Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2026 Volume 57 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 57 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Lipid droplets in astrocytes: Key organelles for CNS homeostasis and disease (Review)

  • Authors:
    • Yuchen Wang
    • Boxuan Wang
    • Jinchao Hou
    • Xiaodong Huo
    • Chenlin Liu
    • Ruili Guan
    • Honggang Chen
    • Yang Zhou
    • Jianbin Zhang
    • Congcong Zhuang
    • Yuankang Zou
  • View Affiliations / Copyright

    Affiliations: Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment and the Shaanxi Provincial Key Laboratory of Environmental Health Hazard Assessment and Protection, School of Public Health, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 20
    |
    Published online on: November 13, 2025
       https://doi.org/10.3892/ijmm.2025.5691
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Astrocytes, the predominant glial cells within the central nervous system, participate in a variety of processes, including metabolic homeostasis, regulation of blood‑brain barrier function, and the integration of neuronal function and structure. Lipids, which are critical components of astrocyte architecture and functionality, play a pivotal role in energy production, membrane fluidity, and the integration of astrocyte‑neuronal structure and function via lipid droplet storage and lipid metabolism. Research indicates that the proper storage of lipid droplets (LDs) in astrocytes is essential for maintaining normal physiological functions of the CNS. Fatty acids released from astrocyte LDs undergo β‑oxidation within mitochondria and are intricately linked to neuronal inflammatory signaling, oxidative stress and mitochondrial energy production. Furthermore, dysregulated lipid metabolism in astrocytes is strongly linked to the onset and progression of neurological disorders. The alteration of lipid metabolic profiles in astrocytes across various microenvironments, along with the identification and screening of critical lipid metabolites, has emerged as a focal point in current research. Nonetheless, the precise mechanisms through which aberrant lipid metabolism in astrocytes influences the onset and progression of neurodegenerative diseases require further elucidation. This article seeks to synthesize recent advancements in the study of LDs‑key organelles responsible for lipid homeostasis in astrocytes‑to elucidate the response characteristics and underlying mechanisms of lipid metabolism in these cells. Furthermore, it aims to investigate the therapeutic potential of inhibiting abnormal lipid secretion and excessive lipid accumulation in astrocytes in the context of neurodegenerative disease progression.
View Figures

Figure 1

The biogenesis of lipid droplet
formation and the role of astrocyte lipid metabolism in
neurodegenerative diseases. ER, endoplasmic reticulum; ROS,
reactive oxygen species; DGAT1/2, diacylglycerol O-acyltransferase
1/2; FITM2, fat storage inducing transmembrane protein 2; PLIN2/3,
perilipin 2/3; FFAs, free fatty acids; AD, Alzheimer's disease;
ALS, amyotrophic lateral sclerosis; PD, Parkinson's disease.

Figure 2

Numerous neurobiological processes
are influenced by astrocyte lipid droplets through lipid
metabolism.
View References

1 

Rudnicka E, Napierala P, Podfigurna A, Meczekalski B, Smolarczyk R and Grymowicz M: The world health organization (WHO) approach to healthy ageing. Maturitas. 139:6–11. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL and Bohr VA: Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 15:565–581. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Wilson DM III, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM and Dewachter I: Hallmarks of neurodegenerative diseases. Cell. 186:693–714. 2023. View Article : Google Scholar : PubMed/NCBI

4 

Dugger BN and Dickson DW: Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 9:a0280352017. View Article : Google Scholar : PubMed/NCBI

5 

Bhat MA and Dhaneshwar S: Neurodegenerative diseases: New hopes and perspectives. Curr Mol Med. 24:1004–1032. 2024. View Article : Google Scholar

6 

Temple S: Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell. 30:512–529. 2023. View Article : Google Scholar : PubMed/NCBI

7 

Singh K, Sethi P, Datta S, Chaudhary JS, Kumar S, Jain D, Gupta JK, Kumar S, Guru A and Panda SP: Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases. Ageing Res Rev. 98:1023212024. View Article : Google Scholar : PubMed/NCBI

8 

Shi FD and Yong VW: Neuroinflammation across neurological diseases. Science. 388:eadx00432025. View Article : Google Scholar : PubMed/NCBI

9 

Kwon HS and Koh SH: Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl Neurodegener. 9:422020. View Article : Google Scholar : PubMed/NCBI

10 

Guttenplan KA, Weigel MK, Prakash P, Wijewardhane PR, Hasel P, Rufen-Blanchette U, Munch AE, Blum JA, Fine J, Neal MC, et al: Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature. 599:102–107. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Cameron EG, Nahmou M, Toth AB, Heo L, Tanasa B, Dalal R, Yan W, Nallagatla P, Xia X, Hay S, et al: A molecular switch for neuroprotective astrocyte reactivity. Nature. 626:574–582. 2024. View Article : Google Scholar :

12 

Debom GN, Rubenich DS and Braganhol E: Adenosinergic signaling as a key modulator of the glioma microenvironment and reactive astrocytes. Front Neurosci. 15:6484762021. View Article : Google Scholar

13 

Acioglu C, Li L and Elkabes S: Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res. 1758:1472912021. View Article : Google Scholar : PubMed/NCBI

14 

Kozachkov L, Kastanenka KV and Krotov D: Building transformers from neurons and astrocytes. Proc Natl Acad Sci USA. 120:e22191501202023. View Article : Google Scholar : PubMed/NCBI

15 

Yamagata K: Lactate supply from astrocytes to neurons and its role in ischemic stroke-induced neurodegeneration. Neuroscience. 481:219–231. 2022. View Article : Google Scholar

16 

Tewari BP, Woo AM, Prim CE, Chaunsali L, Patel DC, Kimbrough IF, Engel K, Browning JL, Campbell SL and Sontheimer H: Astrocytes require perineuronal nets to maintain synaptic homeostasis in mice. Nat Neurosci. 27:1475–1488. 2024. View Article : Google Scholar : PubMed/NCBI

17 

Aldana BI, Zhang Y, Jensen P, Chandrasekaran A, Christensen SK, Nielsen TT, Nielsen JE, Hyttel P, Larsen MR, Waagepetersen HS and Freude KK: Glutamate-glutamine homeostasis is perturbed in neurons and astrocytes derived from patient ipsc models of frontotemporal dementia. Mol Brain. 13:1252020. View Article : Google Scholar : PubMed/NCBI

18 

Qian K, Jiang X, Liu ZQ, Zhang J, Fu P, Su Y, Brazhe NA, Liu D and Zhu LQ: Revisiting the critical roles of reactive astrocytes in neurodegeneration. Mol Psychiatry. 28:2697–2706. 2023. View Article : Google Scholar : PubMed/NCBI

19 

Yin F: Lipid metabolism and Alzheimer's disease: Clinical evidence, mechanistic link and therapeutic promise. FEBS J. 290:1420–1453. 2023. View Article : Google Scholar

20 

Byrns CN, Perlegos AE, Miller KN, Jin Z, Carranza FR, Manchandra P, Beveridge CH, Randolph CE, Chaluvadi VS, Zhang SL, et al: Senescent glia link mitochondrial dysfunction and lipid accumulation. Nature. 630:475–483. 2024. View Article : Google Scholar : PubMed/NCBI

21 

Nakamura A, Sakai S, Taketomi Y, Tsuyama J, Miki Y, Hara Y, Arai N, Sugiura Y, Kawaji H, Murakami M and Shichita T: PLA2G2E-mediated lipid metabolism triggers brain-autonomous neural repair after ischemic stroke. Neuron. 111:2995–3010 e9. 2023. View Article : Google Scholar : PubMed/NCBI

22 

Chausse B, Kakimoto PA and Kann O: Microglia and lipids: How metabolism controls brain innate immunity. Semin Cell Dev Biol. 112:137–144. 2021. View Article : Google Scholar

23 

Duquenne M, Folgueira C, Bourouh C, Millet M, Silva A, Clasadonte J, Imbernon M, Fernandois D, Martinez-Corral I, Kusumakshi S, et al: Leptin brain entry via a tanycytic LepR-EGFR shuttle controls lipid metabolism and pancreas function. Nat Metab. 3:1071–1090. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Mathiowetz AJ and Olzmann JA: Lipid droplets and cellular lipid flux. Nat Cell Biol. 26:331–345. 2024. View Article : Google Scholar : PubMed/NCBI

25 

Ralhan I, Chang CL, Lippincott-Schwartz J and Ioannou MS: Lipid droplets in the nervous system. J Cell Biol. 220:e2021021362021. View Article : Google Scholar : PubMed/NCBI

26 

Mallick K, Paul S and Banerjee S and Banerjee S: Lipid droplets and neurodegeneration. Neuroscience. 549:13–23. 2024. View Article : Google Scholar : PubMed/NCBI

27 

Windham IA, Powers AE, Ragusa JV, Wallace ED, Zanellati MC, Williams VH, Wagner CH, White KK and Cohen S: Apoe traffics to astrocyte lipid droplets and modulates triglyceride saturation and droplet size. J Cell Biol. 223:e2023050032024. View Article : Google Scholar : PubMed/NCBI

28 

Smolic T, Tavcar P, Horvat A, Cerne U, Haluzan Vasle A, Tratnjek L, Kreft ME, Scholz N, Matis M, Petan T, et al: Astrocytes in stress accumulate lipid droplets. Glia. 69:1540–1562. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Kim NS and Chung WS: Astrocytes regulate neuronal network activity by mediating synapse remodeling. Neurosci Res. 187:3–13. 2023. View Article : Google Scholar

30 

de Ceglia R, Ledonne A, Litvin DG, Lind BL, Carriero G, Latagliata EC, Bindocci E, Di Castro MA, Savtchouk I, Vitali I, et al: Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. Nature. 622:120–129. 2023. View Article : Google Scholar : PubMed/NCBI

31 

Liu D, Liao P, Li H, Tong S, Wang B, Lu Y, Gao Y, Huang Y, Zhou H, Shi L, et al: Regulation of blood-brain barrier integrity by dmp1-expressing astrocytes through mitochondrial transfer. Sci Adv. 10:eadk29132024. View Article : Google Scholar : PubMed/NCBI

32 

Jayaram MA and Phillips JJ: Role of the microenvironment in glioma pathogenesis. Annu Rev Pathol. 19:181–201. 2024. View Article : Google Scholar

33 

Giovannoni F and Quintana FJ: The role of astrocytes in CNS inflammation. Trends Immunol. 41:805–819. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Hou J, Bi H, Ge Q, Teng H, Wan G, Yu B, Jiang Q and Gu X: Heterogeneity analysis of astrocytes following spinal cord injury at single-cell resolution. FASEB J. 36:e224422022. View Article : Google Scholar : PubMed/NCBI

35 

Chen ZP, Wang S, Zhao X, Fang W, Wang Z, Ye H, Wang M, Ke L, Huang T, Lv P, et al: Lipid-accumulated reactive astrocytes promote disease progression in epilepsy. Nat Neurosci. 26:542–554. 2023. View Article : Google Scholar : PubMed/NCBI

36 

Veiga A, Abreu DS, Dias JD, Azenha P, Barsanti S and Oliveira JF: Calcium-dependent signaling in astrocytes: Downstream mechanisms and implications for cognition. J Neurochem. 169:e700192025. View Article : Google Scholar : PubMed/NCBI

37 

Iovino L, Tremblay ME and Civiero L: Glutamate-induced excitotoxicity in Parkinson's disease: The role of glial cells. J Pharmacol Sci. 144:151–164. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Fang Y, Ding X, Zhang Y, Cai L, Ge Y, Ma K, Xu R, Li S, Song M, Zhu H, et al: Fluoxetine inhibited the activation of a1 reactive astrocyte in a mouse model of major depressive disorder through astrocytic 5-HT(2b)R/β-arrestin2 pathway. J Neuroinflammation. 19:232022. View Article : Google Scholar

39 

Chen Z, Yuan Z, Yang S, Zhu Y, Xue M, Zhang J and Leng L: Brain energy metabolism: Astrocytes in neurodegenerative diseases. CNS Neurosci Ther. 29:24–36. 2023. View Article : Google Scholar :

40 

Cheng X, Zhao M, Chen L, Huang C, Xu Q, Shao J, Wang HT, Zhang Y, Li X, Xu X, et al: Astrocytes modulate brain phosphate homeostasis via polarized distribution of phosphate uptake transporter PiT2 and exporter XPR1. Neuron. 112:3126–3142.e8. 2024. View Article : Google Scholar : PubMed/NCBI

41 

Sharma V, Oliveira MM, Sood R, Khlaifia A, Lou D, Hooshmandi M, Hung TY, Mahmood N, Reeves M, Ho-Tieng D, et al: mRNA translation in astrocytes controls hippocampal long-term synaptic plasticity and memory. Proc Natl Acad Sci USA. 120:e23086711202023. View Article : Google Scholar : PubMed/NCBI

42 

Guo F, Fan J, Liu JM, Kong PL, Ren J, Mo JW, Lu CL, Zhong QL, Chen LY, Jiang HT, et al: Astrocytic alkbh5 in stress response contributes to depressive-like behaviors in mice. Nat Commun. 15:43472024. View Article : Google Scholar : PubMed/NCBI

43 

Dewa KI, Arimura N, Kakegawa W, Itoh M, Adachi T, Miyashita S, Inoue YU, Hizawa K, Hori K, Honjoya N, et al: Neuronal DSCAM regulates the peri-synaptic localization of GLAST in bergmann glia for functional synapse formation. Nat Commun. 15:4582024. View Article : Google Scholar : PubMed/NCBI

44 

Thakur S, Dhapola R, Sarma P, Medhi B and Reddy DH: Neuroinflammation in Alzheimer's disease: Current progress in molecular signaling and therapeutics. Inflammation. 46:1–17. 2023. View Article : Google Scholar

45 

Zhang S, Li M, Qiu Y, Wu J, Xu X, Ma Q, Zheng Z, Lu G, Deng Z and Huang H: Enhanced VEGF secretion and blood-brain barrier disruption: Radiation-mediated inhibition of astrocyte autophagy via PI3K-AKT pathway activation. Glia. 72:568–587. 2024. View Article : Google Scholar

46 

Bonvento G and Bolaños JP: Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab. 33:1546–1564. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Arbring Sjöström T, Ivanov AI, Kiani N, Bernacka-Wojcik I, Samuelsson J, Saarela Unemo H, Xydias D, Vagiaki LE, Psilodimitrakopoulos S, Konidakis I, et al: Miniaturized iontronic micropipettes for precise and dynamic ionic modulation of neuronal and astrocytic activity. Small. 21:e24109062025. View Article : Google Scholar : PubMed/NCBI

48 

Ferris HA, Perry RJ, Moreira GV, Shulman GI, Horton JD and Kahn CR: Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proc Natl Acad Sci USA. 114:1189–1194. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Tomas M, Duran JM, Lazaro-Dieguez F, Babia T, Renau-Piqueras J and Egea G: Fluorescent analogues of plasma membrane sphingolipids are sorted to different intracellular compartments in astrocytes; Harmful effects of chronic ethanol exposure on sphingolipid trafficking and metabolism. FEBS Lett. 563:59–65. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Zadoorian A, Du X and Yang H: Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol. 19:443–459. 2023. View Article : Google Scholar : PubMed/NCBI

51 

Klemm RW and Carvalho P: Lipid droplets big and small: Basic mechanisms that make them all. Annu Rev Cell Dev Biol. 40:143–168. 2024. View Article : Google Scholar : PubMed/NCBI

52 

Salo VT, Belevich I, Li S, Karhinen L, Vihinen H, Vigouroux C, Magre J, Thiele C, Holtta-Vuori M, Jokitalo E and Ikonen E: Seipin regulates ER-lipid droplet contacts and cargo delivery. EMBO J. 35:2699–2716. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Fu L, Zhang J, Wang Y, Wu H, Xu X, Li C, Li J, Liu J, Wang H, Jiang X, et al: LET-767 determines lipid droplet protein targeting and lipid homeostasis. J Cell Biol. 223:e2023110242024. View Article : Google Scholar : PubMed/NCBI

54 

Harris CA, Haas JT, Streeper RS, Stone SJ, Kumari M, Yang K, Han X, Brownell N, Gross RW, Zechner R and Farese RV Jr: DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J Lipid Res. 52:657–667. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Rao MJ and Goodman JM: Seipin: Harvesting fat and keeping adipocytes healthy. Trends Cell Biol. 31:912–923. 2021. View Article : Google Scholar : PubMed/NCBI

56 

Wang H, Nikain C, Fortounas KI, Amengual J, Tufanli O, La Forest M, Yu Y, Wang MC, Watts R, Lehner R, et al: FITM2 deficiency results in ER lipid accumulation, ER stress, and reduced apolipoprotein B lipidation and VLDL triglyceride secretion in vitro and in mouse liver. Mol Metab. 90:1020482024. View Article : Google Scholar

57 

Xu L, Li L, Wu L, Li P and Chen F: CIDE proteins and their regulatory mechanisms in lipid droplet fusion and growth. FEBS Lett. 598:1154–1169. 2024. View Article : Google Scholar : PubMed/NCBI

58 

Zhang L, Zhou Y, Yang Z, Jiang L, Yan X, Zhu W, Shen Y, Wang B, Li J and Song J: Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases. J Neuroinflammation. 22:72025. View Article : Google Scholar : PubMed/NCBI

59 

Khaddaj R, Stribny J, Cottier S and Schneiter R: Perilipin 3 promotes the formation of membrane domains enriched in diacylglycerol and lipid droplet biogenesis proteins. Front Cell Dev Biol. 11:11164912023. View Article : Google Scholar : PubMed/NCBI

60 

Ferreira JV, Ahmed Y, Heunis T, Jain A, Johnson E, Raschle M, Ernst R, Vanni S and Carvalho P: Pex30-dependent membrane contact sites maintain ER lipid homeostasis. J Cell Biol. 224:e2024090392025. View Article : Google Scholar : PubMed/NCBI

61 

Li D, Zhang J and Liu Q: Brain cell type-specific cholesterol metabolism and implications for learning and memory. Trends Neurosci. 45:401–414. 2022. View Article : Google Scholar : PubMed/NCBI

62 

Feringa FM and van der Kant R: Cholesterol and Alzheimer's disease; From risk genes to pathological effects. Front Aging Neurosci. 13:6903722021. View Article : Google Scholar : PubMed/NCBI

63 

Li X, Zhang J, Li D, He C, He K, Xue T, Wan L, Zhang C and Liu Q: Astrocytic ApoE reprograms neuronal cholesterol metabolism and histone-acetylation-mediated memory. Neuron. 109:957–970. 2021. View Article : Google Scholar : PubMed/NCBI

64 

Litvinchuk A, Suh JH, Guo JL, Lin K, Davis SS, Bien-Ly N, Tycksen E, Tabor GT, Remolina Serrano J, Manis M, et al: Amelioration of Tau and Apoe4-linked glial lipid accumulation and neurodegeneration with an LXR agonist. Neuron. 112:384–403 e8. 2024. View Article : Google Scholar :

65 

Yang A, Alrosan AZ, Sharpe LJ, Brown AJ, Callaghan R and Gelissen IC: Regulation of ABCG4 transporter expression by sterols and LXR ligands. Biochim Biophys Acta Gen Subj. 1865:1297692021. View Article : Google Scholar

66 

Arenas F, Garcia-Ruiz C and Fernandez-Checa JC: Intracellular cholesterol trafficking and impact in neurodegeneration. Front Mol Neurosci. 10:3822017. View Article : Google Scholar : PubMed/NCBI

67 

Adachi C, Otsuka S and Inoue T: Cholesterol-induced robust Ca oscillation in astrocytes required for survival and lipid droplet formation in high-cholesterol condition. iScience. 25:1051382022. View Article : Google Scholar : PubMed/NCBI

68 

Zhu X, Owen JS, Wilson MD, Li H, Griffiths GL, Thomas MJ, Hiltbold EM, Fessler MB and Parks JS: Macrophage abca1 reduces myd88-dependent toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res. 51:3196–3206. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Sapoń K, Mańka R and Janas T and Janas T: The role of lipid rafts in vesicle formation. J Cell Sci. 136:jcs2608872023. View Article : Google Scholar

70 

Cheng C, Tu J, Hu Z, Chen Y, Wang Y, Zhang T, Zhang C, Li C, Wang Y and Niu C: SREBP2/Rab11s/GLUT1/6 network regulates proliferation and migration of glioblastoma. Pathol Res Pract. 240:1541762022. View Article : Google Scholar : PubMed/NCBI

71 

Vanherle S, Loix M, Miron VE, Hendriks JJA and Bogie JFJ: Lipid metabolism, remodelling and intercellular transfer in the CNS. Nat Rev Neurosci. 26:214–231. 2025. View Article : Google Scholar : PubMed/NCBI

72 

Benatzy Y, Palmer MA, Lütjohann D, Ohno RI, Kampschulte N, Schebb NH, Fuhrmann DC, Snodgrass RG and Brüne B: Alox15b controls macrophage cholesterol homeostasis via lipid peroxidation, erk1/2 and srebp2. Redox Biol. 72:1031492024. View Article : Google Scholar : PubMed/NCBI

73 

Kuo A and Hla T: Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol. 25:802–821. 2024. View Article : Google Scholar : PubMed/NCBI

74 

Pan X, Dutta D, Lu S and Bellen HJ: Sphingolipids in neurodegenerative diseases. Front Neurosci. 17:11378932023. View Article : Google Scholar : PubMed/NCBI

75 

Robles-Martinez L, Morin KH and Nikolova-Karakashian M: Ceramide homeostasis in hepatic lipid droplets. Biochem Soc Trans. 53:509–518. 2025. View Article : Google Scholar : PubMed/NCBI

76 

Di Scala C, Yahi N, Boutemeur S, Flores A, Rodriguez L, Chahinian H and Fantini J: Common molecular mechanism of amyloid pore formation by Alzheimer's beta-amyloid peptide and alpha-synuclein. Sci Rep. 6:287812016. View Article : Google Scholar

77 

Di Scala C, Troadec JD, Lelievre C, Garmy N, Fantini J and Chahinian H: Mechanism of cholesterol-assisted oligomeric channel formation by a short Alzheimer β-amyloid peptide. J Neurochem. 128:186–195. 2014. View Article : Google Scholar

78 

Chahinian H, Yahi N and Fantini J: Glutamate, gangliosides, and the synapse: Electrostatics at work in the brain. Int J Mol Sci. 25:85832024. View Article : Google Scholar : PubMed/NCBI

79 

Corbit KC, Trakul N, Eves EM, Diaz B, Marshall M and Rosner MR: Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem. 278:13061–13068. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Shim M, San TT, Shin B, Lee H, Han SB, Lee DK and Kim HJ: Histone demethylase inhibitor KDM5-C70 regulates metabolomic and lipidomic programming during an astrocyte differentiation of rat neural stem cell. Sci Rep. 15:54092025. View Article : Google Scholar : PubMed/NCBI

81 

Thieren L, Zanker HS, Droux J, Dalvi U, Wyss MT, Waag R, Germain PL, von Ziegler LM, Looser ZJ, Hosli L, et al: Astrocytic GLUT1 deletion in adult mice enhances glucose metabolism and resilience to stroke. Nat Commun. 16:41902025. View Article : Google Scholar : PubMed/NCBI

82 

Mi Y, Qi G, Vitali F, Shang Y, Raikes AC, Wang T, Jin Y, Brinton RD, Gu H and Yin F: Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat Metab. 5:445–465. 2023. View Article : Google Scholar : PubMed/NCBI

83 

Astarita G, Jung K, Berchtold NC, Nguyen VQ, Gillen DL, Head E, Cotman CW and Piomelli D: Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in alzheimer's disease. PLoS One. 5:e125382010. View Article : Google Scholar : PubMed/NCBI

84 

Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh EL and Silver DL: Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 509:503–506. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Pelerin H, Jouin M, Lallemand MS, Alessandri JM, Cunnane SC, Langelier B and Guesnet P: Gene expression of fatty acid transport and binding proteins in the blood-brain barrier and the cerebral cortex of the rat: Differences across development and with different DHA brain status. Prostaglandins Leukot Essent Fatty Acids. 91:213–220. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Kim ID, Ju H, Minkler J, Jiang R, Singh A, Sharma R, Febbraio M and Cho S: Endothelial cell CD36 mediates stroke-induced brain injury via BBB dysfunction and monocyte infiltration in normal and obese conditions. J Cereb Blood Flow Metab. 43:843–855. 2023. View Article : Google Scholar : PubMed/NCBI

87 

Geng Z, Peng F, Cheng Z, Su J, Song J, Han X, Li R, Li X, Cui R and Li B: Astrocytic FABP7 alleviates depression-like behaviors of chronic unpredictable mild stress mice by regulating neuroinflammation and hippocampal spinogenesis. FASEB J. 39:e706062025. View Article : Google Scholar : PubMed/NCBI

88 

Su Y and Yuan Q: Mitochondrial fatty acid oxidase CPT1A ameliorates postoperative cognitive dysfunction by regulating astrocyte ferroptosis. Brain Res. 1850:1494242025. View Article : Google Scholar

89 

Ochiai Y, Uchida Y, Ohtsuki S, Tachikawa M, Aizawa S and Terasaki T: The blood-brain barrier fatty acid transport protein 1 (FATP1/SLC27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport. J Neurochem. 141:400–412. 2017. View Article : Google Scholar

90 

Li YC, Fu JT and Tzeng SF: Exposure to lipid mixture induces intracellular lipid droplet formation and impairs mitochondrial functions in astrocytes. Neurochem Int. 178:1057922024. View Article : Google Scholar : PubMed/NCBI

91 

Liang KX, Chen A, Kianian A, Kristiansen CK, Yangzom T, Furriol J, Hoyland LE, Ziegler M, Krakenes T, Tzoulis C, et al: Activation of neurotoxic astrocytes due to mitochondrial dysfunction triggered by POLG mutation. Int J Biol Sci. 20:2860–2880. 2024. View Article : Google Scholar : PubMed/NCBI

92 

Kong J, Ji Y, Jeon YG, Han JS, Han KH, Lee JH, Lee G, Jang H, Choe SS, Baes M and Kim JB: Spatiotemporal contact between peroxisomes and lipid droplets regulates fasting-induced lipolysis via PEX5. Nat Commun. 11:5782020. View Article : Google Scholar : PubMed/NCBI

93 

Kuijpers M, Kochlamazashvili G, Stumpf A, Puchkov D, Swaminathan A, Lucht MT, Krause E, Maritzen T, Schmitz D and Haucke V: Neuronal autophagy regulates presynaptic neurotransmission by controlling the axonal endoplasmic reticulum. Neuron. 110:7342022. View Article : Google Scholar : PubMed/NCBI

94 

Pu M, Zheng W, Zhang H, Wan W, Peng C, Chen X, Liu X, Xu Z, Zhou T, Sun Q, et al: ORP8 acts as a lipophagy receptor to mediate lipid droplet turnover. Protein Cell. 14:653–667. 2023.PubMed/NCBI

95 

Smolic T, Zorec R and Vardjan N: Pathophysiology of lipid droplets in neuroglia. Antioxidants (Basel). 11:222021. View Article : Google Scholar

96 

Han X, Liu Y, Dai Y, Xu T, Hu Q, Yi X, Rui L, Hu G and Hu J: Neuronal SH2B1 attenuates apoptosis in an MPTP mouse model of Parkinson's disease via promoting PLIN4 degradation. Redox Biol. 52:1023082022. View Article : Google Scholar : PubMed/NCBI

97 

Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R and Zimmermann R: Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem. 281:40236–40241. 2006. View Article : Google Scholar : PubMed/NCBI

98 

Grabner GF, Xie H, Schweiger M and Zechner R: Lipolysis: Cellular mechanisms for lipid mobilization from fat stores. Nat Metab. 3:1445–1465. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Li Q, Liu P, Zhu X, Zhou C, Hu Y, Cao S, Li H, Zou X, Gao S, Cao X, et al: NG-497 alleviates microglia-mediated neuroinflammation in a MTNR1A-dependent manner. Inflammation. 48:2663–2676. 2025. View Article : Google Scholar : PubMed/NCBI

100 

Morant-Ferrando B, Jimenez-Blasco D, Alonso-Batan P, Agulla J, Lapresa R, Garcia-Rodriguez D, Yunta-Sanchez S, Lopez-Fabuel I, Fernandez E, Carmeliet P, et al: Fatty acid oxidation organizes mitochondrial supercomplexes to sustain astrocytic ROS and cognition. Nat Metab. 5:1290–1302. 2023. View Article : Google Scholar : PubMed/NCBI

101 

Yang D, Wang X, Zhang L, Fang Y, Zheng Q, Liu X, Yu W, Chen S, Ying J and Hua F: Lipid metabolism and storage in neuroglia: Role in brain development and neurodegenerative diseases. Cell Biosci. 12:1062022. View Article : Google Scholar : PubMed/NCBI

102 

Li J, Jiang W, Cai Y, Ning Z, Zhou Y, Wang C, Chung SK, Huang Y, Sun J, Deng M, et al: Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism. Neural Regen Res. 19:650–656. 2024. View Article : Google Scholar

103 

Majchrzak M, Stojanović O, Ajjaji D, Ben M'barek K, Omrane M, Thiam AR and Klemm RW: Perilipin membrane integration determines lipid droplet heterogeneity in differentiating adipocytes. Cell Rep. 43:1140932024. View Article : Google Scholar : PubMed/NCBI

104 

Shimano H and Sato R: SREBP-regulated lipid metabolism: Convergent physiology-divergent pathophysiology. Nat Rev Endocrinol. 13:710–730. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Han X, Zhu J, Zhang X, Song Q, Ding J, Lu M, Sun S and Hu G: Plin4-dependent lipid droplets hamper neuronal mitophagy in the MPTP/p-induced mouse model of Parkinson's disease. Front Neurosci. 12:3972018. View Article : Google Scholar : PubMed/NCBI

106 

Kimmel AR and Sztalryd C: The perilipins: Major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu Rev Nutr. 36:471–509. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Xu SF, Pang ZQ, Fan YG, Zhang YH, Meng YH, Bai CY, Jia MY, Chen YH, Wang ZY and Guo C: Astrocyte-specific loss of lactoferrin influences neuronal structure and function by interfering with cholesterol synthesis. Glia. 70:2392–2408. 2022. View Article : Google Scholar : PubMed/NCBI

108 

Yang C, Wang X, Wang J, Wang X, Chen W, Lu N, Siniossoglou S, Yao Z and Liu K: Rewiring neuronal glycerolipid metabolism determines the extent of axon regeneration. Neuron. 105:276–292.e5. 2020. View Article : Google Scholar :

109 

Brandebura AN, Paumier A, Onur TS and Allen NJ: Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders. Nat Rev Neurosci. 24:23–39. 2023. View Article : Google Scholar :

110 

Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, Otto A and Pfrieger FW: CNS synaptogenesis promoted by glia-derived cholesterol. Science. 294:1354–1357. 2001. View Article : Google Scholar : PubMed/NCBI

111 

Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P and Barres BA: Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell. 120:421–433. 2005. View Article : Google Scholar : PubMed/NCBI

112 

Kucukdereli H, Allen NJ, Lee AT, Feng A, Ozlu MI, Conatser LM, Chakraborty C, Workman G, Weaver M, Sage EH, et al: Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins hevin and SPARC. Proc Natl Acad Sci USA. 108:E440–E449. 2011. View Article : Google Scholar : PubMed/NCBI

113 

Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ and Barres BA: Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature. 486:410–414. 2012. View Article : Google Scholar : PubMed/NCBI

114 

Jin S, Chen X, Tian Y, Jarvis R, Promes V and Yang Y: Astroglial exosome hepaCAM signaling and ApoE antagonization coordinates early postnatal cortical pyramidal neuronal axon growth and dendritic spine formation. Nat Commun. 14:51502023. View Article : Google Scholar : PubMed/NCBI

115 

Zhang X, Chen C and Liu Y: Navigating the metabolic maze: Anomalies in fatty acid and cholesterol processes in Alzheimer's astrocytes. Alzheimers Res Ther. 16:632024. View Article : Google Scholar : PubMed/NCBI

116 

Ioannou MS, Jackson J, Sheu SH, Chang CL, Weigel AV, Liu H, Pasolli HA, Xu CS, Pang S, Matthies D, et al: Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell. 177:1522–1535.e14. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Lindner K, Beckenbauer K, van Ek LC, Titeca K, de Leeuw SM, Awwad K, Hanke F, Korepanova AV, Rybin V, van der Kam EL, et al: Isoform- and cell-state-specific lipidation of ApoE in astrocytes. Cell Rep. 38:1104352022. View Article : Google Scholar : PubMed/NCBI

118 

Leng F and Edison P: Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat Rev Neurol. 17:157–172. 2021. View Article : Google Scholar

119 

Liu M, Xu Z, Wang L, Zhang L, Liu Y, Cao J, Fu Q, Liu Y, Li H, Lou J, et al: Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J Neuroinflammation. 17:2702020. View Article : Google Scholar : PubMed/NCBI

120 

Doring C, Regen T, Gertig U, van Rossum D, Winkler A, Saiepour N, Bruck W, Hanisch UK and Janova H: A presumed antagonistic LPS identifies distinct functional organization of TLR4 in mouse microglia. Glia. 65:1176–1185. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Robb JL, Boisjoly F, Machuca-Parra AI, Coursan A, Manceau R, Majeur D, Rodaros D, Bouyakdan K, Greffard K, Bilodeau JF, et al: Blockage of ATGL-mediated breakdown of lipid droplets in microglia alleviates neuroinflammatory and behavioural responses to lipopolysaccharides. Brain Behav Immun. 123:315–333. 2025. View Article : Google Scholar

122 

Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, Pluvinage JV, Mathur V, Hahn O, Morgens DW, et al: Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci. 23:194–208. 2020. View Article : Google Scholar : PubMed/NCBI

123 

Pan RY, He L, Zhang J, Liu X, Liao Y, Gao J, Liao Y, Yan Y, Li Q, Zhou X, et al: Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell Metab. 34:634–648.e6. 2022. View Article : Google Scholar : PubMed/NCBI

124 

Zhang X, Zhang Y, Wang B, Xie C, Wang J, Fang R, Dong H, Fan G, Wang M, He Y, et al: Pyroptosis-mediator GSDMD promotes Parkinson's disease pathology via microglial activation and dopaminergic neuronal death. Brain Behav Immun. 119:129–145. 2024. View Article : Google Scholar : PubMed/NCBI

125 

Tcw J, Qian L, Pipalia NH, Chao MJ, Liang SA, Shi Y, Jain BR, Bertelsen SE, Kapoor M, Marcora E, et al: Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell. 185:2213–2233 e25. 2022. View Article : Google Scholar : PubMed/NCBI

126 

Wang X, Li X, Zuo X, Liang Z, Ding T, Li K, Ma Y, Li P, Zhu Z, Ju C, et al: Photobiomodulation inhibits the activation of neurotoxic microglia and astrocytes by inhibiting Lcn2/JAK2-STAT3 crosstalk after spinal cord injury in male rats. J Neuroinflammation. 18:2562021. View Article : Google Scholar : PubMed/NCBI

127 

Jung BK, Park Y, Yoon B, Bae JS, Han SW, Heo JE, Kim DE and Ryu KY: Reduced secretion of LCN2 (lipocalin 2) from reactive astrocytes through autophagic and proteasomal regulation alleviates inflammatory stress and neuronal damage. Autophagy. 19:2296–2317. 2023. View Article : Google Scholar : PubMed/NCBI

128 

Shin HJ, Kim KE, Jeong EA, An HS, Lee SJ, Lee J and Roh GS: Amyloid β oligomer promotes microglial galectin-3 and astrocytic lipocalin-2 levels in the hippocampus of mice fed a high-fat diet. Biochem Biophys Res Commun. 667:10–17. 2023. View Article : Google Scholar : PubMed/NCBI

129 

Xiao R, Pan J, Yang M, Liu H, Zhang A, Guo X and Zhou S: Regulating astrocyte phenotype by Lcn2 inhibition toward ischemic stroke therapy. Biomaterials. 317:1231022025. View Article : Google Scholar : PubMed/NCBI

130 

Sun Y, Wei K, Liao X, Wang J, Gao L and Pang B: Lipid metabolism in microglia: Emerging mechanisms and therapeutic opportunities for neurodegenerative diseases (review). Int J Mol Med. 56:1392025. View Article : Google Scholar : PubMed/NCBI

131 

Wang Y, Wang W, Su L, Ji F, Zhang M, Xie Y, Zhang T and Jiao J: BACH1 changes microglial metabolism and affects astrogenesis during mouse brain development. Dev Cell. 59:108–124.e7. 2024. View Article : Google Scholar

132 

Asadollahi E, Trevisiol A, Saab AS, Looser ZJ, Dibaj P, Ebrahimi R, Kusch K, Ruhwedel T, Möbius W, Jahn O, et al: Oligodendroglial fatty acid metabolism as a central nervous system energy reserve. Nat Neurosci. 27:1934–1944. 2024. View Article : Google Scholar : PubMed/NCBI

133 

Molina-Gonzalez I, Holloway RK, Jiwaji Z, Dando O, Kent SA, Emelianova K, Lloyd AF, Forbes LH, Mahmood A, Skripuletz T, et al: Astrocyte-oligodendrocyte interaction regulates central nervous system regeneration. Nat Commun. 14:33722023. View Article : Google Scholar : PubMed/NCBI

134 

Birolini G, Verlengia G, Talpo F, Maniezzi C, Zentilin L, Giacca M, Conforti P, Cordiglieri C, Caccia C, Leoni V, et al: SREBP2 gene therapy targeting striatal astrocytes ameliorates Huntington's disease phenotypes. Brain. 144:3175–3190. 2021. View Article : Google Scholar : PubMed/NCBI

135 

Tiwari V and Simons M: Lipid metabolism and neuroinflammation: What is the link? J Exp Med. 222:e202412322025. View Article : Google Scholar : PubMed/NCBI

136 

Li M, Li Z, Yao Y, Jin WN, Wood K, Liu Q, Shi FD and Hao J: Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci USA. 114:E396–E405. 2017.

137 

Lee HG, Lee JH, Flausino LE and Quintana FJ: Neuroinflammation: An astrocyte perspective. Sci Transl Med. 15:eadi78282023. View Article : Google Scholar : PubMed/NCBI

138 

Morkholt AS, Trabjerg MS, Oklinski MKE, Bolther L, Kroese LJ, Pritchard CEJ, Huijbers IJ and Nieland JDV: CPT1A plays a key role in the development and treatment of multiple sclerosis and experimental autoimmune encephalomyelitis. Sci Rep. 9:132992019. View Article : Google Scholar : PubMed/NCBI

139 

Castellani G, Croese T, Peralta Ramos JM and Schwartz M: Transforming the understanding of brain immunity. Science. 380:eabo76492023. View Article : Google Scholar : PubMed/NCBI

140 

Sanmarco LM, Wheeler MA, Gutierrez-Vazquez C, Polonio CM, Linnerbauer M, Pinho-Ribeiro FA, Li Z, Giovannoni F, Batterman KV, Scalisi G, et al: Gut-licensed IFNү(+) NK cells drive LAMP1(+)TRAIL(+) anti-inflammatory astrocytes. Nature. 590:473–479. 2021. View Article : Google Scholar : PubMed/NCBI

141 

Miwa S, Kashyap S, Chini E and von Zglinicki T: Mitochondrial dysfunction in cell senescence and aging. J Clin Invest. 132:e1584472022. View Article : Google Scholar : PubMed/NCBI

142 

Byrns CN, Saikumar J and Bonini NM: Glial AP1 is activated with aging and accelerated by traumatic brain injury. Nat Aging. 1:585–597. 2021. View Article : Google Scholar : PubMed/NCBI

143 

Sheng L, Shields EJ, Gospocic J, Sorida M, Ju L, Byrns CN, Carranza F, Berger SL, Bonini N and Bonasio R: Ensheathing glia promote increased lifespan and healthy brain aging. Aging Cell. 22:e138032023. View Article : Google Scholar : PubMed/NCBI

144 

Madji Hounoum B, Mavel S, Coque E, Patin F, Vourc'h P, Marouillat S, Nadal-Desbarats L, Emond P, Corcia P, Andres CR, et al: Wildtype motoneurons, ALS-linked SOD1 mutation and glutamate profoundly modify astrocyte metabolism and lactate shuttling. Glia. 65:592–605. 2017. View Article : Google Scholar : PubMed/NCBI

145 

Zelic M, Blazier A, Pontarelli F, Lamorte M, Huang J, Tasdemir-Yilmaz OE, Ren Y, Ryan SK, Shapiro C, Morel C, et al: Single-cell transcriptomic and functional studies identify glial state changes and a role for inflammatory RIPK1 signaling in ALS pathogenesis. Immunity. 58:961–979. e82025. View Article : Google Scholar : PubMed/NCBI

146 

He D, Xu H, Zhang H, Tang R, Lan Y, Xing R, Li S, Christian E, Hou Y, Lorello P, et al: Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity. 55:159–173.e9. 2022. View Article : Google Scholar : PubMed/NCBI

147 

Zengeler KE, Hollis A, Deutsch T, Samuels JD, Ennerfelt H, Moore KA, Steacy EJ, Sabapathy V, Sharma R, Patel MK, et al: Inflammasome signaling in astrocytes modulates hippocampal plasticity. Immunity. 58:1519–1535 e11. 2025. View Article : Google Scholar : PubMed/NCBI

148 

Chen ZP, Zhao X, Wang S, Cai R, Liu Q, Ye H, Wang MJ, Peng SY, Xue WX, Zhang YX, et al: GABA-dependent microglial elimination of inhibitory synapses underlies neuronal hyperexcitability in epilepsy. Nat Neurosci. 28:1404–1417. 2025. View Article : Google Scholar : PubMed/NCBI

149 

Faustino AF, Martins IC, Carvalho FA, Castanho MA, Maurer-Stroh S and Santos NC: Understanding dengue virus capsid protein interaction with key biological targets. Sci Rep. 5:105922015. View Article : Google Scholar : PubMed/NCBI

150 

Haney MS, Palovics R, Munson CN, Long C, Johansson PK, Yip O, Dong W, Rawat E, West E, Schlachetzki JCM, et al: APOE4/4 is linked to damaging lipid droplets in Alzheimer's disease microglia. Nature. 628:154–161. 2024. View Article : Google Scholar : PubMed/NCBI

151 

Wang S, Li B, Cai Z, Hugo C, Li J, Sun Y, Qian L, Remaley AT, Tcw J, Chui HC, et al: Cellular senescence induced by cholesterol accumulation is mediated by lysosomal ABCA1 in APOE4 and AD. Res Sq [Preprint] rs.3.rs-4373201. 2024.

152 

Wang N, Pan Y, Starling SC, Haskell DH, Quintero AC, Kawatani K, Inoue Y, Shue F, Ma X, Aikawa T, et al: Neuronal ABCA7 deficiency aggravates mitochondrial dysfunction and neurodegeneration in Alzheimer's disease. Alzheimers Dement. 21:e701122025. View Article : Google Scholar : PubMed/NCBI

153 

Wang X, Chen S, Xia X, Du Y, Wei Y, Yang W, Zhang Y, Song Y, Lei T, Huang Q and Gao H: Lysosome-targeting protein degradation through endocytosis pathway triggered by polyvalent nano-chimera for AD therapy. Adv Mater. 37:e24110612025. View Article : Google Scholar

154 

Xu X, Xuan S, Chen S, Liu D, Xiao Q and Tu J: Increased excitatory amino acid transporter 2 levels in basolateral amygdala astrocytes mediate chronic stress-induced anxiety-like behavior. Neural Regen Res. 20:1721–1734. 2025. View Article : Google Scholar

155 

Stephenson RA, Sepulveda J, Johnson KR, Lita A, Gopalakrishnan J, Acri DJ, Beilina A, Cheng L, Yang LG, Root JT, et al: Triglyceride metabolism controls inflammation and microglial phenotypes associated with APOE4. Cell Rep. 44:1159612025. View Article : Google Scholar : PubMed/NCBI

156 

Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, Li Z, Hui J, Graham BH, Quintana A and Bellen HJ: Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell. 160:177–190. 2015. View Article : Google Scholar : PubMed/NCBI

157 

Jernberg JN, Bowman CE, Wolfgang MJ and Scafidi S: Developmental regulation and localization of carnitine palmitoyltransferases (CPTs) in rat brain. J Neurochem. 142:407–419. 2017. View Article : Google Scholar : PubMed/NCBI

158 

Dressman JW, Bayram MF, Angel PM, Drake RR and Mehta AS: Single-cell multiomic MALDI-MSI analysis of lipids and N-glycans through affinity array capture. Anal Chem. 97:12493–12502. 2025. View Article : Google Scholar : PubMed/NCBI

159 

Endle H, Horta G, Stutz B, Muthuraman M, Tegeder I, Schreiber Y, Snodgrass IF, Gurke R, Liu ZW, Sestan-Pesa M, et al: AgRP neurons control feeding behaviour at cortical synapses via peripherally derived lysophospholipids. Nat Metab. 4:683–692. 2022. View Article : Google Scholar : PubMed/NCBI

160 

Bitar L, Uphaus T, Thalman C, Muthuraman M, Gyr L, Ji H, Domingues M, Endle H, Groppa S, Steffen F, et al: Inhibition of the enzyme autotaxin reduces cortical excitability and ameliorates the outcome in stroke. Sci Transl Med. 14:eabk1352022. View Article : Google Scholar

161 

Xia J, Yang L, Huang C, Deng S, Yang Z, Zhang Y, Zhang C and Song C: Omega-3 polyunsaturated fatty acid eicosapentaenoic acid or docosahexaenoic acid improved ageing-associated cognitive decline by regulating glial polarization. Mar Drugs. 21:3982023. View Article : Google Scholar : PubMed/NCBI

162 

Zgorzynska E, Stulczewski D, Dziedzic B, Su KP and Walczewska A: Docosahexaenoic fatty acid reduces the pro-inflammatory response induced by IL-1β in astrocytes through inhibition of NF-ĸb and AP-1 transcription factor activation. BMC Neurosci. 22:42021. View Article : Google Scholar

163 

Konttinen H, Gureviciene I, Oksanen M, Grubman A, Loppi S, Huuskonen MT, Korhonen P, Lampinen R, Keuters M, Belaya I, et al: PPARβ/δ-agonist GW0742 ameliorates dysfunction in fatty acid oxidation in PSEN1δE9 astrocytes. Glia. 67:146–159. 2019. View Article : Google Scholar

164 

Chehaibi K, le Maire L, Bradoni S, Escola JC, Blanco-Vaca F and Slimane MN: Effect of PPAR-β/δ agonist GW0742 treatment in the acute phase response and blood-brain barrier permeability following brain injury. Transl Res. 182:27–48. 2017. View Article : Google Scholar

165 

Spencer M, Kulbe JR, Venkatesh V, Laird A, Ford M, O'Brien S, Boustani A, Schlachetzki JCM and Fields JA: Caloric restriction mimetic 2-deoxyglucose alters metabolic and transcriptomic phenotype in association with changes in chromatin accessibility in human astrocytes. Sci Rep. 15:193682025. View Article : Google Scholar : PubMed/NCBI

166 

Kratzer A, Buchebner M, Pfeifer T, Becker TM, Uray G, Miyazaki M, Miyazaki-Anzai S, Ebner B, Chandak PG, Kadam RS, et al: Synthetic LXR agonist attenuates plaque formation in apoE−/− mice without inducing liver steatosis and hypertriglyceridemia. J Lipid Res. 50:312–326. 2009. View Article : Google Scholar :

167 

Goodman LD, Ralhan I, Li X, Lu S, Moulton MJ, Park YJ, Zhao P, Kanca O, Ghaderpour Taleghani ZS, Jacquemyn J, et al: Tau is required for glial lipid droplet formation and resistance to neuronal oxidative stress. Nat Neurosci. 27:1918–1933. 2024. View Article : Google Scholar : PubMed/NCBI

168 

Cheng X, Geng F, Pan M, Wu X, Zhong Y, Wang C, Tian Z, Cheng C, Zhang R, Puduvalli V, et al: Targeting DGAT1 ameliorates glioblastoma by increasing fat catabolism and oxidative stress. Cell Metab. 32:229–242 e8. 2020. View Article : Google Scholar : PubMed/NCBI

169 

Lee H, Wheeler MA and Quintana FJ: Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov. 21:339–358. 2022. View Article : Google Scholar : PubMed/NCBI

170 

van Deijk AF, Camargo N, Timmerman J, Heistek T, Brouwers JF, Mogavero F, Mansvelder HD, Smit AB and Verheijen MH: Astrocyte lipid metabolism is critical for synapse development and function in vivo. Glia. 65:670–682. 2017. View Article : Google Scholar : PubMed/NCBI

171 

Lee JA, Hall B, Allsop J, Alqarni R and Allen SP: Lipid metabolism in astrocytic structure and function. Semin Cell Dev Biol. 112:123–136. 2021. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang Y, Wang B, Hou J, Huo X, Liu C, Guan R, Chen H, Zhou Y, Zhang J, Zhuang C, Zhuang C, et al: Lipid droplets in astrocytes: Key organelles for CNS homeostasis and disease (Review). Int J Mol Med 57: 20, 2026.
APA
Wang, Y., Wang, B., Hou, J., Huo, X., Liu, C., Guan, R. ... Zou, Y. (2026). Lipid droplets in astrocytes: Key organelles for CNS homeostasis and disease (Review). International Journal of Molecular Medicine, 57, 20. https://doi.org/10.3892/ijmm.2025.5691
MLA
Wang, Y., Wang, B., Hou, J., Huo, X., Liu, C., Guan, R., Chen, H., Zhou, Y., Zhang, J., Zhuang, C., Zou, Y."Lipid droplets in astrocytes: Key organelles for CNS homeostasis and disease (Review)". International Journal of Molecular Medicine 57.1 (2026): 20.
Chicago
Wang, Y., Wang, B., Hou, J., Huo, X., Liu, C., Guan, R., Chen, H., Zhou, Y., Zhang, J., Zhuang, C., Zou, Y."Lipid droplets in astrocytes: Key organelles for CNS homeostasis and disease (Review)". International Journal of Molecular Medicine 57, no. 1 (2026): 20. https://doi.org/10.3892/ijmm.2025.5691
Copy and paste a formatted citation
x
Spandidos Publications style
Wang Y, Wang B, Hou J, Huo X, Liu C, Guan R, Chen H, Zhou Y, Zhang J, Zhuang C, Zhuang C, et al: Lipid droplets in astrocytes: Key organelles for CNS homeostasis and disease (Review). Int J Mol Med 57: 20, 2026.
APA
Wang, Y., Wang, B., Hou, J., Huo, X., Liu, C., Guan, R. ... Zou, Y. (2026). Lipid droplets in astrocytes: Key organelles for CNS homeostasis and disease (Review). International Journal of Molecular Medicine, 57, 20. https://doi.org/10.3892/ijmm.2025.5691
MLA
Wang, Y., Wang, B., Hou, J., Huo, X., Liu, C., Guan, R., Chen, H., Zhou, Y., Zhang, J., Zhuang, C., Zou, Y."Lipid droplets in astrocytes: Key organelles for CNS homeostasis and disease (Review)". International Journal of Molecular Medicine 57.1 (2026): 20.
Chicago
Wang, Y., Wang, B., Hou, J., Huo, X., Liu, C., Guan, R., Chen, H., Zhou, Y., Zhang, J., Zhuang, C., Zou, Y."Lipid droplets in astrocytes: Key organelles for CNS homeostasis and disease (Review)". International Journal of Molecular Medicine 57, no. 1 (2026): 20. https://doi.org/10.3892/ijmm.2025.5691
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team