International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
Orcinol glucoside ameliorates pulmonary fibrosis by suppressing hyaluronic acid synthesis and macrophage M2 polarization via targeting hyaluronic acid synthase 2
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disorder characterized by unexplained fibrosis and limited therapeutic options, highlighting the urgent need for innovative treatments. Hyaluronic acid (HA), which is upregulated in IPF and correlates with disease severity, plays an undefined role in its pathogenesis. Hyaluronic acid synthase 2 (HAS2), a key enzyme in HA production, has an unclear function in IPF progression, particularly regarding its involvement in macrophage polarization. Understanding this mechanism is essential for identifying novel therapeutic targets and developing effective drugs for IPF. The present study investigated the roles of HAS2 and HA in IPF and identified potential therapeutic agents. Transcriptomic analysis revealed HAS2 as a critical IPF‑associated gene in patient samples, bleomycin (BLM)‑induced mouse models, and transforming growth factor β1 (TGF‑β1)‑induced myofibroblasts. Single‑cell RNA sequencing further confirmed the fibroblast‑specific upregulation of HAS2 in fibrotic lungs. Experimental validation showed elevated HAS2 expression and HA accumulation in fibrosis models. HA facilitated macrophage M2 polarization and TGF‑β1 secretion through CD44‑dependent STAT6 activation, with CD44 inhibition blocking this effect. Knockdown of HAS2 in fibroblasts decreased HA release and impaired their ability to promote M2 polarization, suggesting that fibroblast‑derived HA drives this process. High‑throughput virtual screening, coupled with absorption, distribution, metabolism and excretion (ADME) profiling, identified orcinol glucoside (OG) as a potential HAS2 inhibitor, which was validated through surface plasmon resonance, cellular thermal shift assays, and molecular dynamics simulations. OG suppressed HA synthesis in TGF‑β1‑induced and HAS2‑overexpressing myofibroblasts in a dose‑dependent manner, inhibiting M2 polarization induction. In vivo, OG reduced collagen deposition, HA, and TGF‑β1 levels in BLM‑induced fibrotic mice. These findings established HAS2 as a central pathogenic factor in IPF and suggested OG as a promising therapeutic candidate, providing a novel approach for IPF treatment by targeting HA synthesis and macrophage polarization.