Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May 2013 Volume 42 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May 2013 Volume 42 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Molecular mechanisms of radiation resistance in doxorubicin-resistant breast adenocarcinoma cells

  • Authors:
    • Lidia Luzhna
    • Andrey Golubov
    • Slava Ilnytskyy
    • Vasyl F. Chekhun
    • Olga Kovalchuk
  • View Affiliations / Copyright

    Affiliations: Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K3M4, Canada, Department of Mechanisms of Anticancer Therapy, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences (NAS) of Ukraine, Kiev 03022, Ukraine
  • Pages: 1692-1708
    |
    Published online on: March 4, 2013
       https://doi.org/10.3892/ijo.2013.1845
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

A positive response to breast cancer treatment is largely dependent on the successful combination of anticancer treatment modalities, such as chemotherapy and radiation therapy. Unfortunately, chemotherapy resistance occurs frequently. Furthermore, drug‑resistant tumors can become unresponsive to other antitumor therapies, and they often fail to respond to radiation therapy. The molecular structures underlying the radiation responses of chemoresistant cells and tumors are not well understood. We analyzed the effect of ionizing radiation on MCF-7 human breast adenocarcinoma cells and their doxorubicin‑resistant variant, MCF-7/DOX. The results demonstrated that drug‑resistant MCF-7/DOX cells were less susceptible to radiation-induced DNA damage and apoptosis. This was proven through gene expression profiling, lower levels of γH2AX foci upon irradiation, and altered levels of DNA repair proteins, including pATM, KU70 and RAD51. Additionally, MCF-7/DOX drug‑resistant cells harbored DNA polymerases with significantly low fidelity. In summary, our study revealed that drug-resistant MCF-7/DOX cells have high DNA repair potential and low-fidelity DNA polymerases, seemingly sacrificing specificity and efficiency to gain higher survival potential. In the long run, this may lead to an increased probability of mutation accumulation and further the development of an even more pronounced resistance phenotype. Therefore, this study provides a roadmap for the analysis of the roles of the DNA repair function and effectiveness, and apoptosis in response to radiation, chemotherapy and combinations of both treatment modalities.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1. 

Guarneri V and Conte PF: The curability of breast cancer and the treatment of advanced disease. Eur J Nucl Med Mol Imaging. 31(Suppl 1): S149–S161. 2004. View Article : Google Scholar : PubMed/NCBI

2. 

Lehnert M: Clinical multidrug resistance in cancer: a multifactorial problem. Eur J Cancer. 32A:912–920. 1996. View Article : Google Scholar : PubMed/NCBI

3. 

Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C and Gottesman MM: Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 5:219–234. 2006. View Article : Google Scholar : PubMed/NCBI

4. 

Fojo T: Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updat. 10:59–67. 2007. View Article : Google Scholar

5. 

O’Driscoll L and Clynes M: Molecular markers of multiple drug resistance in breast cancer. Chemotherapy. 52:125–129. 2006.PubMed/NCBI

6. 

Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med. 53:615–627. 2002. View Article : Google Scholar : PubMed/NCBI

7. 

Pommier Y, Sordet O, Antony S, Hayward RL and Kohn KW: Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 23:2934–2949. 2004. View Article : Google Scholar : PubMed/NCBI

8. 

Stavrovskaya AA: Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry (Mosc). 65:95–106. 2000.PubMed/NCBI

9. 

Karran P: Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis. 22:1931–1937. 2001. View Article : Google Scholar : PubMed/NCBI

10. 

Rixe O and Fojo T: Is cell death a critical end point for anti-cancer therapies or is cytostasis sufficient? Clin Cancer Res. 13:7280–7287. 2007. View Article : Google Scholar : PubMed/NCBI

11. 

Hickman JA: Apoptosis and chemotherapy resistance. Eur J Cancer. 32A:921–926. 1996. View Article : Google Scholar : PubMed/NCBI

12. 

Gottesman MM and Ling V: The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett. 580:998–1009. 2006.PubMed/NCBI

13. 

Modok S, Mellor HR and Callaghan R: Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Curr Opin Pharmacol. 6:350–354. 2006. View Article : Google Scholar : PubMed/NCBI

14. 

Coley HM: Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev. 34:378–390. 2008. View Article : Google Scholar : PubMed/NCBI

15. 

Gonzalez-Angulo AM, Morales-Vasquez F and Hortobagyi GN: Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 608:1–22. 2007. View Article : Google Scholar : PubMed/NCBI

16. 

Petrelli A and Giordano S: From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem. 15:422–432. 2008. View Article : Google Scholar : PubMed/NCBI

17. 

Chekhun VF, Lukyanova NY, Kovalchuk O, Tryndyak VP and Pogribny IP: Epigenetic profiling of multidrug-resistant human MCF-7 breast adenocarcinoma cells reveals novel hyper- and hypomethylated targets. Mol Cancer Ther. 6:1089–1098. 2007. View Article : Google Scholar : PubMed/NCBI

18. 

Dean-Colomb W and Esteva FJ: Emerging agents in the treatment of anthracycline- and taxane-refractory metastatic breast cancer. Semin Oncol. 35:S31–S40. 2008. View Article : Google Scholar : PubMed/NCBI

19. 

Ozols RF, Masuda H and Hamilton TC: Mechanisms of cross-resistance between radiation and antineoplastic drugs. NCI Monogr. 159–165. 1988.PubMed/NCBI

20. 

Shimm DS, Olson S and Hill AB: Radiation resistance in a multidrug resistant human T-cell leukemia line. Int J Radiat Oncol Biol Phys. 15:931–936. 1988. View Article : Google Scholar : PubMed/NCBI

21. 

Belli JA: Interaction between radiation and drug damage in mammalian cells. IV. Radiation response of adriamycin-resistant V79 cells. Radiat Res. 119:88–100. 1989. View Article : Google Scholar : PubMed/NCBI

22. 

Lehnert S, Greene D and Batist G: Radiation response of drug-resistant variants of a human breast cancer cell line. Radiat Res. 118:568–580. 1989. View Article : Google Scholar : PubMed/NCBI

23. 

Lehnert S, Greene D and Batist G: Radiation response of drug-resistant variants of a human breast cancer cell line: the effect of glutathione depletion. Radiat Res. 124:208–215. 1990. View Article : Google Scholar : PubMed/NCBI

24. 

Alaoui-Jamali MA, Batist G and Lehnert S: Radiation-induced damage to DNA in drug- and radiation-resistant sublines of a human breast cancer cell line. Radiat Res. 129:37–42. 1992. View Article : Google Scholar : PubMed/NCBI

25. 

Miller PR, Hill AB, Slovak ML and Shimm DS: Radiation resistance in a doxorubicin-resistant human fibrosarcoma cell line. Am J Clin Oncol. 15:216–221. 1992. View Article : Google Scholar : PubMed/NCBI

26. 

Zhang Y, Sweet KM, Sognier MA and Belli JA: Interaction between radiation and drug damage in mammalian cells. VI. Radiation and doxorubicin age-response function of doxorubicin-sensitive and -resistant Chinese hamster cells. Radiat Res. 132:105–111. 1992. View Article : Google Scholar

27. 

Lehnert S, Vestergaard J, Batist G and Aloui-Jamali MA: Radiation resistance in a melphalan-resistant subline of a rat mammary carcinoma. Radiat Res. 139:232–239. 1994. View Article : Google Scholar : PubMed/NCBI

28. 

Liang K, Lu Y, Jin W, Ang KK, Milas L and Fan Z: Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther. 2:1113–1120. 2003.PubMed/NCBI

29. 

Koukourakis MI, Koukouraki S, Giatromanolaki A, et al: Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J Clin Oncol. 17:3512–3521. 1999.PubMed/NCBI

30. 

Gewirtz DA: Growth arrest and cell death in the breast tumor cell in response to ionizing radiation and chemotherapeutic agents which induce DNA damage. Breast Cancer Res Treat. 62:223–235. 2000. View Article : Google Scholar : PubMed/NCBI

31. 

Reinhold WC, Kouros-Mehr H, Kohn KW, et al: Apoptotic susceptibility of cancer cells selected for camptothecin resistance: gene expression profiling, functional analysis, and molecular interaction mapping. Cancer Res. 63:1000–1011. 2003.

32. 

Kovalchuk O, Filkowski J, Meservy J, et al: Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 7:2152–2159. 2008. View Article : Google Scholar : PubMed/NCBI

33. 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009.PubMed/NCBI

34. 

Huang da W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009.PubMed/NCBI

35. 

Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e452001. View Article : Google Scholar : PubMed/NCBI

36. 

Tryndyak VP, Kovalchuk O and Pogribny IP: Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins. Cancer Biol Ther. 5:65–70. 2006. View Article : Google Scholar

37. 

Gening LV, Petrochenkov AN, Reshetnyak AB, Andreeva LE and Tarantul VZ: DNA polymerase iota-like activity in crude cell extracts of different mouse organs. Biochemistry (Mosc). 69:435–440. 2004. View Article : Google Scholar : PubMed/NCBI

38. 

Olive PL and Banath JP: The comet assay: a method to measure DNA damage in individual cells. Nat Protoc. 1:23–29. 2006. View Article : Google Scholar : PubMed/NCBI

39. 

Tice RR and Strauss GH: The single cell gel electrophoresis/comet assay: a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells. 13(Suppl 1): 207–214. 1995.PubMed/NCBI

40. 

Sedelnikova OA and Bonner WM: GammaH2AX in cancer cells: a potential biomarker for cancer diagnostics, prediction and recurrence. Cell Cycle. 5:2909–2913. 2006. View Article : Google Scholar : PubMed/NCBI

41. 

Carpenter AE, Jones TR, Lamprecht MR, et al: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7:R1002006. View Article : Google Scholar : PubMed/NCBI

42. 

Lamprecht MR, Sabatini DM and Carpenter AE: CellProfiler: free, versatile software for automated biological image analysis. Biotechniques. 42:71–75. 2007. View Article : Google Scholar : PubMed/NCBI

43. 

Bebenek K and Kunkel TA: Functions of DNA polymerases. Adv Protein Chem. 69:137–165. 2004. View Article : Google Scholar

44. 

Shcherbakova PV, Bebenek K and Kunkel TA: Functions of eukaryotic DNA polymerases. Sci Aging Knowledge Environ 2003. RE32003.PubMed/NCBI

45. 

Vermes I, Haanen C, Steffens-Nakken H and Reutelingsperger C: A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 184:39–51. 1995. View Article : Google Scholar

46. 

Little JB: Radiation carcinogenesis. Carcinogenesis. 21:397–404. 2000. View Article : Google Scholar

47. 

Huang L, Snyder AR and Morgan WF: Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene. 22:5848–5854. 2003. View Article : Google Scholar : PubMed/NCBI

48. 

Bonner WM, Redon CE, Dickey JS, et al: GammaH2AX and cancer. Nat Rev Cancer. 8:957–967. 2008. View Article : Google Scholar : PubMed/NCBI

49. 

Olive PL: DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int J Radiat Biol. 75:395–405. 1999. View Article : Google Scholar : PubMed/NCBI

50. 

West SC: Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol. 4:435–445. 2003. View Article : Google Scholar : PubMed/NCBI

51. 

McGlynn P and Lloyd RG: Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol. 3:859–870. 2002. View Article : Google Scholar : PubMed/NCBI

52. 

Helleday T: Pathways for mitotic homologous recombination in mammalian cells. Mutat Res. 532:103–115. 2003. View Article : Google Scholar : PubMed/NCBI

53. 

Hoeijmakers JH: DNA repair mechanisms. Maturitas. 38:17–23. 2001. View Article : Google Scholar : PubMed/NCBI

54. 

Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S and Lieberman J: gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell. 20:801–809. 2005. View Article : Google Scholar : PubMed/NCBI

55. 

Lundin C, Schultz N, Arnaudeau C, Mohindra A, Hansen LT and Helleday T: RAD51 is involved in repair of damage associated with DNA replication in mammalian cells. J Mol Biol. 328:521–535. 2003. View Article : Google Scholar : PubMed/NCBI

56. 

Hoeijmakers JH: Genome maintenance mechanisms for preventing cancer. Nature. 411:366–374. 2001. View Article : Google Scholar : PubMed/NCBI

57. 

Jin S and Weaver DT: Double-strand break repair by Ku70 requires heterodimerization with Ku80 and DNA binding functions. EMBO J. 16:6874–6885. 1997. View Article : Google Scholar : PubMed/NCBI

58. 

Fornari FA, Randolph JK, Yalowich JC, Ritke MK and Gewirtz DA: Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol. 45:649–656. 1994.PubMed/NCBI

59. 

Fortune JM and Osheroff N: Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog Nucleic Acid Res Mol Biol. 64:221–253. 2000. View Article : Google Scholar : PubMed/NCBI

60. 

Khimani AH, Mhashilkar AM, Mikulskis A, et al: Housekeeping genes in cancer: normalization of array data. Biotechniques. 38:739–745. 2005. View Article : Google Scholar : PubMed/NCBI

61. 

Rubie C, Kempf K, Hans J, et al: Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell Probes. 19:101–109. 2005. View Article : Google Scholar : PubMed/NCBI

62. 

Barnard GF, Staniunas RJ, Bao S, et al: Increased expression of human ribosomal phosphoprotein P0 messenger RNA in hepatocellular carcinoma and colon carcinoma. Cancer Res. 52:3067–3072. 1992.PubMed/NCBI

63. 

Henry JL, Coggin DL and King CR: High-level expression of the ribosomal protein L19 in human breast tumors that overexpress erbB-2. Cancer Res. 53:1403–1408. 1993.PubMed/NCBI

64. 

Lukyanova NY, Rusetskya NV, Tregubova NA and Chekhun VF: Molecular profile and cell cycle in MCF-7 cells resistant to cisplatin and doxorubicin. Exp Oncol. 31:87–91. 2009.PubMed/NCBI

65. 

Gyorffy B, Serra V, Jurchott K, et al: Prediction of doxorubicin sensitivity in breast tumors based on gene expression profiles of drug-resistant cell lines correlates with patient survival. Oncogene. 24:7542–7551. 2005. View Article : Google Scholar : PubMed/NCBI

66. 

Huang J, Tan PH, Thiyagarajan J and Bay BH: Prognostic significance of glutathione S-transferase-pi in invasive breast cancer. Mod Pathol. 16:558–565. 2003. View Article : Google Scholar : PubMed/NCBI

67. 

Saleh EM, El-Awady RA, Abdel Alim MA and Abdel Wahab AH: Altered expression of proliferation-inducing and proliferation-inhibiting genes might contribute to acquired doxorubicin resistance in breast cancer cells. Cell Biochem Biophys. 55:95–105. 2009. View Article : Google Scholar

68. 

Miyara H, Hida T, Nishida K, et al: Modification of chemoradiosensitivity of a human lung cancer cell line by introduction of the glutathione S-transferase pi gene. Jpn J Clin Oncol. 26:1–5. 1996. View Article : Google Scholar : PubMed/NCBI

69. 

Harper ME, Antoniou A, Villalobos-Menuey E, et al: Characterization of a novel metabolic strategy used by drug-resistant tumor cells. FASEB J. 16:1550–1557. 2002. View Article : Google Scholar : PubMed/NCBI

70. 

Diehn M, Cho RW, Lobo NA, et al: Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 458:780–783. 2009. View Article : Google Scholar : PubMed/NCBI

71. 

Kang JH, Song KH, Jeong KC, et al: Involvement of Cox-2 in the metastatic potential of chemotherapy-resistant breast cancer cells. BMC Cancer. 11:3342011. View Article : Google Scholar : PubMed/NCBI

72. 

Mihich E: On the immunomodulating effects of anti-cancer drugs and their therapeutic exploitation. Jpn J Clin Oncol. 30:469–471. 2000. View Article : Google Scholar : PubMed/NCBI

73. 

Ehrke MJ, Verstovsek S, Zaleskis G, et al: Specific anti-EL4-lymphoma immunity in mice cured 2 years earlier with doxorubicin and interleukin-2. Cancer Immunol Immunother. 42:221–230. 1996.PubMed/NCBI

74. 

Cahill DP, Lengauer C, Yu J, et al: Mutations of mitotic checkpoint genes in human cancers. Nature. 392:300–303. 1998. View Article : Google Scholar : PubMed/NCBI

75. 

Nguyen HG, Makitalo M, Yang D, Chinnappan D, St Hilaire C and Ravid K: Deregulated Aurora-B induced tetraploidy promotes tumorigenesis. FASEB J. 23:2741–2748. 2009. View Article : Google Scholar : PubMed/NCBI

76. 

Sak A, Stuschke M, Groneberg M, Kubler D, Pottgen C and Eberhardt WE: Inhibiting the aurora B kinase potently suppresses repopulation during fractionated irradiation of human lung cancer cell lines. Int J Radiat Oncol Biol Phys. 84:492–499. 2012. View Article : Google Scholar : PubMed/NCBI

77. 

Liebermann DA, Tront JS, Sha X, Mukherjee K, Mohamed-Hadley A and Hoffman B: Gadd45 stress sensors in malignancy and leukemia. Crit Rev Oncog. 16:129–140. 2011. View Article : Google Scholar : PubMed/NCBI

78. 

Kunkel TA and Burgers PM: Dividing the workload at a eukaryotic replication fork. Trends Cell Biol. 18:521–527. 2008. View Article : Google Scholar : PubMed/NCBI

79. 

Matsuda T, van de Berg BJ, Bebenek K, Osheroff WP, Wilson SH and Kunkel TA: The base substitution fidelity of DNA polymerase beta-dependent single nucleotide base excision repair. J Biol Chem. 278:25947–25951. 2003. View Article : Google Scholar : PubMed/NCBI

80. 

Kunkel TA, Pavlov YI and Bebenek K: Functions of human DNA polymerases eta, kappa and iota suggested by their properties, including fidelity with undamaged DNA templates. DNA Repair (Amst). 2:135–149. 2003. View Article : Google Scholar : PubMed/NCBI

81. 

Beard WA, Shock DD, Vande Berg BJ and Wilson SH: Efficiency of correct nucleotide insertion governs DNA polymerase fidelity. J Biol Chem. 277:47393–47398. 2002. View Article : Google Scholar

82. 

Goodman MF and Tippin B: Sloppier copier DNA polymerases involved in genome repair. Curr Opin Genet Dev. 10:162–168. 2000. View Article : Google Scholar : PubMed/NCBI

83. 

Taylor ST, Hickman JA and Dive C: Survival signals within the tumour microenvironment suppress drug-induced apoptosis: lessons learned from B lymphomas. Endocr Relat Cancer. 6:21–23. 1999. View Article : Google Scholar : PubMed/NCBI

84. 

Banath JP, Macphail SH and Olive PL: Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines. Cancer Res. 64:7144–7149. 2004. View Article : Google Scholar : PubMed/NCBI

85. 

Jeggo P and Lobrich M: Radiation-induced DNA damage responses. Radiat Prot Dosimetry. 122:124–127. 2006. View Article : Google Scholar : PubMed/NCBI

86. 

Baumann P and West SC: Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci. 23:247–251. 1998. View Article : Google Scholar : PubMed/NCBI

87. 

Dudas A and Chovanec M: DNA double-strand break repair by homologous recombination. Mutat Res. 566:131–167. 2004. View Article : Google Scholar : PubMed/NCBI

88. 

Benson FE, Baumann P and West SC: Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature. 391:401–404. 1998. View Article : Google Scholar : PubMed/NCBI

89. 

Goodarzi AA, Block WD and Lees-Miller SP: The role of ATM and ATR in DNA damage-induced cell cycle control. Prog Cell Cycle Res. 5:393–411. 2003.PubMed/NCBI

90. 

Goodarzi AA, Jonnalagadda JC, Douglas P, et al: Auto-phosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J. 23:4451–4461. 2004. View Article : Google Scholar : PubMed/NCBI

91. 

Alexander A, Cai SL, Kim J, et al: ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA. 107:4153–4158. 2010. View Article : Google Scholar : PubMed/NCBI

92. 

Harris AL: DNA repair: relationship to drug and radiation resistance, metastasis and growth factors. Int J Radiat Biol Relat Stud Phys Chem Med. 48:675–690. 1985. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Luzhna L, Golubov A, Ilnytskyy S, Chekhun VF and Kovalchuk O: Molecular mechanisms of radiation resistance in doxorubicin-resistant breast adenocarcinoma cells. Int J Oncol 42: 1692-1708, 2013.
APA
Luzhna, L., Golubov, A., Ilnytskyy, S., Chekhun, V.F., & Kovalchuk, O. (2013). Molecular mechanisms of radiation resistance in doxorubicin-resistant breast adenocarcinoma cells. International Journal of Oncology, 42, 1692-1708. https://doi.org/10.3892/ijo.2013.1845
MLA
Luzhna, L., Golubov, A., Ilnytskyy, S., Chekhun, V. F., Kovalchuk, O."Molecular mechanisms of radiation resistance in doxorubicin-resistant breast adenocarcinoma cells". International Journal of Oncology 42.5 (2013): 1692-1708.
Chicago
Luzhna, L., Golubov, A., Ilnytskyy, S., Chekhun, V. F., Kovalchuk, O."Molecular mechanisms of radiation resistance in doxorubicin-resistant breast adenocarcinoma cells". International Journal of Oncology 42, no. 5 (2013): 1692-1708. https://doi.org/10.3892/ijo.2013.1845
Copy and paste a formatted citation
x
Spandidos Publications style
Luzhna L, Golubov A, Ilnytskyy S, Chekhun VF and Kovalchuk O: Molecular mechanisms of radiation resistance in doxorubicin-resistant breast adenocarcinoma cells. Int J Oncol 42: 1692-1708, 2013.
APA
Luzhna, L., Golubov, A., Ilnytskyy, S., Chekhun, V.F., & Kovalchuk, O. (2013). Molecular mechanisms of radiation resistance in doxorubicin-resistant breast adenocarcinoma cells. International Journal of Oncology, 42, 1692-1708. https://doi.org/10.3892/ijo.2013.1845
MLA
Luzhna, L., Golubov, A., Ilnytskyy, S., Chekhun, V. F., Kovalchuk, O."Molecular mechanisms of radiation resistance in doxorubicin-resistant breast adenocarcinoma cells". International Journal of Oncology 42.5 (2013): 1692-1708.
Chicago
Luzhna, L., Golubov, A., Ilnytskyy, S., Chekhun, V. F., Kovalchuk, O."Molecular mechanisms of radiation resistance in doxorubicin-resistant breast adenocarcinoma cells". International Journal of Oncology 42, no. 5 (2013): 1692-1708. https://doi.org/10.3892/ijo.2013.1845
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team