Article : Google Scholar : PubMed/NCBI | |
|
Rowland EA, Snowden CK and Cristea IM: Protein lipoylation: An evolutionarily conserved metabolic regulator of health and disease. Curr Opin Chem Biol. 42:76–85. 2018. View Article : Google Scholar : | |
|
Kuang J, Liu A, Xu L, Wang G, Zhang Z, Tian C and Yu L: Electron paramagnetic resonance insights into direct electron transfer between FDX1 and elesclomol-Cu2+ complex in cuproptosis. Chemistry. 31:e2025011452025. View Article : Google Scholar | |
|
Hu HT, Zhang ZY, Luo ZX, Ti HB, Wu JJ, Nie H, Yuan ZD, Wu X, Zhang KY, Shi SW, et al: Emerging regulated cell death mechanisms in bone remodeling: Decoding ferroptosis, cuproptosis, disulfidptosis, and PANoptosis as therapeutic targets for skeletal disorders. Cell Death Discov. 11:3352025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Feng R and Zhao H: Cuproptosis and Cu: A new paradigm in cellular death and their role in non-cancerous diseases. Apoptosis. 29:1330–1360. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang L, Zhu J, Wu G, Xiong W, Feng J, Yan C, Yang J, Li Z, Fan Q, Ren B, et al: A strategy of 'adding fuel to the flames' enables a self-accelerating cycle of ferroptosis-cuproptosis for potent antitumor therapy. Biomaterials. 311:1227012024. View Article : Google Scholar | |
|
Liu G, Tang R, Wang C, Yu D, Wang Z, Yang H, Wei J, Zhu S, Gao F, Yuan F and Pan B: Bimetallic nanoconjugate hijack Fe-S clusters to drive a closed-loop cuproptosis-ferroptosis strategy for osteosarcoma inhibition. J Colloid Interface Sci. 703:1390522025.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Xu H, Wu X, Chen B, Gong X and He Y: Engineering dual-responsive nanoplatform achieves copper metabolism disruption and glutathione consumption to provoke cuproptosis/ferroptosis/apoptosis for cancer therapy. ACS Appl Mater Interfaces. 17:20726–20740. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Husain N and Mahmood R: Copper(II) generates ROS and RNS, impairs antioxidant system and damages membrane and DNA in human blood cells. Environ Sci Pollut Res Int. 26:20654–20668. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Alqarni MH, Muharram MM, Alshahrani SM and Labrou NE: Copper-induced oxidative cleavage of glutathione transferase F1-1 from Zea mays. Int J Biol Macromol. 128:493–498. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Ning X, Qin C, Wang J, Yan W, Zhou X, Wang D, Cao J and Feng Y: Respiratory exposure to copper oxide particles causes multiple organ injuries via oxidative stress in a rat model. Int J Nanomedicine. 17:4481–4496. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Piret JP, Jacques D, Audinot JN, Mejia J, Boilan E, Noël F, Fransolet M, Demazy C, Lucas S, Saout C and Toussaint O: Copper(II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. Nanoscale. 4:7168–7184. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
He H, Zou Z, Wang B, Xu G, Chen C, Qin X, Yu C and Zhang J: Copper oxide nanoparticles induce oxidative DNA damage and cell death via copper ion-mediated P38 MAPK activation in vascular endothelial cells. Int J Nanomedicine. 15:3291–3302. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Martin F, Linden T, Katschinski DM, Oehme F, Flamme I, Mukhopadhyay CK, Eckhardt K, Tröger J, Barth S, Camenisch G and Wenger RH: Copper-dependent activation of hypoxia-inducible factor (HIF)-1: Implications for ceruloplasmin regulation. Blood. 105:4613–4619. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao Y, Wang T, Song X, Yang D, Chu Q and Kang YJ: Copper promotion of myocardial regeneration. Exp Biol Med (Maywood). 245:911–921. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Martínez-González J, Varona S, Cañes L, Galán M, Briones AM, Cachofeiro V and Rodríguez C: Emerging roles of Lysyl oxidases in the cardiovascular system: New concepts and therapeutic challenges. Biomolecules. 9:6102019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Li Y, Luo C and Chen Y: Dynamic AFM detection of the oxidation-induced changes in size, stiffness, and stickiness of low-density lipoprotein. J Nanobiotechnology. 18:1672020. View Article : Google Scholar : PubMed/NCBI | |
|
Widyananda MH, Grahadi R, Dinana IA, Ansori ANM, Kharisma VD, Jakhmola V, Rebezov M, Derkho M, Burkov P, Scherbakov P and Zainul R: Anti-atherosclerotic potential of fatty acids in Chlorella vulgaris via inhibiting the foam cell formation: An in silico study. Adv Life Sci. 12:296–303. 2025. View Article : Google Scholar | |
|
Widyananda MH, Kurniasari CA, Alam FM, Rizky WC, Dings TGA, Ansori ANM and Antonius Y: Exploration of potentially bioactive compounds from Fingerroot (Boesenbergia rotunda L.) as inhibitor of atherosclerosis-related proteins (CETP, ACAT1, OSC, sPLA2): An in silico study. Jordan J Pharm Sci. 16:550–564. 2023. View Article : Google Scholar | |
|
Kciuk M, Gielecińska A, Kałuzińska-Kołat Ż, Yahya EB and Kontek R: Ferroptosis and cuproptosis: Metal-dependent cell death pathways activated in response to classical chemotherapy-significance for cancer treatment? Biochim Biophys Acta Rev Cancer. 1879:1891242024. View Article : Google Scholar | |
|
Zhou D, Mao Q, Sun Y, Cheng H, Zhao J, Liu Q, Deng M, Xu S and Zhao X: Association of blood copper with the subclinical carotid atherosclerosis: An observational study. J Am Heart Assoc. 13:e0334742024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu C, Wang B, Xiao L, Guo Y, Zhou Y, Cao L, Yang S and Chen W: Mean platelet volume mediated the relationships between heavy metals exposure and atherosclerotic cardiovascular disease risk: A community-based study. Eur J Prev Cardiol. 27:830–839. 2020. View Article : Google Scholar | |
|
Long P, Wang Q, Zhang Y, Zhu X, Yu K, Jiang H, Liu X, Zhou M, Yuan Y, Liu K, et al: Profile of copper-associated DNA methylation and its association with incident acute coronary syndrome. Clin Epigenetics. 13:192021. View Article : Google Scholar : PubMed/NCBI | |
|
Kuzan A, Wujczyk M and Wiglusz RJ: The study of the aorta metallomics in the context of atherosclerosis. Biomolecules. 11:9462021. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Zhao L, Wang T and James Kang Y: Dietary Cholesterol supplements disturb copper homeostasis in multiple organs in rabbits: Aorta copper concentrations negatively correlate with the severity of atherosclerotic lesions. Biol Trace Elem Res. 200:164–171. 2022. View Article : Google Scholar | |
|
Bügel S, Harper A, Rock E, O'Connor JM, Bonham MP and Strain JJ: Effect of copper supplementation on indices of copper status and certain CVD risk markers in young healthy women. Br J Nutr. 94:231–236. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Diaf M and Khaled MB: Associations between dietary antioxidant intake and markers of atherosclerosis in middle-aged women from north-western Algeria. Front Nutr. 5:292018. View Article : Google Scholar : PubMed/NCBI | |
|
Kärberg K, Forbes A and Lember M: Raised dietary Zn:Cu ratio increases the risk of atherosclerosis in type 2 diabetes. Clin Nutr ESPEN. 50:218–224. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sudhahar V, Shi Y, Kaplan JH, Ushio-Fukai M and Fukai T: Whole-transcriptome sequencing analyses of nuclear antixoxidant-1 in endothelial cells: Role in inflammation and atherosclerosis. Cells. 11:29192022. View Article : Google Scholar : PubMed/NCBI | |
|
Das A, Sudhahar V, Ushio-Fukai M and Fukai T: Novel interaction of antioxidant-1 with TRAF4: Role in inflammatory responses in endothelial cells. Am J Physiol Cell Physiol. 317:C1161–C1171. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Chen X, Cheng H and Zhang L: Dietary copper intake and risk of stroke in adults: A case-control study based on national health and nutrition examination survey 2013-2018. Nutrients. 14:4092022. View Article : Google Scholar : PubMed/NCBI | |
|
Hu L, Bi C, Lin T, Liu L, Song Y, Wang P, Wang B, Fang C, Ma H, Huang X, et al: Association between plasma copper levels and first stroke: A community-based nested case-control study. Nutr Neurosci. 25:1524–1533. 2022. View Article : Google Scholar | |
|
Lai M, Wang D, Lin Z and Zhang Y: Small molecule copper and its relative metabolites in serum of cerebral ischemic stroke patients. J Stroke Cerebrovasc Dis. 25:214–219. 2016. View Article : Google Scholar | |
|
Xiao Y, Yuan Y, Liu Y, Yu Y, Jia N, Zhou L, Wang H, Huang S, Zhang Y, Yang H, et al: Circulating multiple metals and incident stroke in Chinese adults. Stroke. 50:1661–1668. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao H, Mei K, Hu Q, Wu Y, Xu Y, Qinling, Yu P, Deng Y, Zhu W, Yan Z and Liu X: Circulating copper levels and the risk of cardio-cerebrovascular diseases and cardiovascular and all-cause mortality: A systematic review and meta-analysis of longitudinal studies. Environ Pollut. 340:1227112024. View Article : Google Scholar | |
|
Zhang M, Li W, Wang Y, Wang T, Ma M and Tian C: Association between the change of serum copper and ischemic stroke: A systematic review and meta-analysis. J Mol Neurosci. 70:475–480. 2020. View Article : Google Scholar | |
|
Peng Y, Ren Q, Ma H, Lin C, Yu M, Li Y, Chen J, Xu H, Zhao P, Pan S, et al: Covalent organic framework based cytoprotective therapy after ischemic stroke. Redox Biol. 71:1031062024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Xu G and Fang J: Association between serum copper and stroke risk factors in adults: Evidence from the national health and nutrition examination survey, 2011-2016. Biol Trace Elem Res. 200:1089–1094. 2022. View Article : Google Scholar | |
|
Yang F and Smith MJ: Metal profiling in coronary ischemia-reperfusion injury: Implications for KEAP1/NRF2 regulated redox signaling. Free Radic Biol Med. 210:158–171. 2024. View Article : Google Scholar | |
|
Ding C, Wang B, Zheng J, Zhang M, Li Y, Shen HH, Guo Y, Zheng B, Tian P, Ding X and Xue W: Neutrophil membrane-inspired nanorobots act as antioxidants ameliorate ischemia reperfusion-induced acute kidney injury. ACS Appl Mater Interfaces. 15:40292–40303. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kokubo Y, Matson GB, Derugin N, Hill T, Mancuso A, Chan PH and Weinstein PR: Transgenic mice expressing human copper-zinc superoxide dismutase exhibit attenuated apparent diffusion coefficient reduction during reperfusion following focal cerebral ischemia. Brain Res. 947:1–8. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Oberley TD, Ho Y, Chua CC, Siu B, Hamdy RC, Epstein CJ and Chua BH: Overexpression of CuZnSOD in coronary vascular cells attenuates myocardial ischemia/reperfusion injury. Free Radic Biol Med. 29:589–596. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka M, Mokhtari GK, Terry RD, Balsam LB, Lee KH, Kofidis T, Tsao PS and Robbins RC: Overexpression of human copper/zinc superoxide dismutase (SOD1) suppresses ischemia-reperfusion injury and subsequent development of graft coronary artery disease in murine cardiac grafts. Circulation. 110(11 Suppl 1): II200–II206. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Song W, Tang Q, Teng L, Zhang M, Sha S, Li B and Zhu L: Exercise for myocardial ischemia-reperfusion injury: A systematic review and meta-analysis based on preclinical studies. Microvasc Res. 147:1045022023. View Article : Google Scholar : PubMed/NCBI | |
|
Kuster GM, Nietlispach F, Kiowski W, Schindler R, Bernheim A, Schuetz P, Mueller B, Morgenthaler NG, Rüter F, Riesen W, et al: Role of RAS inhibition in the regulation of Cu/Zn-SOD in the cardiac and peripheral arterial beds in humans. Clin Pharmacol Ther. 87:686–692. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kunutsor SK, Voutilainen A, Kurl S and Laukkanen JA: Serum copper-to-zinc ratio is associated with heart failure and improves risk prediction in middle-aged and older Caucasian men: A prospective study. Nutr Metab Cardiovasc Dis. 32:1924–1935. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Alexanian I, Parissis J, Farmakis D, Athanaselis S, Pappas L, Gavrielatos G, Mihas C, Paraskevaidis I, Sideris A, Kremastinos D, et al: Clinical and echocardiographic correlates of serum copper and zinc in acute and chronic heart failure. Clin Res Cardiol. 103:938–949. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liu R, Yao J, Chen K and Peng W: Association between biomarkers of zinc and copper status and heart failure: A meta-analysis. ESC Heart Fail. 11:2546–2556. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ghaemian A, Salehifar E, Jalalian R, Ghasemi F, Azizi S, Masoumi S, Shiraj H, Mohammadpour RA and Bagheri GA: Zinc and copper levels in severe heart failure and the effects of atrial fibrillation on the zinc and copper status. Biol Trace Elem Res. 143:1239–1246. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hammadah M, Fan Y, Wu Y, Hazen SL and Tang WH: Prognostic value of elevated serum ceruloplasmin levels in patients with heart failure. J Card Fail. 20:946–952. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
de Andrade Freire FL, Dantas-Komatsu RCS, de Lira NRD, Diniz RVZ, Lima SCVC, Barbosa F Jr, Pedrosa LFC and Sena-Evangelista KCM: Biomarkers of zinc and copper status and associated factors in outpatients with ischemic and non-ischemic heart failure. J Am Nutr Assoc. 41:231–239. 2022. | |
|
Niu YY, Aierken A and Feng L: Unraveling the link between dietary factors and cardiovascular metabolic diseases: Insights from a two-sample Mendelian randomization investigation. Heart Lung. 63:72–77. 2024. View Article : Google Scholar | |
|
Cimen YA, Taslidere B, Sarikaya U, Demirel M, Acikgoz N and Selek S: Assessment of oxidative stress and trace element dynamics in acute myocardial infarction and heart failure: A focus on zinc, copper, and thiol dynamics. Clinics (Sao Paulo). 80:1007552025. View Article : Google Scholar : PubMed/NCBI | |
|
Gorący I, Rębacz-Maron E, Korbecki J and Gorący J: Concentrations of Mg, Ca, Fe, Cu, Zn, P and anthropometric and biochemical parameters in adults with chronic heart failure. PeerJ. 9:e122072021. View Article : Google Scholar | |
|
Zou R, Zhang M, Zou Z, Shi W, Tan S, Wang C, Xu W, Jin J, Milton S, Chen Y, et al: Single-cell transcriptomics reveals zinc and copper ions homeostasis in epicardial adipose tissue of heart failure. Int J Biol Sci. 19:4036–4051. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Q, Cai J, Qu Q, Cheang I, Shi J, Pang H and Li X: Association of blood trace elements levels with cardiovascular disease in US adults: A cross-sectional study from the national health and nutrition examination survey 2011-2016. Biol Trace Elem Res. 202:3037–3050. 2024. View Article : Google Scholar | |
|
Malekahmadi M, Firouzi S, Rezayi M, Ghazizadeh H, Ranjbar G, Ferns GA and Mobarhan MG: Association of zinc and copper status with cardiovascular diseases and their assessment methods: A review study. Mini Rev Med Chem. 20:2067–2078. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bomer N, Pavez-Giani MG, Grote Beverborg N, Cleland JGF, van Veldhuisen DJ and van der Meer P: Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? J Intern Med. 291:713–731. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Witte KK, Nikitin NP, Parker AC, von Haehling S, Volk HD, Anker SD, Clark AL and Cleland JG: The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur Heart J. 26:2238–2244. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Dieterich S, Bieligk U, Beulich K, Hasenfuss G and Prestle J: Gene expression of antioxidative enzymes in the human heart: Increased expression of catalase in the end-stage failing heart. Circulation. 101:33–39. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Liu H, Amarsingh GV, Cheung CCH, Wu D, Narayanan U, Zhang L and Cooper GJS: Restoration of myocellular copper-trafficking proteins and mitochondrial copper enzymes repairs cardiac function in rats with diabetes-evoked heart failure. Metallomics. 12:259–272. 2020. View Article : Google Scholar | |
|
Ennezat PV, Malendowicz SL, Testa M, Colombo PC, Cohen-Solal A, Evans T and LeJemtel TH: Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. J Am Coll Cardiol. 38:194–198. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Zhu Y, Chen S, Li Z, Fu G and Wang Y: Immune patterns of cuproptosis in ischemic heart failure: A transcriptome analysis. J Cell Mol Med. 28:e181872024. View Article : Google Scholar : PubMed/NCBI | |
|
Hao D, Meng Q, Li C, Lu S, Xiang X, Pei Q, Jing X and Xie Z: A paclitaxel prodrug with copper depletion for combined therapy toward triple-negative breast cancer. ACS Nano. 17:12383–12393. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson TW, Holt J, Kleyman A, Zhou S, Sammut E, Bruno VD, Gaupp C, Stanzani G, Martin J, Arina P, et al: Development and translation of thiometallate sulfide donors using a porcine model of coronary occlusion and reperfusion. Redox Biol. 73:1031672024. View Article : Google Scholar : PubMed/NCBI | |
|
Dyson A, Dal-Pizzol F, Sabbatini G, Lach AB, Galfo F, Dos Santos Cardoso J, Pescador Mendonça B, Hargreaves I, Bollen Pinto B, Bromage DI, et al: Ammonium tetrathiomolybdate following ischemia/reperfusion injury: Chemistry, pharmacology, and impact of a new class of sulfide donor in preclinical injury models. PLoS Med. 14:e10023102017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YF, Qi RQ, Song JW, Wang SY, Dong ZJ, Chen YH, Liu Y, Zhou XY, Li J, Liu XY and Zhong JC: Sirtuin 7 ameliorates cuproptosis, myocardial remodeling and heart dysfunction in hypertension through the modulation of YAP/ATP7A signaling. Apoptosis. 29:2161–2182. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Bogaard HJ, Mizuno S, Guignabert C, Al Hussaini AA, Farkas D, Ruiter G, Kraskauskas D, Fadel E, Allegood JC, Humbert M, et al: Copper dependence of angioproliferation in pulmonary arterial hypertension in rats and humans. Am J Respir Cell Mol Biol. 46:582–591. 2012. View Article : Google Scholar : | |
|
Wei H, Zhang WJ, McMillen TS, Leboeuf RC and Frei B: Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice. Atherosclerosis. 223:306–313. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ambi A, Stanisavljevic A, Victor TW, Lowery AW, Davis J, Van Nostrand WE and Miller LM: Evaluation of copper chelation therapy in a transgenic rat model of cerebral amyloid angiopathy. ACS Chem Neurosci. 14:378–388. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mandinov L, Moodie KL, Mandinova A, Zhuang Z, Redican F, Baklanov D, Lindner V, Maciag T, Simons M and de Muinck ED: Inhibition of in-stent restenosis by oral copper chelation in porcine coronary arteries. Am J Physiol Heart Circ Physiol. 291:H2692–H2697. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Cooper GJ, Young AA, Gamble GD, Occleshaw CJ, Dissanayake AM, Cowan BR, Brunton DH, Baker JR, Phillips AR, Frampton CM, et al: A copper(II)-selective chelator ameliorates left-ventricular hypertrophy in type 2 diabetic patients: A randomised placebo-controlled study. Diabetologia. 52:715–722. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Liu H, Amarsingh GV, Cheung CC, Hogl S, Narayanan U, Zhang L, McHarg S, Xu J, Gong D, et al: Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc Diabetol. 13:1002014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Ward ML, Phillips ARJ, Zhang S, Kennedy J, Barry B, Cannell MB and Cooper GJS: Protection of the heart by treatment with a divalent-copper-selective chelator reveals a novel mechanism underlying cardiomyopathy in diabetic rats. Cardiovasc Diabetol. 12:1232013. View Article : Google Scholar : PubMed/NCBI | |
|
Lamas GA, Anstrom KJ, Navas-Acien A, Boineau R, Nemeth H, Huang Z, Wen J, Rosenberg Y, Stylianou M, Jones TLZ, et al: Edetate disodium-based chelation for patients with a previous myocardial infarction and diabetes: TACT2 randomized clinical trial. JAMA. 332:794–803. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lamas GA, Goertz C, Boineau R, Mark DB, Rozema T, Nahin RL, Lindblad L, Lewis EF, Drisko J and Lee KL; TACT Investigators: Effect of disodium EDTA chelation regimen on cardiovascular events in patients with previous myocardial infarction: The TACT randomized trial. JAMA. 309:1241–1250. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Knudtson ML, Wyse DG, Galbraith PD, Brant R, Hildebrand K, Paterson D, Richardson D, Burkart C and Burgess E; Program to Assess Alternative Treatment Strategies to Achieve Cardiac Health (PATCH) Investigators: Chelation therapy for ischemic heart disease: A randomized controlled trial. JAMA. 287:481–486. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Anderson TJ, Hubacek J, Wyse DG and Knudtson ML: Effect of chelation therapy on endothelial function in patients with coronary artery disease: PATCH substudy. J Am Coll Cardiol. 41:420–425. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Escolar E, Lamas GA, Mark DB, Boineau R, Goertz C, Rosenberg Y, Nahin RL, Ouyang P, Rozema T, Magaziner A, et al: The effect of an EDTA-based chelation regimen on patients with diabetes mellitus and prior myocardial infarction in the trial to assess chelation therapy (TACT). Circ Cardiovasc Qual Outcomes. 7:15–24. 2014. View Article : Google Scholar | |
|
Kirk FT, Munk DE, Swenson ES, Quicquaro AM, Vendelbo MH, Larsen A, Schilsky ML, Ott P and Sandahl TD: Effects of tetrathiomolybdate on copper metabolism in healthy volunteers and in patients with Wilson disease. J Hepatol. 80:586–595. 2024. View Article : Google Scholar | |
|
Borchard S, Raschke S, Zak KM, Eberhagen C, Einer C, Weber E, Müller SM, Michalke B, Lichtmannegger J, Wieser A, et al: Bis-choline tetrathiomolybdate prevents copper-induced blood-brain barrier damage. Life Sci Alliance. 5:e2021011642021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YM, Feng LS, Xu A, Ma XH, Zhang MT and Zhang J: Copper ions: The invisible killer of cardiovascular disease (Review). Mol Med Rep. 30:2102024. View Article : Google Scholar : PubMed/NCBI | |
|
Juarez JC, Betancourt O Jr, Pirie-Shepherd SR, Guan X, Price ML, Shaw DE, Mazar AP and Doñate F: Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1. Clin Cancer Res. 12:4974–4982. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Yang D, Wang T, Liu J, Wang H and Kang YJ: Reverse regulation of hepatic ceruloplasmin production in rat model of myocardial ischemia. J Trace Elem Med Biol. 64:1266862021. View Article : Google Scholar | |
|
Villarruz-Sulit MV, Forster R, Dans AL, Tan FN and Sulit DV: Chelation therapy for atherosclerotic cardiovascular disease. Cochrane Database Syst Rev. 5:Cd0027852020.PubMed/NCBI | |
|
Steinbrueck A, Sedgwick AC, Brewster JT II, Yan KC, Shang Y, Knoll DM, Vargas-Zúñiga GI, He XP, Tian H and Sessler JL: Transition metal chelators, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents. Chem Soc Rev. 49:3726–3747. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ranucci G, Polishchuck R and Iorio R: Wilson's disease: Prospective developments towards new therapies. World J Gastroenterol. 23:5451–5456. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Huang T and Li L: Targeting cuproptosis for cancer therapy: Mechanistic insights and clinical perspectives. J Hematol Oncol. 17:682024. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng P, Zhou C, Lu L, Liu B and Ding Y: Elesclomol: A copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res. 41:2712022. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Chen F, Chen J, Chan S, He Y, Liu W and Zhang G: Disulfiram/copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways. Cancers (Basel). 12:1382020. View Article : Google Scholar : PubMed/NCBI | |
|
He P, Li H, Liu C, Liu M, Zhang Z, Zhang Y, Zhou C, Li Q, Ye Z, Wu Q, et al: U-shaped association between dietary copper intake and new-onset hypertension. Clin Nutr. 41:536–542. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li R, Bourcy K, Wang T, Sun M and Kang YJ: The involvement of vimentin in copper-induced regression of cardiomyocyte hypertrophy. Metallomics. 7:1331–1337. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Tan L, Kuang Y, Zhang Y, Wang P, Liu C and Ma Q: A national cross-sectional analysis of dietary copper intake and abdominal aortic calcification in the US adults: NHANES 2013-2014. Nutr Metab Cardiovasc Dis. 33:1941–1950. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Hu S, Wei B and Zhang A: Association of multiple dietary metal intake with cardiovascular-kidney-metabolic syndrome: A cross-sectional study based on NHANES 2003-2018. Front Nutr. 12:16124582025. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Liu Z, Yao B and Xu Z: The impact of dietary copper intake on cardiovascular morbidity and mortality among hypertensive patients: A longitudinal analysis from NHANES (2001-2018). BMC Public Health. 25:9362025. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Dehghan M, Tse LA, Lang X, Rangarajan S, Liu W, Hu B, Yusuf S, Wang C and Li W: Associations of dietary copper intake with cardiovascular disease and mortality: Findings from the Chinese Perspective Urban and Rural epidemiology (PURE-China) study. BMC Public Health. 23:25252023. View Article : Google Scholar : PubMed/NCBI | |
|
Cai L, Tan Y, Holland B and Wintergerst K: Diabetic cardiomyopathy and cell death: Focus on metal-mediated cell death. Cardiovasc Toxicol. 24:71–84. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kong B, Zheng X, Hu Y, Zhao Y, Hai J, Ti Y and Bu P: Sirtuin3 attenuates pressure overload-induced pathological myocardial remodeling by inhibiting cardiomyocyte cuproptosis. Pharmacol Res. 216:1077392025. View Article : Google Scholar : PubMed/NCBI | |
|
Mo N, Tai C, Yang Y, Ling C, Zhang B, Wei L, Yao C, Wang H and Chen C: MT2A promotes angiogenesis in chronically ischemic brains through a copper-mitochondria regulatory mechanism. J Transl Med. 23:1622025. View Article : Google Scholar : PubMed/NCBI | |
|
Huang XP, Shi ZH, Ming GF, Xu DM and Cheng SQ: S-Allyl-L-cysteine (SAC) inhibits copper-induced apoptosis and cuproptosis to alleviate cardiomyocyte injury. Biochem Biophys Res Commun. 730:1503412024. View Article : Google Scholar : PubMed/NCBI | |
|
Huo S, Wang Q, Shi W, Peng L, Jiang Y, Zhu M, Guo J, Peng D, Wang M, Men L, et al: ATF3/SPI1/SLC31A1 signaling promotes cuproptosis induced by advanced glycosylation end products in diabetic myocardial injury. Int J Mol Sci. 24:16672023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Y, Chen K, Guo J, Chen P, Qian ZR and Zhang T: Identification of cuproptosis-related genes and immune infiltration in dilated cardiomyopathy. Int J Cardiol. 399:1317022024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou S, Wang L, Huang X, Wang T, Tang Y, Liu Y and Xu M: Comprehensive bioinformatics analytics and in vivo validation reveal SLC31A1 as an emerging diagnostic biomarker for acute myocardial infarction. Aging (Albany NY). 16:8361–8377. 2024.PubMed/NCBI | |
|
Wang B, Zhou J and An N: Investigating molecular markers linked to acute myocardial infarction and cuproptosis: Bioinformatics analysis and validation in the AMI mice model. PeerJ. 12:e172802024. View Article : Google Scholar : PubMed/NCBI | |
|
Fang C, Sun S, Chen W, Huang D, Wang F, Wei W and Wang W: Bioinformatics analysis of the role of cuproptosis gene in acute myocardial infarction. Minerva Cardiol Angiol. 72:595–606. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Yue Z, Zhu N and Zhao N: Identification of potential biomarkers associated with cuproptosis and immune microenvironment analysis in acute myocardial infarction: A diagnostic accuracy study. Medicine (Baltimore). 104:e408172025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Xu X, Li J, Gao Z, Ding Y, Chen X, Xiang Q and Shen L: Integrated bioinformatics and experiment revealed that cuproptosis is the potential common pathogenesis of three kinds of primary cardiomyopathy. Aging (Albany NY). 15:14210–14241. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Wang Q, Liu P, Jin L, Qin X and Zheng Q: Construction and validation of a cuproptosis-related diagnostic gene signature for atrial fibrillation based on ensemble learning. Hereditas. 160:342023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B and He M: Identification of potential biomarkers for coronary artery disease based on cuproptosis. Cardiovasc Ther. 2023:59961442023. View Article : Google Scholar : PubMed/NCBI | |
|
Tu B, Song K, Zhou ZY, Lin LC, Liu ZY, Sun H, Zhou Y, Sha JM, Shi Y, Yang JJ, et al: SLC31A1 loss depletes mitochondrial copper and promotes cardiac fibrosis. Eur Heart J. 46:2458–2474. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Lv X, Zhao L, Song Y, Chen W and Tuo Q: Deciphering the role of copper homeostasis in atherosclerosis: From molecular mechanisms to therapeutic targets. Int J Mol Sci. 25:114622024. View Article : Google Scholar : PubMed/NCBI | |
|
Shen Z, Liu Z, Cai S, Fu H, Gan Y, Li X, Wang X, Liu C, Ma W, Chen J and Li N: Copper homeostasis and cuproptosis in myocardial infarction: Molecular mechanisms, treatment strategies and potential therapeutic targets. Front Pharmacol. 16:15255852025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen G, Wei M, Zhao CY, Zhang AY, Su JB, Ni ZR, Cai WW, Hou B, Du B, Liu MH, et al: Phillygenin ameliorates myocardial ischemia-reperfusion injury by inhibiting cuproptosis via the autophagy-lysosome degradation of CTR1. Free Radic Biol Med. 237:542–557. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Lutsenko S, Roy S and Tsvetkov P: Mammalian copper homeostasis: Physiological roles and molecular mechanisms. Physiol Rev. 105:441–491. 2025. View Article : Google Scholar : | |
|
Goutman SA, Hardiman O, Al-Chalabi A, Chió A, Savelieff MG, Kiernan MC and Feldman EL: Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol. 21:465–479. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Meng K, Jia H, Hou X, Zhu Z, Lu Y, Feng Y, Feng J, Xia Y, Tan R, Cui F and Yuan J: Mitochondrial dysfunction in neurodegenerative diseases: Mechanisms and corresponding therapeutic strategies. Biomedicines. 13:3272025. View Article : Google Scholar : PubMed/NCBI | |
|
Suwara J and Hartman ML: Balancing between cuproplasia and copper-dependent cell death: Molecular basis and clinical implications of ATOX1 in cancer. J Exp Clin Cancer Res. 44:2222025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Jiang Y, Shi H, Peng Y, Fan X and Li C: The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch. 472:1415–1429. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ding C, Min J, Tan Y, Zheng L, Ma R, Zhao R, Zhao H, Ding Q, Chen H and Huo D: Combating atherosclerosis with chirality/phase dual-engineered nanozyme featuring microenvironment-programmed senolytic and senomorphic actions. Adv Mater. 36:e24013612024. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y, Fan X, Pan Q, He B and Pu Y: A mitochondria-targeted anticancer copper dithiocarbamate amplifies immunogenic cuproptosis and macrophage polarization. J Mater Chem B. 12:2006–2014. 2024. View Article : Google Scholar : PubMed/NCBI |