|
1
|
Rudnicka E, Napierala P, Podfigurna A,
Meczekalski B, Smolarczyk R and Grymowicz M: The world health
organization (WHO) approach to healthy ageing. Maturitas. 139:6–11.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch
SG, Croteau DL and Bohr VA: Ageing as a risk factor for
neurodegenerative disease. Nat Rev Neurol. 15:565–581. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wilson DM III, Cookson MR, Van Den Bosch
L, Zetterberg H, Holtzman DM and Dewachter I: Hallmarks of
neurodegenerative diseases. Cell. 186:693–714. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Dugger BN and Dickson DW: Pathology of
neurodegenerative diseases. Cold Spring Harb Perspect Biol.
9:a0280352017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bhat MA and Dhaneshwar S:
Neurodegenerative diseases: New hopes and perspectives. Curr Mol
Med. 24:1004–1032. 2024. View Article : Google Scholar
|
|
6
|
Temple S: Advancing cell therapy for
neurodegenerative diseases. Cell Stem Cell. 30:512–529. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Singh K, Sethi P, Datta S, Chaudhary JS,
Kumar S, Jain D, Gupta JK, Kumar S, Guru A and Panda SP: Advances
in gene therapy approaches targeting neuro-inflammation in
neurodegenerative diseases. Ageing Res Rev. 98:1023212024.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Shi FD and Yong VW: Neuroinflammation
across neurological diseases. Science. 388:eadx00432025. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kwon HS and Koh SH: Neuroinflammation in
neurodegenerative disorders: The roles of microglia and astrocytes.
Transl Neurodegener. 9:422020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Guttenplan KA, Weigel MK, Prakash P,
Wijewardhane PR, Hasel P, Rufen-Blanchette U, Munch AE, Blum JA,
Fine J, Neal MC, et al: Neurotoxic reactive astrocytes induce cell
death via saturated lipids. Nature. 599:102–107. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Cameron EG, Nahmou M, Toth AB, Heo L,
Tanasa B, Dalal R, Yan W, Nallagatla P, Xia X, Hay S, et al: A
molecular switch for neuroprotective astrocyte reactivity. Nature.
626:574–582. 2024. View Article : Google Scholar :
|
|
12
|
Debom GN, Rubenich DS and Braganhol E:
Adenosinergic signaling as a key modulator of the glioma
microenvironment and reactive astrocytes. Front Neurosci.
15:6484762021. View Article : Google Scholar
|
|
13
|
Acioglu C, Li L and Elkabes S:
Contribution of astrocytes to neuropathology of neurodegenerative
diseases. Brain Res. 1758:1472912021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kozachkov L, Kastanenka KV and Krotov D:
Building transformers from neurons and astrocytes. Proc Natl Acad
Sci USA. 120:e22191501202023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yamagata K: Lactate supply from astrocytes
to neurons and its role in ischemic stroke-induced
neurodegeneration. Neuroscience. 481:219–231. 2022. View Article : Google Scholar
|
|
16
|
Tewari BP, Woo AM, Prim CE, Chaunsali L,
Patel DC, Kimbrough IF, Engel K, Browning JL, Campbell SL and
Sontheimer H: Astrocytes require perineuronal nets to maintain
synaptic homeostasis in mice. Nat Neurosci. 27:1475–1488. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Aldana BI, Zhang Y, Jensen P,
Chandrasekaran A, Christensen SK, Nielsen TT, Nielsen JE, Hyttel P,
Larsen MR, Waagepetersen HS and Freude KK: Glutamate-glutamine
homeostasis is perturbed in neurons and astrocytes derived from
patient ipsc models of frontotemporal dementia. Mol Brain.
13:1252020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Qian K, Jiang X, Liu ZQ, Zhang J, Fu P, Su
Y, Brazhe NA, Liu D and Zhu LQ: Revisiting the critical roles of
reactive astrocytes in neurodegeneration. Mol Psychiatry.
28:2697–2706. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yin F: Lipid metabolism and Alzheimer's
disease: Clinical evidence, mechanistic link and therapeutic
promise. FEBS J. 290:1420–1453. 2023. View Article : Google Scholar
|
|
20
|
Byrns CN, Perlegos AE, Miller KN, Jin Z,
Carranza FR, Manchandra P, Beveridge CH, Randolph CE, Chaluvadi VS,
Zhang SL, et al: Senescent glia link mitochondrial dysfunction and
lipid accumulation. Nature. 630:475–483. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nakamura A, Sakai S, Taketomi Y, Tsuyama
J, Miki Y, Hara Y, Arai N, Sugiura Y, Kawaji H, Murakami M and
Shichita T: PLA2G2E-mediated lipid metabolism triggers
brain-autonomous neural repair after ischemic stroke. Neuron.
111:2995–3010 e9. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chausse B, Kakimoto PA and Kann O:
Microglia and lipids: How metabolism controls brain innate
immunity. Semin Cell Dev Biol. 112:137–144. 2021. View Article : Google Scholar
|
|
23
|
Duquenne M, Folgueira C, Bourouh C, Millet
M, Silva A, Clasadonte J, Imbernon M, Fernandois D, Martinez-Corral
I, Kusumakshi S, et al: Leptin brain entry via a tanycytic
LepR-EGFR shuttle controls lipid metabolism and pancreas function.
Nat Metab. 3:1071–1090. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mathiowetz AJ and Olzmann JA: Lipid
droplets and cellular lipid flux. Nat Cell Biol. 26:331–345. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ralhan I, Chang CL, Lippincott-Schwartz J
and Ioannou MS: Lipid droplets in the nervous system. J Cell Biol.
220:e2021021362021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mallick K, Paul S and Banerjee S and
Banerjee S: Lipid droplets and neurodegeneration. Neuroscience.
549:13–23. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Windham IA, Powers AE, Ragusa JV, Wallace
ED, Zanellati MC, Williams VH, Wagner CH, White KK and Cohen S:
Apoe traffics to astrocyte lipid droplets and modulates
triglyceride saturation and droplet size. J Cell Biol.
223:e2023050032024. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Smolic T, Tavcar P, Horvat A, Cerne U,
Haluzan Vasle A, Tratnjek L, Kreft ME, Scholz N, Matis M, Petan T,
et al: Astrocytes in stress accumulate lipid droplets. Glia.
69:1540–1562. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kim NS and Chung WS: Astrocytes regulate
neuronal network activity by mediating synapse remodeling. Neurosci
Res. 187:3–13. 2023. View Article : Google Scholar
|
|
30
|
de Ceglia R, Ledonne A, Litvin DG, Lind
BL, Carriero G, Latagliata EC, Bindocci E, Di Castro MA, Savtchouk
I, Vitali I, et al: Specialized astrocytes mediate glutamatergic
gliotransmission in the CNS. Nature. 622:120–129. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu D, Liao P, Li H, Tong S, Wang B, Lu Y,
Gao Y, Huang Y, Zhou H, Shi L, et al: Regulation of blood-brain
barrier integrity by dmp1-expressing astrocytes through
mitochondrial transfer. Sci Adv. 10:eadk29132024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Jayaram MA and Phillips JJ: Role of the
microenvironment in glioma pathogenesis. Annu Rev Pathol.
19:181–201. 2024. View Article : Google Scholar
|
|
33
|
Giovannoni F and Quintana FJ: The role of
astrocytes in CNS inflammation. Trends Immunol. 41:805–819. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hou J, Bi H, Ge Q, Teng H, Wan G, Yu B,
Jiang Q and Gu X: Heterogeneity analysis of astrocytes following
spinal cord injury at single-cell resolution. FASEB J.
36:e224422022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen ZP, Wang S, Zhao X, Fang W, Wang Z,
Ye H, Wang M, Ke L, Huang T, Lv P, et al: Lipid-accumulated
reactive astrocytes promote disease progression in epilepsy. Nat
Neurosci. 26:542–554. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Veiga A, Abreu DS, Dias JD, Azenha P,
Barsanti S and Oliveira JF: Calcium-dependent signaling in
astrocytes: Downstream mechanisms and implications for cognition. J
Neurochem. 169:e700192025. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Iovino L, Tremblay ME and Civiero L:
Glutamate-induced excitotoxicity in Parkinson's disease: The role
of glial cells. J Pharmacol Sci. 144:151–164. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Fang Y, Ding X, Zhang Y, Cai L, Ge Y, Ma
K, Xu R, Li S, Song M, Zhu H, et al: Fluoxetine inhibited the
activation of a1 reactive astrocyte in a mouse model of major
depressive disorder through astrocytic 5-HT(2b)R/β-arrestin2
pathway. J Neuroinflammation. 19:232022. View Article : Google Scholar
|
|
39
|
Chen Z, Yuan Z, Yang S, Zhu Y, Xue M,
Zhang J and Leng L: Brain energy metabolism: Astrocytes in
neurodegenerative diseases. CNS Neurosci Ther. 29:24–36. 2023.
View Article : Google Scholar :
|
|
40
|
Cheng X, Zhao M, Chen L, Huang C, Xu Q,
Shao J, Wang HT, Zhang Y, Li X, Xu X, et al: Astrocytes modulate
brain phosphate homeostasis via polarized distribution of phosphate
uptake transporter PiT2 and exporter XPR1. Neuron.
112:3126–3142.e8. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sharma V, Oliveira MM, Sood R, Khlaifia A,
Lou D, Hooshmandi M, Hung TY, Mahmood N, Reeves M, Ho-Tieng D, et
al: mRNA translation in astrocytes controls hippocampal long-term
synaptic plasticity and memory. Proc Natl Acad Sci USA.
120:e23086711202023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Guo F, Fan J, Liu JM, Kong PL, Ren J, Mo
JW, Lu CL, Zhong QL, Chen LY, Jiang HT, et al: Astrocytic alkbh5 in
stress response contributes to depressive-like behaviors in mice.
Nat Commun. 15:43472024. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dewa KI, Arimura N, Kakegawa W, Itoh M,
Adachi T, Miyashita S, Inoue YU, Hizawa K, Hori K, Honjoya N, et
al: Neuronal DSCAM regulates the peri-synaptic localization of
GLAST in bergmann glia for functional synapse formation. Nat
Commun. 15:4582024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Thakur S, Dhapola R, Sarma P, Medhi B and
Reddy DH: Neuroinflammation in Alzheimer's disease: Current
progress in molecular signaling and therapeutics. Inflammation.
46:1–17. 2023. View Article : Google Scholar
|
|
45
|
Zhang S, Li M, Qiu Y, Wu J, Xu X, Ma Q,
Zheng Z, Lu G, Deng Z and Huang H: Enhanced VEGF secretion and
blood-brain barrier disruption: Radiation-mediated inhibition of
astrocyte autophagy via PI3K-AKT pathway activation. Glia.
72:568–587. 2024. View Article : Google Scholar
|
|
46
|
Bonvento G and Bolaños JP:
Astrocyte-neuron metabolic cooperation shapes brain activity. Cell
Metab. 33:1546–1564. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Arbring Sjöström T, Ivanov AI, Kiani N,
Bernacka-Wojcik I, Samuelsson J, Saarela Unemo H, Xydias D, Vagiaki
LE, Psilodimitrakopoulos S, Konidakis I, et al: Miniaturized
iontronic micropipettes for precise and dynamic ionic modulation of
neuronal and astrocytic activity. Small. 21:e24109062025.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ferris HA, Perry RJ, Moreira GV, Shulman
GI, Horton JD and Kahn CR: Loss of astrocyte cholesterol synthesis
disrupts neuronal function and alters whole-body metabolism. Proc
Natl Acad Sci USA. 114:1189–1194. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tomas M, Duran JM, Lazaro-Dieguez F, Babia
T, Renau-Piqueras J and Egea G: Fluorescent analogues of plasma
membrane sphingolipids are sorted to different intracellular
compartments in astrocytes; Harmful effects of chronic ethanol
exposure on sphingolipid trafficking and metabolism. FEBS Lett.
563:59–65. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zadoorian A, Du X and Yang H: Lipid
droplet biogenesis and functions in health and disease. Nat Rev
Endocrinol. 19:443–459. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Klemm RW and Carvalho P: Lipid droplets
big and small: Basic mechanisms that make them all. Annu Rev Cell
Dev Biol. 40:143–168. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Salo VT, Belevich I, Li S, Karhinen L,
Vihinen H, Vigouroux C, Magre J, Thiele C, Holtta-Vuori M, Jokitalo
E and Ikonen E: Seipin regulates ER-lipid droplet contacts and
cargo delivery. EMBO J. 35:2699–2716. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Fu L, Zhang J, Wang Y, Wu H, Xu X, Li C,
Li J, Liu J, Wang H, Jiang X, et al: LET-767 determines lipid
droplet protein targeting and lipid homeostasis. J Cell Biol.
223:e2023110242024. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Harris CA, Haas JT, Streeper RS, Stone SJ,
Kumari M, Yang K, Han X, Brownell N, Gross RW, Zechner R and Farese
RV Jr: DGAT enzymes are required for triacylglycerol synthesis and
lipid droplets in adipocytes. J Lipid Res. 52:657–667. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Rao MJ and Goodman JM: Seipin: Harvesting
fat and keeping adipocytes healthy. Trends Cell Biol. 31:912–923.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang H, Nikain C, Fortounas KI, Amengual
J, Tufanli O, La Forest M, Yu Y, Wang MC, Watts R, Lehner R, et al:
FITM2 deficiency results in ER lipid accumulation, ER stress, and
reduced apolipoprotein B lipidation and VLDL triglyceride secretion
in vitro and in mouse liver. Mol Metab. 90:1020482024. View Article : Google Scholar
|
|
57
|
Xu L, Li L, Wu L, Li P and Chen F: CIDE
proteins and their regulatory mechanisms in lipid droplet fusion
and growth. FEBS Lett. 598:1154–1169. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang L, Zhou Y, Yang Z, Jiang L, Yan X,
Zhu W, Shen Y, Wang B, Li J and Song J: Lipid droplets in central
nervous system and functional profiles of brain cells containing
lipid droplets in various diseases. J Neuroinflammation. 22:72025.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Khaddaj R, Stribny J, Cottier S and
Schneiter R: Perilipin 3 promotes the formation of membrane domains
enriched in diacylglycerol and lipid droplet biogenesis proteins.
Front Cell Dev Biol. 11:11164912023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ferreira JV, Ahmed Y, Heunis T, Jain A,
Johnson E, Raschle M, Ernst R, Vanni S and Carvalho P:
Pex30-dependent membrane contact sites maintain ER lipid
homeostasis. J Cell Biol. 224:e2024090392025. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li D, Zhang J and Liu Q: Brain cell
type-specific cholesterol metabolism and implications for learning
and memory. Trends Neurosci. 45:401–414. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Feringa FM and van der Kant R: Cholesterol
and Alzheimer's disease; From risk genes to pathological effects.
Front Aging Neurosci. 13:6903722021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li X, Zhang J, Li D, He C, He K, Xue T,
Wan L, Zhang C and Liu Q: Astrocytic ApoE reprograms neuronal
cholesterol metabolism and histone-acetylation-mediated memory.
Neuron. 109:957–970. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Litvinchuk A, Suh JH, Guo JL, Lin K, Davis
SS, Bien-Ly N, Tycksen E, Tabor GT, Remolina Serrano J, Manis M, et
al: Amelioration of Tau and Apoe4-linked glial lipid accumulation
and neurodegeneration with an LXR agonist. Neuron. 112:384–403 e8.
2024. View Article : Google Scholar :
|
|
65
|
Yang A, Alrosan AZ, Sharpe LJ, Brown AJ,
Callaghan R and Gelissen IC: Regulation of ABCG4 transporter
expression by sterols and LXR ligands. Biochim Biophys Acta Gen
Subj. 1865:1297692021. View Article : Google Scholar
|
|
66
|
Arenas F, Garcia-Ruiz C and
Fernandez-Checa JC: Intracellular cholesterol trafficking and
impact in neurodegeneration. Front Mol Neurosci. 10:3822017.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Adachi C, Otsuka S and Inoue T:
Cholesterol-induced robust Ca oscillation in astrocytes required
for survival and lipid droplet formation in high-cholesterol
condition. iScience. 25:1051382022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhu X, Owen JS, Wilson MD, Li H, Griffiths
GL, Thomas MJ, Hiltbold EM, Fessler MB and Parks JS: Macrophage
abca1 reduces myd88-dependent toll-like receptor trafficking to
lipid rafts by reduction of lipid raft cholesterol. J Lipid Res.
51:3196–3206. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Sapoń K, Mańka R and Janas T and Janas T:
The role of lipid rafts in vesicle formation. J Cell Sci.
136:jcs2608872023. View Article : Google Scholar
|
|
70
|
Cheng C, Tu J, Hu Z, Chen Y, Wang Y, Zhang
T, Zhang C, Li C, Wang Y and Niu C: SREBP2/Rab11s/GLUT1/6 network
regulates proliferation and migration of glioblastoma. Pathol Res
Pract. 240:1541762022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Vanherle S, Loix M, Miron VE, Hendriks JJA
and Bogie JFJ: Lipid metabolism, remodelling and intercellular
transfer in the CNS. Nat Rev Neurosci. 26:214–231. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Benatzy Y, Palmer MA, Lütjohann D, Ohno
RI, Kampschulte N, Schebb NH, Fuhrmann DC, Snodgrass RG and Brüne
B: Alox15b controls macrophage cholesterol homeostasis via lipid
peroxidation, erk1/2 and srebp2. Redox Biol. 72:1031492024.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kuo A and Hla T: Regulation of cellular
and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol.
25:802–821. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pan X, Dutta D, Lu S and Bellen HJ:
Sphingolipids in neurodegenerative diseases. Front Neurosci.
17:11378932023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Robles-Martinez L, Morin KH and
Nikolova-Karakashian M: Ceramide homeostasis in hepatic lipid
droplets. Biochem Soc Trans. 53:509–518. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Di Scala C, Yahi N, Boutemeur S, Flores A,
Rodriguez L, Chahinian H and Fantini J: Common molecular mechanism
of amyloid pore formation by Alzheimer's beta-amyloid peptide and
alpha-synuclein. Sci Rep. 6:287812016. View Article : Google Scholar
|
|
77
|
Di Scala C, Troadec JD, Lelievre C, Garmy
N, Fantini J and Chahinian H: Mechanism of cholesterol-assisted
oligomeric channel formation by a short Alzheimer β-amyloid
peptide. J Neurochem. 128:186–195. 2014. View Article : Google Scholar
|
|
78
|
Chahinian H, Yahi N and Fantini J:
Glutamate, gangliosides, and the synapse: Electrostatics at work in
the brain. Int J Mol Sci. 25:85832024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Corbit KC, Trakul N, Eves EM, Diaz B,
Marshall M and Rosner MR: Activation of Raf-1 signaling by protein
kinase C through a mechanism involving Raf kinase inhibitory
protein. J Biol Chem. 278:13061–13068. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Shim M, San TT, Shin B, Lee H, Han SB, Lee
DK and Kim HJ: Histone demethylase inhibitor KDM5-C70 regulates
metabolomic and lipidomic programming during an astrocyte
differentiation of rat neural stem cell. Sci Rep. 15:54092025.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Thieren L, Zanker HS, Droux J, Dalvi U,
Wyss MT, Waag R, Germain PL, von Ziegler LM, Looser ZJ, Hosli L, et
al: Astrocytic GLUT1 deletion in adult mice enhances glucose
metabolism and resilience to stroke. Nat Commun. 16:41902025.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Mi Y, Qi G, Vitali F, Shang Y, Raikes AC,
Wang T, Jin Y, Brinton RD, Gu H and Yin F: Loss of fatty acid
degradation by astrocytic mitochondria triggers neuroinflammation
and neurodegeneration. Nat Metab. 5:445–465. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Astarita G, Jung K, Berchtold NC, Nguyen
VQ, Gillen DL, Head E, Cotman CW and Piomelli D: Deficient liver
biosynthesis of docosahexaenoic acid correlates with cognitive
impairment in alzheimer's disease. PLoS One. 5:e125382010.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Nguyen LN, Ma D, Shui G, Wong P,
Cazenave-Gassiot A, Zhang X, Wenk MR, Goh EL and Silver DL: Mfsd2a
is a transporter for the essential omega-3 fatty acid
docosahexaenoic acid. Nature. 509:503–506. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Pelerin H, Jouin M, Lallemand MS,
Alessandri JM, Cunnane SC, Langelier B and Guesnet P: Gene
expression of fatty acid transport and binding proteins in the
blood-brain barrier and the cerebral cortex of the rat: Differences
across development and with different DHA brain status.
Prostaglandins Leukot Essent Fatty Acids. 91:213–220. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kim ID, Ju H, Minkler J, Jiang R, Singh A,
Sharma R, Febbraio M and Cho S: Endothelial cell CD36 mediates
stroke-induced brain injury via BBB dysfunction and monocyte
infiltration in normal and obese conditions. J Cereb Blood Flow
Metab. 43:843–855. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Geng Z, Peng F, Cheng Z, Su J, Song J, Han
X, Li R, Li X, Cui R and Li B: Astrocytic FABP7 alleviates
depression-like behaviors of chronic unpredictable mild stress mice
by regulating neuroinflammation and hippocampal spinogenesis. FASEB
J. 39:e706062025. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Su Y and Yuan Q: Mitochondrial fatty acid
oxidase CPT1A ameliorates postoperative cognitive dysfunction by
regulating astrocyte ferroptosis. Brain Res. 1850:1494242025.
View Article : Google Scholar
|
|
89
|
Ochiai Y, Uchida Y, Ohtsuki S, Tachikawa
M, Aizawa S and Terasaki T: The blood-brain barrier fatty acid
transport protein 1 (FATP1/SLC27A1) supplies docosahexaenoic acid
to the brain, and insulin facilitates transport. J Neurochem.
141:400–412. 2017. View Article : Google Scholar
|
|
90
|
Li YC, Fu JT and Tzeng SF: Exposure to
lipid mixture induces intracellular lipid droplet formation and
impairs mitochondrial functions in astrocytes. Neurochem Int.
178:1057922024. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liang KX, Chen A, Kianian A, Kristiansen
CK, Yangzom T, Furriol J, Hoyland LE, Ziegler M, Krakenes T,
Tzoulis C, et al: Activation of neurotoxic astrocytes due to
mitochondrial dysfunction triggered by POLG mutation. Int J Biol
Sci. 20:2860–2880. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kong J, Ji Y, Jeon YG, Han JS, Han KH, Lee
JH, Lee G, Jang H, Choe SS, Baes M and Kim JB: Spatiotemporal
contact between peroxisomes and lipid droplets regulates
fasting-induced lipolysis via PEX5. Nat Commun. 11:5782020.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Kuijpers M, Kochlamazashvili G, Stumpf A,
Puchkov D, Swaminathan A, Lucht MT, Krause E, Maritzen T, Schmitz D
and Haucke V: Neuronal autophagy regulates presynaptic
neurotransmission by controlling the axonal endoplasmic reticulum.
Neuron. 110:7342022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Pu M, Zheng W, Zhang H, Wan W, Peng C,
Chen X, Liu X, Xu Z, Zhou T, Sun Q, et al: ORP8 acts as a lipophagy
receptor to mediate lipid droplet turnover. Protein Cell.
14:653–667. 2023.PubMed/NCBI
|
|
95
|
Smolic T, Zorec R and Vardjan N:
Pathophysiology of lipid droplets in neuroglia. Antioxidants
(Basel). 11:222021. View Article : Google Scholar
|
|
96
|
Han X, Liu Y, Dai Y, Xu T, Hu Q, Yi X, Rui
L, Hu G and Hu J: Neuronal SH2B1 attenuates apoptosis in an MPTP
mouse model of Parkinson's disease via promoting PLIN4 degradation.
Redox Biol. 52:1023082022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Schweiger M, Schreiber R, Haemmerle G,
Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R and
Zimmermann R: Adipose triglyceride lipase and hormone-sensitive
lipase are the major enzymes in adipose tissue triacylglycerol
catabolism. J Biol Chem. 281:40236–40241. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Grabner GF, Xie H, Schweiger M and Zechner
R: Lipolysis: Cellular mechanisms for lipid mobilization from fat
stores. Nat Metab. 3:1445–1465. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Li Q, Liu P, Zhu X, Zhou C, Hu Y, Cao S,
Li H, Zou X, Gao S, Cao X, et al: NG-497 alleviates
microglia-mediated neuroinflammation in a MTNR1A-dependent manner.
Inflammation. 48:2663–2676. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Morant-Ferrando B, Jimenez-Blasco D,
Alonso-Batan P, Agulla J, Lapresa R, Garcia-Rodriguez D,
Yunta-Sanchez S, Lopez-Fabuel I, Fernandez E, Carmeliet P, et al:
Fatty acid oxidation organizes mitochondrial supercomplexes to
sustain astrocytic ROS and cognition. Nat Metab. 5:1290–1302. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yang D, Wang X, Zhang L, Fang Y, Zheng Q,
Liu X, Yu W, Chen S, Ying J and Hua F: Lipid metabolism and storage
in neuroglia: Role in brain development and neurodegenerative
diseases. Cell Biosci. 12:1062022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Li J, Jiang W, Cai Y, Ning Z, Zhou Y, Wang
C, Chung SK, Huang Y, Sun J, Deng M, et al: Astrocytic endothelin-1
overexpression impairs learning and memory ability in ischemic
stroke via altered hippocampal neurogenesis and lipid metabolism.
Neural Regen Res. 19:650–656. 2024. View Article : Google Scholar
|
|
103
|
Majchrzak M, Stojanović O, Ajjaji D, Ben
M'barek K, Omrane M, Thiam AR and Klemm RW: Perilipin membrane
integration determines lipid droplet heterogeneity in
differentiating adipocytes. Cell Rep. 43:1140932024. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Shimano H and Sato R: SREBP-regulated
lipid metabolism: Convergent physiology-divergent pathophysiology.
Nat Rev Endocrinol. 13:710–730. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Han X, Zhu J, Zhang X, Song Q, Ding J, Lu
M, Sun S and Hu G: Plin4-dependent lipid droplets hamper neuronal
mitophagy in the MPTP/p-induced mouse model of Parkinson's disease.
Front Neurosci. 12:3972018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Kimmel AR and Sztalryd C: The perilipins:
Major cytosolic lipid droplet-associated proteins and their roles
in cellular lipid storage, mobilization, and systemic homeostasis.
Annu Rev Nutr. 36:471–509. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Xu SF, Pang ZQ, Fan YG, Zhang YH, Meng YH,
Bai CY, Jia MY, Chen YH, Wang ZY and Guo C: Astrocyte-specific loss
of lactoferrin influences neuronal structure and function by
interfering with cholesterol synthesis. Glia. 70:2392–2408. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yang C, Wang X, Wang J, Wang X, Chen W, Lu
N, Siniossoglou S, Yao Z and Liu K: Rewiring neuronal glycerolipid
metabolism determines the extent of axon regeneration. Neuron.
105:276–292.e5. 2020. View Article : Google Scholar :
|
|
109
|
Brandebura AN, Paumier A, Onur TS and
Allen NJ: Astrocyte contribution to dysfunction, risk and
progression in neurodegenerative disorders. Nat Rev Neurosci.
24:23–39. 2023. View Article : Google Scholar :
|
|
110
|
Mauch DH, Nägler K, Schumacher S, Göritz
C, Müller EC, Otto A and Pfrieger FW: CNS synaptogenesis promoted
by glia-derived cholesterol. Science. 294:1354–1357. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Christopherson KS, Ullian EM, Stokes CC,
Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P and
Barres BA: Thrombospondins are astrocyte-secreted proteins that
promote CNS synaptogenesis. Cell. 120:421–433. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Kucukdereli H, Allen NJ, Lee AT, Feng A,
Ozlu MI, Conatser LM, Chakraborty C, Workman G, Weaver M, Sage EH,
et al: Control of excitatory CNS synaptogenesis by
astrocyte-secreted proteins hevin and SPARC. Proc Natl Acad Sci
USA. 108:E440–E449. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Allen NJ, Bennett ML, Foo LC, Wang GX,
Chakraborty C, Smith SJ and Barres BA: Astrocyte glypicans 4 and 6
promote formation of excitatory synapses via GluA1 AMPA receptors.
Nature. 486:410–414. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Jin S, Chen X, Tian Y, Jarvis R, Promes V
and Yang Y: Astroglial exosome hepaCAM signaling and ApoE
antagonization coordinates early postnatal cortical pyramidal
neuronal axon growth and dendritic spine formation. Nat Commun.
14:51502023. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhang X, Chen C and Liu Y: Navigating the
metabolic maze: Anomalies in fatty acid and cholesterol processes
in Alzheimer's astrocytes. Alzheimers Res Ther. 16:632024.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ioannou MS, Jackson J, Sheu SH, Chang CL,
Weigel AV, Liu H, Pasolli HA, Xu CS, Pang S, Matthies D, et al:
Neuron-astrocyte metabolic coupling protects against
activity-induced fatty acid toxicity. Cell. 177:1522–1535.e14.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lindner K, Beckenbauer K, van Ek LC,
Titeca K, de Leeuw SM, Awwad K, Hanke F, Korepanova AV, Rybin V,
van der Kam EL, et al: Isoform- and cell-state-specific lipidation
of ApoE in astrocytes. Cell Rep. 38:1104352022. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Leng F and Edison P: Neuroinflammation and
microglial activation in Alzheimer disease: Where do we go from
here? Nat Rev Neurol. 17:157–172. 2021. View Article : Google Scholar
|
|
119
|
Liu M, Xu Z, Wang L, Zhang L, Liu Y, Cao
J, Fu Q, Liu Y, Li H, Lou J, et al: Cottonseed oil alleviates
ischemic stroke injury by inhibiting the inflammatory activation of
microglia and astrocyte. J Neuroinflammation. 17:2702020.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Doring C, Regen T, Gertig U, van Rossum D,
Winkler A, Saiepour N, Bruck W, Hanisch UK and Janova H: A presumed
antagonistic LPS identifies distinct functional organization of
TLR4 in mouse microglia. Glia. 65:1176–1185. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Robb JL, Boisjoly F, Machuca-Parra AI,
Coursan A, Manceau R, Majeur D, Rodaros D, Bouyakdan K, Greffard K,
Bilodeau JF, et al: Blockage of ATGL-mediated breakdown of lipid
droplets in microglia alleviates neuroinflammatory and behavioural
responses to lipopolysaccharides. Brain Behav Immun. 123:315–333.
2025. View Article : Google Scholar
|
|
122
|
Marschallinger J, Iram T, Zardeneta M, Lee
SE, Lehallier B, Haney MS, Pluvinage JV, Mathur V, Hahn O, Morgens
DW, et al: Lipid-droplet-accumulating microglia represent a
dysfunctional and proinflammatory state in the aging brain. Nat
Neurosci. 23:194–208. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Pan RY, He L, Zhang J, Liu X, Liao Y, Gao
J, Liao Y, Yan Y, Li Q, Zhou X, et al: Positive feedback regulation
of microglial glucose metabolism by histone H4 lysine 12
lactylation in Alzheimer's disease. Cell Metab. 34:634–648.e6.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Zhang X, Zhang Y, Wang B, Xie C, Wang J,
Fang R, Dong H, Fan G, Wang M, He Y, et al: Pyroptosis-mediator
GSDMD promotes Parkinson's disease pathology via microglial
activation and dopaminergic neuronal death. Brain Behav Immun.
119:129–145. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Tcw J, Qian L, Pipalia NH, Chao MJ, Liang
SA, Shi Y, Jain BR, Bertelsen SE, Kapoor M, Marcora E, et al:
Cholesterol and matrisome pathways dysregulated in astrocytes and
microglia. Cell. 185:2213–2233 e25. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Wang X, Li X, Zuo X, Liang Z, Ding T, Li
K, Ma Y, Li P, Zhu Z, Ju C, et al: Photobiomodulation inhibits the
activation of neurotoxic microglia and astrocytes by inhibiting
Lcn2/JAK2-STAT3 crosstalk after spinal cord injury in male rats. J
Neuroinflammation. 18:2562021. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Jung BK, Park Y, Yoon B, Bae JS, Han SW,
Heo JE, Kim DE and Ryu KY: Reduced secretion of LCN2 (lipocalin 2)
from reactive astrocytes through autophagic and proteasomal
regulation alleviates inflammatory stress and neuronal damage.
Autophagy. 19:2296–2317. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Shin HJ, Kim KE, Jeong EA, An HS, Lee SJ,
Lee J and Roh GS: Amyloid β oligomer promotes microglial galectin-3
and astrocytic lipocalin-2 levels in the hippocampus of mice fed a
high-fat diet. Biochem Biophys Res Commun. 667:10–17. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Xiao R, Pan J, Yang M, Liu H, Zhang A, Guo
X and Zhou S: Regulating astrocyte phenotype by Lcn2 inhibition
toward ischemic stroke therapy. Biomaterials. 317:1231022025.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Sun Y, Wei K, Liao X, Wang J, Gao L and
Pang B: Lipid metabolism in microglia: Emerging mechanisms and
therapeutic opportunities for neurodegenerative diseases (review).
Int J Mol Med. 56:1392025. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wang Y, Wang W, Su L, Ji F, Zhang M, Xie
Y, Zhang T and Jiao J: BACH1 changes microglial metabolism and
affects astrogenesis during mouse brain development. Dev Cell.
59:108–124.e7. 2024. View Article : Google Scholar
|
|
132
|
Asadollahi E, Trevisiol A, Saab AS, Looser
ZJ, Dibaj P, Ebrahimi R, Kusch K, Ruhwedel T, Möbius W, Jahn O, et
al: Oligodendroglial fatty acid metabolism as a central nervous
system energy reserve. Nat Neurosci. 27:1934–1944. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Molina-Gonzalez I, Holloway RK, Jiwaji Z,
Dando O, Kent SA, Emelianova K, Lloyd AF, Forbes LH, Mahmood A,
Skripuletz T, et al: Astrocyte-oligodendrocyte interaction
regulates central nervous system regeneration. Nat Commun.
14:33722023. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Birolini G, Verlengia G, Talpo F, Maniezzi
C, Zentilin L, Giacca M, Conforti P, Cordiglieri C, Caccia C, Leoni
V, et al: SREBP2 gene therapy targeting striatal astrocytes
ameliorates Huntington's disease phenotypes. Brain. 144:3175–3190.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Tiwari V and Simons M: Lipid metabolism
and neuroinflammation: What is the link? J Exp Med.
222:e202412322025. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Li M, Li Z, Yao Y, Jin WN, Wood K, Liu Q,
Shi FD and Hao J: Astrocyte-derived interleukin-15 exacerbates
ischemic brain injury via propagation of cellular immunity. Proc
Natl Acad Sci USA. 114:E396–E405. 2017.
|
|
137
|
Lee HG, Lee JH, Flausino LE and Quintana
FJ: Neuroinflammation: An astrocyte perspective. Sci Transl Med.
15:eadi78282023. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Morkholt AS, Trabjerg MS, Oklinski MKE,
Bolther L, Kroese LJ, Pritchard CEJ, Huijbers IJ and Nieland JDV:
CPT1A plays a key role in the development and treatment of multiple
sclerosis and experimental autoimmune encephalomyelitis. Sci Rep.
9:132992019. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Castellani G, Croese T, Peralta Ramos JM
and Schwartz M: Transforming the understanding of brain immunity.
Science. 380:eabo76492023. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Sanmarco LM, Wheeler MA, Gutierrez-Vazquez
C, Polonio CM, Linnerbauer M, Pinho-Ribeiro FA, Li Z, Giovannoni F,
Batterman KV, Scalisi G, et al: Gut-licensed IFNү(+) NK cells drive
LAMP1(+)TRAIL(+) anti-inflammatory astrocytes. Nature. 590:473–479.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Miwa S, Kashyap S, Chini E and von
Zglinicki T: Mitochondrial dysfunction in cell senescence and
aging. J Clin Invest. 132:e1584472022. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Byrns CN, Saikumar J and Bonini NM: Glial
AP1 is activated with aging and accelerated by traumatic brain
injury. Nat Aging. 1:585–597. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Sheng L, Shields EJ, Gospocic J, Sorida M,
Ju L, Byrns CN, Carranza F, Berger SL, Bonini N and Bonasio R:
Ensheathing glia promote increased lifespan and healthy brain
aging. Aging Cell. 22:e138032023. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Madji Hounoum B, Mavel S, Coque E, Patin
F, Vourc'h P, Marouillat S, Nadal-Desbarats L, Emond P, Corcia P,
Andres CR, et al: Wildtype motoneurons, ALS-linked SOD1 mutation
and glutamate profoundly modify astrocyte metabolism and lactate
shuttling. Glia. 65:592–605. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Zelic M, Blazier A, Pontarelli F, Lamorte
M, Huang J, Tasdemir-Yilmaz OE, Ren Y, Ryan SK, Shapiro C, Morel C,
et al: Single-cell transcriptomic and functional studies identify
glial state changes and a role for inflammatory RIPK1 signaling in
ALS pathogenesis. Immunity. 58:961–979. e82025. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
He D, Xu H, Zhang H, Tang R, Lan Y, Xing
R, Li S, Christian E, Hou Y, Lorello P, et al: Disruption of the
IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting
microglial metabolic adaptation and phagocytic function. Immunity.
55:159–173.e9. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Zengeler KE, Hollis A, Deutsch T, Samuels
JD, Ennerfelt H, Moore KA, Steacy EJ, Sabapathy V, Sharma R, Patel
MK, et al: Inflammasome signaling in astrocytes modulates
hippocampal plasticity. Immunity. 58:1519–1535 e11. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Chen ZP, Zhao X, Wang S, Cai R, Liu Q, Ye
H, Wang MJ, Peng SY, Xue WX, Zhang YX, et al: GABA-dependent
microglial elimination of inhibitory synapses underlies neuronal
hyperexcitability in epilepsy. Nat Neurosci. 28:1404–1417. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Faustino AF, Martins IC, Carvalho FA,
Castanho MA, Maurer-Stroh S and Santos NC: Understanding dengue
virus capsid protein interaction with key biological targets. Sci
Rep. 5:105922015. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Haney MS, Palovics R, Munson CN, Long C,
Johansson PK, Yip O, Dong W, Rawat E, West E, Schlachetzki JCM, et
al: APOE4/4 is linked to damaging lipid droplets in Alzheimer's
disease microglia. Nature. 628:154–161. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Wang S, Li B, Cai Z, Hugo C, Li J, Sun Y,
Qian L, Remaley AT, Tcw J, Chui HC, et al: Cellular senescence
induced by cholesterol accumulation is mediated by lysosomal ABCA1
in APOE4 and AD. Res Sq [Preprint] rs.3.rs-4373201. 2024.
|
|
152
|
Wang N, Pan Y, Starling SC, Haskell DH,
Quintero AC, Kawatani K, Inoue Y, Shue F, Ma X, Aikawa T, et al:
Neuronal ABCA7 deficiency aggravates mitochondrial dysfunction and
neurodegeneration in Alzheimer's disease. Alzheimers Dement.
21:e701122025. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Wang X, Chen S, Xia X, Du Y, Wei Y, Yang
W, Zhang Y, Song Y, Lei T, Huang Q and Gao H: Lysosome-targeting
protein degradation through endocytosis pathway triggered by
polyvalent nano-chimera for AD therapy. Adv Mater. 37:e24110612025.
View Article : Google Scholar
|
|
154
|
Xu X, Xuan S, Chen S, Liu D, Xiao Q and Tu
J: Increased excitatory amino acid transporter 2 levels in
basolateral amygdala astrocytes mediate chronic stress-induced
anxiety-like behavior. Neural Regen Res. 20:1721–1734. 2025.
View Article : Google Scholar
|
|
155
|
Stephenson RA, Sepulveda J, Johnson KR,
Lita A, Gopalakrishnan J, Acri DJ, Beilina A, Cheng L, Yang LG,
Root JT, et al: Triglyceride metabolism controls inflammation and
microglial phenotypes associated with APOE4. Cell Rep.
44:1159612025. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Liu L, Zhang K, Sandoval H, Yamamoto S,
Jaiswal M, Sanz E, Li Z, Hui J, Graham BH, Quintana A and Bellen
HJ: Glial lipid droplets and ROS induced by mitochondrial defects
promote neurodegeneration. Cell. 160:177–190. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Jernberg JN, Bowman CE, Wolfgang MJ and
Scafidi S: Developmental regulation and localization of carnitine
palmitoyltransferases (CPTs) in rat brain. J Neurochem.
142:407–419. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Dressman JW, Bayram MF, Angel PM, Drake RR
and Mehta AS: Single-cell multiomic MALDI-MSI analysis of lipids
and N-glycans through affinity array capture. Anal Chem.
97:12493–12502. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Endle H, Horta G, Stutz B, Muthuraman M,
Tegeder I, Schreiber Y, Snodgrass IF, Gurke R, Liu ZW, Sestan-Pesa
M, et al: AgRP neurons control feeding behaviour at cortical
synapses via peripherally derived lysophospholipids. Nat Metab.
4:683–692. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Bitar L, Uphaus T, Thalman C, Muthuraman
M, Gyr L, Ji H, Domingues M, Endle H, Groppa S, Steffen F, et al:
Inhibition of the enzyme autotaxin reduces cortical excitability
and ameliorates the outcome in stroke. Sci Transl Med.
14:eabk1352022. View Article : Google Scholar
|
|
161
|
Xia J, Yang L, Huang C, Deng S, Yang Z,
Zhang Y, Zhang C and Song C: Omega-3 polyunsaturated fatty acid
eicosapentaenoic acid or docosahexaenoic acid improved
ageing-associated cognitive decline by regulating glial
polarization. Mar Drugs. 21:3982023. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Zgorzynska E, Stulczewski D, Dziedzic B,
Su KP and Walczewska A: Docosahexaenoic fatty acid reduces the
pro-inflammatory response induced by IL-1β in astrocytes through
inhibition of NF-ĸb and AP-1 transcription factor activation. BMC
Neurosci. 22:42021. View Article : Google Scholar
|
|
163
|
Konttinen H, Gureviciene I, Oksanen M,
Grubman A, Loppi S, Huuskonen MT, Korhonen P, Lampinen R, Keuters
M, Belaya I, et al: PPARβ/δ-agonist GW0742 ameliorates dysfunction
in fatty acid oxidation in PSEN1δE9 astrocytes. Glia. 67:146–159.
2019. View Article : Google Scholar
|
|
164
|
Chehaibi K, le Maire L, Bradoni S, Escola
JC, Blanco-Vaca F and Slimane MN: Effect of PPAR-β/δ agonist GW0742
treatment in the acute phase response and blood-brain barrier
permeability following brain injury. Transl Res. 182:27–48. 2017.
View Article : Google Scholar
|
|
165
|
Spencer M, Kulbe JR, Venkatesh V, Laird A,
Ford M, O'Brien S, Boustani A, Schlachetzki JCM and Fields JA:
Caloric restriction mimetic 2-deoxyglucose alters metabolic and
transcriptomic phenotype in association with changes in chromatin
accessibility in human astrocytes. Sci Rep. 15:193682025.
View Article : Google Scholar : PubMed/NCBI
|
|
166
|
Kratzer A, Buchebner M, Pfeifer T, Becker
TM, Uray G, Miyazaki M, Miyazaki-Anzai S, Ebner B, Chandak PG,
Kadam RS, et al: Synthetic LXR agonist attenuates plaque formation
in apoE−/− mice without inducing liver steatosis and
hypertriglyceridemia. J Lipid Res. 50:312–326. 2009. View Article : Google Scholar :
|
|
167
|
Goodman LD, Ralhan I, Li X, Lu S, Moulton
MJ, Park YJ, Zhao P, Kanca O, Ghaderpour Taleghani ZS, Jacquemyn J,
et al: Tau is required for glial lipid droplet formation and
resistance to neuronal oxidative stress. Nat Neurosci.
27:1918–1933. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
168
|
Cheng X, Geng F, Pan M, Wu X, Zhong Y,
Wang C, Tian Z, Cheng C, Zhang R, Puduvalli V, et al: Targeting
DGAT1 ameliorates glioblastoma by increasing fat catabolism and
oxidative stress. Cell Metab. 32:229–242 e8. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
169
|
Lee H, Wheeler MA and Quintana FJ:
Function and therapeutic value of astrocytes in neurological
diseases. Nat Rev Drug Discov. 21:339–358. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
170
|
van Deijk AF, Camargo N, Timmerman J,
Heistek T, Brouwers JF, Mogavero F, Mansvelder HD, Smit AB and
Verheijen MH: Astrocyte lipid metabolism is critical for synapse
development and function in vivo. Glia. 65:670–682. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
171
|
Lee JA, Hall B, Allsop J, Alqarni R and
Allen SP: Lipid metabolism in astrocytic structure and function.
Semin Cell Dev Biol. 112:123–136. 2021. View Article : Google Scholar
|