Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2026 Volume 57 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 57 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Purchase PDF
Article

Comparative analysis of pan MHC‑I epitopes immunoreactivity on Hantaan virus nucleocapsid protein

  • Authors:
    • Zhikui Li
    • Weijie Ding
    • Yubo Sun
    • Chenfeng Tian
    • Shuaishuai Fu
    • Fei Shi
    • Zhenchi Fang
    • Yuanzhe Li
    • Jianchang Li
    • Sirui Cai
    • Haobo Kang
    • Baozeng Sun
    • Junqi Zhang
    • Yuanjie Sun
    • Shuya Yang
    • Yusi Zhang
    • Chunmei Zhang
    • Yun Zhang
    • Xiyang Zhang
    • Kun Yang
    • Dongbo Jiang
  • View Affiliations / Copyright

    Affiliations: Department of Immunology, Basic Medicine School, Air‑Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi 710032, P.R. China, The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi 710032, P.R. China
  • Article Number: 23
    |
    Published online on: November 14, 2025
       https://doi.org/10.3892/ijmm.2025.5694
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

During antiviral immunity, MHC‑I molecules display endogenous peptides to CD8+ T‑cell receptors, prompting cytotoxic elimination of infected cells. The present study focused on dominant epitopes derived from the nucleocapsid protein (NP) of Hantaan virus (HTNV) and revealed their high affinity for the HLA‑I and H‑2 superfamilies. Through immunogenicity and conservation analyses, four selective epitopes were precisely identified. Molecular docking validated the binding characteristics of selective epitopes with MHC‑I molecules. Bidirectional hierarchical clustering analysis uncovered complex interaction patterns between NP 9‑mer peptides and MHC‑I haplotypes. Moreover, in‑depth investigation of 11 HTNV variants revealed three amino acid substitutions (I241S, E242A and F384I) within the four selective epitopes; however, these substitutions did not significantly affect the pan‑HLA‑I immunoreactivity of these epitopes. Safety assessments highlighted the potential of four selective epitopes for practical applications. Utilizing ELISpot, ELISA and flow cytometry, the immunogenicity of these selective epitopes was comprehensively confirmed. In summary, the present study thoroughly evaluated the pan‑MHC‑I immunoreactivity of HTNV NP, providing a robust foundation for developing effective epitope vaccines for population immunity.
View Figures

Figure 1

Model and bubble diagram of the
molecular docking results. (A) Docking models of four selective
epitopes with corresponding major histocompatibility complex-I
alleles are shown. For each epitope, the docking models are
arranged from left to right in ascending order of scores. Lower
scores indicate better docking efficacy. (B) Red indicates low
binding scores and effective docking, while blue signifies high
scores and less effective docking. The bubble size correlates with
the number of HLA-I-bound epitope cores, with larger bubbles
meaning more combinable cores.

Figure 2

Verification of selective epitope
immunogenicity. (A) Selective epitopes significantly induced
CD8+ T cell IL-2 secretion in BALB/c and C57 mice. (B)
Selective epitopes stimulated IFN-γ production from murine
CD8+ T cells. *P<0.05, **P<0.01, ***P<0.001 and
****P<0.0001.

Figure 3

Verification of selective epitope
humoral responses in mice. The ∆450 nm absorbance value was
calculated by subtracting the absorbance of the negative control
from the absorbance at 450 nm for each well. ***P<0.001 and
****P<0.0001.

Figure 4

Analysis of mutation and affinity
changes in 11 variants. (A) Two WebLogo plots with mutation sites.
The height of the trait represented the occurrence frequency of the
amino acid mutants among all 11 variants. (B) Mutation sites and
frequencies of 11 variants. (C) A heatmap of binding-affinity
changes for aa376-aa392 before and after mutation. Red means strong
binding affinity before mutation, and blue means strong binding
affinity after mutation. (D) Scatter plot of binding-affinity
changes for aa376-aa392 before and after mutation. The grey area
indicates the top 2% of binding affinity. The closer a point is to
the y=x line, the more similar the binding affinity is between the
76–118 strain and its variants. Aa, amino acid.

Figure 5

Cytokine expression in
CD8+ T cells from BALB/c and C57 mice assessed by flow
cytometry. (A) A gating strategy was established to identify
cytokine expression in CD8+ T cells. (B) In the
CD8+ T cells of BALB/c mice, IL-2 secretion was
significantly higher in the experimental group than in the control
group. (C) The experimental group exhibited higher IL-2 secretion
from CD8+ T cells in the C57 mice than the control
group. (D) CD8+ T cells in the experimental group
demonstrated elevated IFN-γ secretion in BALB/c mice. (E)
CD8+ T cells of C57 mice in the experimental group
showed increased IFN-γ secretion compared with the control group.
**P<0.01.

Figure 6

Cytokine expression in peripheral
blood mononuclear CD8+ T cells assessed by flow
cytometry. (A) A gating strategy was established to identify
cytokine expression in CD8+ T cells. (B) CD8+
T cells in the experimental group showed increased IL-2 secretion
compared with the control group. (C) The experimental group
exhibited higher IFN-γ secretion from CD8+ T cells than
the control group. (D) CD8+ T cells in the experimental
group demonstrated elevated Granzyme B secretion. ***P<0.001 and
****P<0.0001.
View References

1 

Brocato RL, Wu H, Kwilas SA, Principe LM, Josleyn M, Shamblin J, Chivukula P, Bausch C, Luke T, Sullivan EJ and Hooper JW: Preclinical evaluation of a fully human, quadrivalent-hantavirus polyclonal antibody derived from a non-human source. mBio. 15:e1600242024. View Article : Google Scholar : PubMed/NCBI

2 

He J, Wang Y, Wei X, Sun H, Xu Y, Yin W, Wang Y and Zhang W: Spatial-temporal dynamics and time series prediction of HFRS in mainland China: A long-term retrospective study. J Med Virol. 95:e282692023. View Article : Google Scholar : PubMed/NCBI

3 

Mittler E, Wec AZ, Tynell J, Guardado-Calvo P, Wigren-Byström J, Polanco LC, O'Brien CM, Slough MM, Abelson DM, Serris A, et al: Human antibody recognizing a quaternary epitope in the Puumala virus glycoprotein provides broad protection against orthohantaviruses. Sci Transl Med. 14:eabl53992022. View Article : Google Scholar : PubMed/NCBI

4 

Kim J, Park K, Kim K, Noh J, Kim S, Yang E, Cho H, Lee S, No JS, Lee G, et al: High-resolution phylogeographical surveillance of Hantaan orthohantavirus using rapid amplicon-based Flongle sequencing, Republic of Korea. J Med Virol. 96:e293462024. View Article : Google Scholar : PubMed/NCBI

5 

Chai S, Wang L, Du H and Jiang H: Achievement and challenges in orthohantavirus vaccines. Vaccines (Basel). 13:1982025. View Article : Google Scholar : PubMed/NCBI

6 

Sabsay KR and Te Velthuis AJW: Using structure prediction of negative sense RNA virus nucleoproteins to assess evolutionary relationships. Virus Evol. 10:veae0582024. View Article : Google Scholar : PubMed/NCBI

7 

Noor F, Ashfaq UA, Asif M, Adeel MM, Alshammari A and Alharbi M: Comprehensive computational analysis reveals YXXΦ[I/L/M/F/V] motif and YXXΦ-like tetrapeptides across HFRS causing hantaviruses and their association with viral pathogenesis and host immune regulation. Front Immunol. 13:10316082022. View Article : Google Scholar : PubMed/NCBI

8 

Ying Q, Zhang X, Wang S, Gu T, Zhang J, Feng W, Li D, Dong Y, Wu X and Wang F: A novel HTNV budding inhibitor interferes the interaction between viral glycoprotein and host ESCRT accessory protein ALIX. J Med Virol. 97:e701822025. View Article : Google Scholar : PubMed/NCBI

9 

Chen QZ, Wang X, Luo F, Li N, Zhu N, Lu S, Zan YX, Zhong CJ, Wang MR, Hu HT, et al: HTNV sensitizes host toward TRAIL-Mediated Apoptosis-A pivotal anti-hantaviral role of TRAIL. Front Immunol. 11:10722020. View Article : Google Scholar : PubMed/NCBI

10 

Brunnberg J, Barends M, Frühschulz S, Winter C, Battin C, de Wet B, Cole DK, Steinberger P and Tampé R: Dual role of the peptide-loading complex as proofreader and limiter of MHC-I presentation. Proc Natl Acad Sci USA. 121:e23216001212024. View Article : Google Scholar : PubMed/NCBI

11 

Wang X, Zhang H, Wang Y, Bramasole L, Guo K, Mourtada F, Meul T, Hu Q, Viteri V, Kammerl I, et al: DNA sensing via the cGAS/STING pathway activates the immunoproteasome and adaptive T-cell immunity. EMBO J. 42:e1105972023. View Article : Google Scholar : PubMed/NCBI

12 

Barbet G, Nair-Gupta P, Schotsaert M, Yeung ST, Moretti J, Seyffer F, Metreveli G, Gardner T, Choi A, Tortorella D, et al: TAP dysfunction in dendritic cells enables noncanonical cross-presentation for T cell priming. Nat Immunol. 22:497–509. 2021. View Article : Google Scholar : PubMed/NCBI

13 

Baljon JJ and Wilson JT: Bioinspired vaccines to enhance MHC class-I antigen cross-presentation. Curr Opin Immunol. 77:1022152022. View Article : Google Scholar : PubMed/NCBI

14 

Ma Y, Wang J, Yuan B, Wang M, Zhang Y, Xu Z, Zhang C, Zhang Y, Liu B, Yi J, et al: HLA-A2 and B35 restricted hantaan virus nucleoprotein CD8+ T-cell epitope-specific immune response correlates with milder disease in hemorrhagic fever with renal syndrome. PLoS Negl Trop Dis. 7:e20762013. View Article : Google Scholar : PubMed/NCBI

15 

Ma Y, Tang K, Zhang Y, Zhang C, Zhang Y, Jin B and Ma Y: Design and synthesis of HLA-A*02-restricted Hantaan virus multiple-antigenic peptide for CD8+ T cells. Virol J. 17:152020. View Article : Google Scholar : PubMed/NCBI

16 

Yan Z, Kim K, Kim H, Ha B, Gambiez A, Bennett J, de Almeida Mendes MF, Trevizani R, Mahita J, Richardson E, et al: Next-generation IEDB tools: A platform for epitope prediction and analysis. Nucleic Acids Res. 52((W1)): W526–W532. 2024. View Article : Google Scholar : PubMed/NCBI

17 

Reynisson B, Alvarez B, Paul S, Peters B and Nielsen M: NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48((W1)): W449–W454. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Rammensee H, Bachmann J, Emmerich NP, Bachor OA and Stevanovic S: SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics. 50:213–219. 1999. View Article : Google Scholar : PubMed/NCBI

19 

Reche PA, Glutting JP, Zhang H and Reinherz EL: Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics. 56:405–419. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Kim Y, Sidney J, Pinilla C, Sette A and Peters B: Derivation of an amino acid similarity matrix for peptide: MHC binding and its application as a Bayesian prior. BMC Bioinformatics. 10:3942009. View Article : Google Scholar : PubMed/NCBI

21 

Polonskaya Z, Savage PB, Finn MG and Teyton L: High-affinity anti-glycan antibodies: Challenges and strategies. Curr Opin Immunol. 59:65–71. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Bahrami AA, Payandeh Z, Khalili S, Zakeri A and Bandehpour M: Immunoinformatics: In silico approaches and computational design of a multi-epitope, immunogenic protein. Int Rev Immunol. 38:307–322. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Saethang T, Hirose O, Kimkong I, Tran VA, Dang XT, Nguyen LAT, Le TKT, Kubo M, Yamada Y and Satou K: PAAQD: Predicting immunogenicity of MHC class I binding peptides using amino acid pairwise contact potentials and quantum topological molecular similarity descriptors. J Immunol Methods. 387:293–302. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Zhou P, Jin B, Li H and Huang S: HPEPDOCK: A web server for blind peptide-protein docking based on a hierarchical algorithm. Nucleic Acids Res. 46((W1)): W443–W450. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Eberhardt J, Santos-Martins D, Tillack AF and Forli S: AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inf Model. 61:3891–3898. 2021. View Article : Google Scholar : PubMed/NCBI

26 

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y and Xia R: TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 13:1194–1202. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Crooks GE, Hon G, Chandonia J and Brenner SE: WebLogo: A sequence logo generator. Genome Res. 14:1188–1190. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Rathore AS, Choudhury S, Arora A, Tijare P and Raghava GPS: ToxinPred 3.0: An improved method for predicting the toxicity of peptides. Comput Biol Med. 179:1089262024. View Article : Google Scholar : PubMed/NCBI

29 

Sharma N, Patiyal S, Dhall A, Pande A, Arora C and Raghava GPS: AlgPred 2.0: An improved method for predicting allergenic proteins and mapping of IgE epitopes. Brief Bioinform. 22:bbaa2942021. View Article : Google Scholar : PubMed/NCBI

30 

Jiang D, Ma Z, Zhang J, Sun Y, Bai T, Liu R, Wang Y, Guan L, Fu S, Sun Y, et al: Immunoreactivity analysis of MHC-I epitopes derived from the nucleocapsid protein of SARS-CoV-2 via computation and vaccination. Vaccines (Basel). 12:12142024. View Article : Google Scholar : PubMed/NCBI

31 

Li Z, Sun Y, Sun B, Zhang J, Wang J, Fang Z, Li Y, Ding W, Zhou B, Cai S, et al: Comparative immunobiology and cross-species validations of pan-MHC-II epitopes on Hantaan virus nucleocapsid protein. Int Immunopharmacol. 158:1148652025. View Article : Google Scholar : PubMed/NCBI

32 

Woo GJ, Chun EY, Kim KH and Kim W: Analysis of immune responses against nucleocapsid protein of the Hantaan virus elicited by virus infection or DNA vaccination. J Microbiol. 43:537–545. 2005.PubMed/NCBI

33 

Park JM, Cho SY, Hwang YK, Um SH, Kim WJ, Cheong HS and Byun SM: Identification of H-2K(b)-restricted T-cell epitopes within the nucleocapsid protein of Hantaan virus and establishment of cytotoxic T-cell clones. J Med Virol. 60:189–199. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Lü X, Zhang F, Li Y, Xue X, Yin W and Xu Z: Antigenic characterization of expressed complete and different truncated recombinant nucleocapsid proteins of hantaan virus by monoclonal antibodies. Hybridoma (Larchmt). 30:445–450. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Sun B, Zhang J, Wang J, Liu Y, Sun H, Lu Z, Chen L, Ding X, Pan J, Hu C, et al: Comparative immunoreactivity analyses of hantaan virus glycoprotein-derived MHC-I epitopes in vaccination. Vaccines (Basel). 10:5642022. View Article : Google Scholar : PubMed/NCBI

36 

Zhang H, Liu H, Wei J, Dang Y, Wang Y, Yang Q, Zhang L, Ye C, Wang B, Jin X, et al: Single dose recombinant VSV based vaccine elicits robust and durable neutralizing antibody against Hantaan virus. NPJ Vaccines. 9:282024. View Article : Google Scholar : PubMed/NCBI

37 

Rissmann M, Noack D, Spliethof TM, Vaes VP, Stam R, van Run P, Clark JJ, Verjans GMGM, Haagmans BL, Krammer F, et al: A pan-orthohantavirus human lung xenograft mouse model and its utility for preclinical studies. PLoS Pathog. 21:e10128752025. View Article : Google Scholar : PubMed/NCBI

38 

Rakib A, Sami SA, Mimi NJ, Chowdhury MM, Eva TA, Nainu F, Paul A, Shahriar A, Tareq AM, Emon NU, et al: Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein. Comput Biol Med. 124:1039672020. View Article : Google Scholar : PubMed/NCBI

39 

Sun Y, Pumroy RA, Mallik L, Chaudhuri A, Wang C, Hwang D, Danon JN, Dasteh Goli K, Moiseenkova-Bell VY and Sgourakis NG: CryoEM structure of an MHC-I/TAPBPR peptide-bound intermediate reveals the mechanism of antigen proofreading. Proc Natl Acad Sci USA. 122:e24169921222025. View Article : Google Scholar : PubMed/NCBI

40 

Goddery EN, Fain CE, Lipovsky CG, Ayasoufi K, Yokanovich LT, Malo CS, Khadka RH, Tritz ZP, Jin F, Hansen MJ and Johnson AJ: Microglia and perivascular macrophages act as antigen presenting cells to promote CD8 T cell infiltration of the brain. Front Immunol. 12:7264212021. View Article : Google Scholar : PubMed/NCBI

41 

Mcauliffe J, Panetti S, Steffke E, Wicki A, Pereira-Almeida V, Noblecourt L, Hu Y, Guo SYW, Lesenfants J, Ramirez-Valdez RA, et al: Novel H-2Db-restricted CD8 epitope derived from mouse MAGE-type antigen P1A mediates antitumor immunity in C57BL/6 mice. J Immunother Cancer. 12:e0089982024. View Article : Google Scholar : PubMed/NCBI

42 

Kim JA, Kim WK, No JS, Lee SH, Lee SY, Kim JH, Kho JH, Lee D, Song DH, Gu SH, et al: Genetic diversity and reassortment of hantaan virus tripartite RNA genomes in nature, the Republic of Korea. PLoS Negl Trop Dis. 10:e00046502016. View Article : Google Scholar : PubMed/NCBI

43 

Sun H, Lu Z, Xuan G, Liu N, Wang T, Liu Y, Lan M, Xu J, Feng Y, Xu S, et al: Integrative analysis of HTNV glycoprotein derived MHC II epitopes by in silico prediction and experimental validation. Front Cell Infect Microbiol. 11:6716942021. View Article : Google Scholar : PubMed/NCBI

44 

Zhang J, Sun B, Shen W, Wang Z, Liu Y, Sun Y, Zhang J, Liu R, Wang Y, Bai T, et al: In silico analyses, experimental verification and application in DNA vaccines of ebolavirus GP-derived pan-MHC-II-restricted epitopes. Vaccines (Basel). 11:16202023. View Article : Google Scholar : PubMed/NCBI

45 

Jiang D, Zhang J, Shen W, Sun Y, Wang Z, Wang J, Zhang J, Zhang G, Zhang G, Wang Y, et al: DNA vaccines encoding HTNV GP-derived Th epitopes benefited from a LAMP-targeting strategy and established cellular immunoprotection. Vaccines (Basel). 12:9282024. View Article : Google Scholar : PubMed/NCBI

46 

Rissanen I, Krumm SA, Stass R, Whitaker A, Voss JE, Bruce EA, Rothenberger S, Kunz S, Burton DR, Huiskonen JT, et al: Structural basis for a neutralizing antibody response elicited by a recombinant hantaan virus Gn immunogen. mBio. 12:e2531202021. View Article : Google Scholar

47 

Rak A, Isakova-Sivak I and Rudenko L: Nucleoprotein as a promising antigen for broadly protective influenza vaccines. Vaccines (Basel). 11:17472023. View Article : Google Scholar : PubMed/NCBI

48 

Zhao W, Chen W, Li J, Chen M, Li Q, Lv M, Zhou S, Bai S, Wang Y, Zhang L, et al: Status of humoral and cellular immune responses within 12 months following CoronaVac vaccination against COVID-19. mBio. 13:e00181222022. View Article : Google Scholar : PubMed/NCBI

49 

Ahmadi P, Hartjen P, Kohsar M, Kummer S, Schmiedel S, Bockmann JH, Fathi A, Huber S, Haag F and Schulze Zur Wiesch J: Defining the CD39/CD73 axis in SARS-CoV-2 infection: The CD73− phenotype identifies polyfunctional cytotoxic lymphocytes. Cells. 9:17502020. View Article : Google Scholar : PubMed/NCBI

50 

Shibata H, Xu N, Saito S, Zhou L, Ozgenc I, Webb J, Fu C, Zolkind P, Egloff AM and Uppaluri R: Integrating CD4+ T cell help for therapeutic cancer vaccination in a preclinical head and neck cancer model. Oncoimmunology. 10:19585892021. View Article : Google Scholar : PubMed/NCBI

51 

Sameer Khan M, Gupta G, Alsayari A, Wahab S, Sahebkar A and Kesharwani P: Advancements in liposomal formulations: A comprehensive exploration of industrial production techniques. Int J Pharm. 658:1242122024. View Article : Google Scholar : PubMed/NCBI

52 

Kocabas BB, Almacioglu K, Bulut EA, Gucluler G, Tincer G, Bayik D, Gursel M and Gursel I: Dual-adjuvant effect of pH-sensitive liposomes loaded with STING and TLR9 agonists regress tumor development by enhancing Th1 immune response. J Control Release. 328:587–595. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Ismail S, Abbasi SW, Yousaf M, Ahmad S, Muhammad K and Waheed Y: Design of a multi-epitopes vaccine against hantaviruses: An immunoinformatics and molecular modelling approach. Vaccines (Basel). 10:3782022. View Article : Google Scholar : PubMed/NCBI

54 

Weng MT, Yang SF, Liu SY, Hsu YC, Wu MC, Chou HC, Chiou LL, Liang JD, Wang LF, Lee HS and Sheu JC: In situ vaccination followed by intramuscular poly-ICLC injections for the treatment of hepatocellular carcinoma in mouse models. Pharmacol Res. 188:1066462023. View Article : Google Scholar : PubMed/NCBI

55 

Chen X, Xu Z, Li T, Thakur A, Wen Y, Zhang K, Liu Y, Liang Q, Liu W, Qin J and Yan Y: Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomark Res. 12:22024. View Article : Google Scholar : PubMed/NCBI

56 

Americo JL, Cotter CA, Earl PL, Liu R and Moss B: Intranasal inoculation of an MVA-based vaccine induces IgA and protects the respiratory tract of hACE2 mice from SARS-CoV-2 infection. Proc Natl Acad Sci USA. 119:e22020691192022. View Article : Google Scholar : PubMed/NCBI

57 

Chatsiricharoenkul S, Niyomnaitham S, Posen HJ, Toh ZQ, Licciardi PV, Wongprompitak P, Duangchinda T, Pakchotanon P, Chantima W and Chokephaibulkit K: Safety and immunogenicity of intradermal administration of fractional dose CoronaVac®, ChAdOx1 nCoV-19 and BNT162b2 as primary series vaccination. Front Immunol. 13:10108352022. View Article : Google Scholar : PubMed/NCBI

58 

Kopicki J, Saikia A, Niebling S, Günther C, Anjanappa R, Garcia-Alai M, Springer S and Uetrecht C: Opening opportunities for Kd determination and screening of MHC peptide complexes. Commun Biol. 5:4882022. View Article : Google Scholar : PubMed/NCBI

59 

Peng S, Xing D, Ferrall L, Tsai Y, Roden RBS, Hung C and Wu T: Development of a spontaneous HPV16 E6/E7-expressing head and neck squamous cell carcinoma in HLA-A2 transgenic mice. mBio. 13:e3252212022. View Article : Google Scholar

60 

Gupta S, Nerli S, Kutti Kandy S, Mersky GL and Sgourakis NG: HLA3DB: Comprehensive annotation of peptide/HLA complexes enables blind structure prediction of T cell epitopes. Nat Commun. 14:63492023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • Purchase
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li Z, Ding W, Sun Y, Tian C, Fu S, Shi F, Fang Z, Li Y, Li J, Cai S, Cai S, et al: Comparative analysis of pan MHC‑I epitopes immunoreactivity on Hantaan virus nucleocapsid protein. Int J Mol Med 57: 23, 2026.
APA
Li, Z., Ding, W., Sun, Y., Tian, C., Fu, S., Shi, F. ... Jiang, D. (2026). Comparative analysis of pan MHC‑I epitopes immunoreactivity on Hantaan virus nucleocapsid protein. International Journal of Molecular Medicine, 57, 23. https://doi.org/10.3892/ijmm.2025.5694
MLA
Li, Z., Ding, W., Sun, Y., Tian, C., Fu, S., Shi, F., Fang, Z., Li, Y., Li, J., Cai, S., Kang, H., Sun, B., Zhang, J., Sun, Y., Yang, S., Zhang, Y., Zhang, C., Zhang, Y., Zhang, X., Yang, K., Jiang, D."Comparative analysis of pan MHC‑I epitopes immunoreactivity on Hantaan virus nucleocapsid protein". International Journal of Molecular Medicine 57.1 (2026): 23.
Chicago
Li, Z., Ding, W., Sun, Y., Tian, C., Fu, S., Shi, F., Fang, Z., Li, Y., Li, J., Cai, S., Kang, H., Sun, B., Zhang, J., Sun, Y., Yang, S., Zhang, Y., Zhang, C., Zhang, Y., Zhang, X., Yang, K., Jiang, D."Comparative analysis of pan MHC‑I epitopes immunoreactivity on Hantaan virus nucleocapsid protein". International Journal of Molecular Medicine 57, no. 1 (2026): 23. https://doi.org/10.3892/ijmm.2025.5694
Copy and paste a formatted citation
x
Spandidos Publications style
Li Z, Ding W, Sun Y, Tian C, Fu S, Shi F, Fang Z, Li Y, Li J, Cai S, Cai S, et al: Comparative analysis of pan MHC‑I epitopes immunoreactivity on Hantaan virus nucleocapsid protein. Int J Mol Med 57: 23, 2026.
APA
Li, Z., Ding, W., Sun, Y., Tian, C., Fu, S., Shi, F. ... Jiang, D. (2026). Comparative analysis of pan MHC‑I epitopes immunoreactivity on Hantaan virus nucleocapsid protein. International Journal of Molecular Medicine, 57, 23. https://doi.org/10.3892/ijmm.2025.5694
MLA
Li, Z., Ding, W., Sun, Y., Tian, C., Fu, S., Shi, F., Fang, Z., Li, Y., Li, J., Cai, S., Kang, H., Sun, B., Zhang, J., Sun, Y., Yang, S., Zhang, Y., Zhang, C., Zhang, Y., Zhang, X., Yang, K., Jiang, D."Comparative analysis of pan MHC‑I epitopes immunoreactivity on Hantaan virus nucleocapsid protein". International Journal of Molecular Medicine 57.1 (2026): 23.
Chicago
Li, Z., Ding, W., Sun, Y., Tian, C., Fu, S., Shi, F., Fang, Z., Li, Y., Li, J., Cai, S., Kang, H., Sun, B., Zhang, J., Sun, Y., Yang, S., Zhang, Y., Zhang, C., Zhang, Y., Zhang, X., Yang, K., Jiang, D."Comparative analysis of pan MHC‑I epitopes immunoreactivity on Hantaan virus nucleocapsid protein". International Journal of Molecular Medicine 57, no. 1 (2026): 23. https://doi.org/10.3892/ijmm.2025.5694
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team