|
1.
|
Stupp R, Mason WP, van den Bent MJ, et al:
Radiotherapy plus concomitant and adjuvant temozolomide for
glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
2.
|
Wen PY and Kesari S: Malignant gliomas in
adults. N Engl J Med. 359:492–507. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3.
|
Stupp R, Hegi ME, Mason WP, et al: Effects
of radiotherapy with concomitant and adjuvant temozolomide versus
radiotherapy alone on survival in glioblastoma in a randomised
phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet
Oncol. 10:459–466. 2009.
|
|
4.
|
Koukourakis GV, Kouloulias V, Zacharias G,
et al: Temozolomide with radiation therapy in high grade brain
gliomas: pharmaceuticals considerations and efficacy; a review
article. Molecules. 14:1561–1577. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5.
|
Kondo Y, Hollingsworth EF and Kondo S:
Molecular targeting for malignant gliomas (Review). Int J Oncol.
24:1101–1109. 2004.PubMed/NCBI
|
|
6.
|
Tanaka H, Yoshida M, Tanimura H, et al:
The selective class I PI3K inhibitor CH5132799 targets human
cancers harboring oncogenic PIK3CA mutations. Clin Cancer Res.
17:3272–3281. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Jiang Z, Pore N, Cerniglia GJ, et al:
Phosphatase and tensin homologue deficiency in glioblastoma confers
resistance to radiation and temozolomide that is reversed by the
protease inhibitor nelfinavir. Cancer Res. 67:4467–4473. 2007.
View Article : Google Scholar
|
|
8.
|
Mason WP, Belanger K, Nicholas G, et al: A
phase II study of the Ras-MAPK signaling pathway inhibitor TLN-4601
in patients with glioblastoma at first progression. J Neurooncol.
107:343–349. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9.
|
Fassl A, Tagscherer KE, Richter J, et al:
Notch1 signaling promotes survival of glioblastoma cells via
EGFR-mediated induction of anti-apoptotic Mcl-1. Oncogene.
31:4698–4708. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Stockhausen MT, Broholm H, Villingshoj M,
et al: Maintenance of EGFR and EGFRvIII expressions in an in vivo
and in vitro model of human glioblastoma multiforme. Exp Cell Res.
317:1513–1526. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11.
|
Ji XM, Xie CH, Fang MH, et al: Efficient
inhibition of human telomerase activity by antisense
oligonucleotides sensitizes cancer cells to radiotherapy. Acta
Pharmacol Sin. 27:1185–1191. 2006. View Article : Google Scholar
|
|
12.
|
Chakravarti A, Zhai G, Suzuki Y, et al:
The prognostic significance of phosphatidylinositol 3-kinase
pathway activation in human gliomas. J Clin Oncol. 22:1926–1933.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
13.
|
Kao GD, Jiang Z, Fernandes AM, Gupta AK
and Maity A: Inhibition of phosphatidylinositol-3-OH kinase/Akt
signaling impairs DNA repair in glioblastoma cells following
ionizing radiation. J Biol Chem. 282:21206–21212. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
14.
|
Gallia GL, Tyler BM, Hann CL, et al:
Inhibition of Akt inhibits growth of glioblastoma and glioblastoma
stem-like cells. Mol Cancer Ther. 8:386–393. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15.
|
Chautard E, Loubeau G, Tchirkov A, et al:
Akt signaling pathway: a target for radiosensitizing human
malignant glioma. Neurooncology. 12:434–443. 2010.PubMed/NCBI
|
|
16.
|
Carnero A, Blanco-Aparicio C, Renner O,
Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer,
therapeutic implications. Curr Cancer Drug Targets. 8:187–198.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
17.
|
Sonoda Y, Ozawa T, Aldape KD, Deen DF,
Berger MS and Pieper RO: Akt pathway activation converts anaplastic
astrocytoma to glioblastoma multiforme in a human astrocyte model
of glioma. Cancer Res. 61:6674–6678. 2001.PubMed/NCBI
|
|
18.
|
Suzuki Y, Shirai K, Oka K, et al: Higher
pAkt expression predicts a significant worse prognosis in
glioblastomas. J Radiat Res. 51:343–348. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19.
|
Ermoian RP, Furniss CS, Lamborn KR, et al:
Dysregulation of PTEN and protein kinase B is associated with
glioma histology and patient survival. Clin Cancer Res.
8:1100–1106. 2002.PubMed/NCBI
|
|
20.
|
Choe G, Horvath S, Cloughesy TF, et al:
Analysis of the phosphatidylinositol 3′-kinase signaling pathway in
glioblastoma patients in vivo. Cancer Res. 63:2742–2746. 2003.
|
|
21.
|
Hayashi Y, Ueki K, Waha A, Wiestler OD,
Louis DN and von Deimling A: Association of EGFR gene amplification
and CDKN2 (p16/MTS1) gene deletion in glioblastoma multiforme.
Brain Pathol. 7:871–875. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
22.
|
Sugawa N, Ekstrand AJ, James CD and
Collins VP: Identical splicing of aberrant epidermal growth factor
receptor transcripts from amplified rearranged genes in human
glioblastomas. Proc Natl Acad Sci USA. 87:8602–8606. 1990.
View Article : Google Scholar
|
|
23.
|
Huang HS, Nagane M, Klingbeil CK, et al:
The enhanced tumorigenic activity of a mutant epidermal growth
factor receptor common in human cancers is mediated by threshold
levels of constitutive tyrosine phosphorylation and unattenuated
signaling. J Biol Chem. 272:2927–2935. 1997. View Article : Google Scholar
|
|
24.
|
Haas-Kogan D, Shalev N, Wong M, Mills G,
Yount G and Stokoe D: Protein kinase B (PKB/Akt) activity is
elevated in glioblastoma cells due to mutation of the tumor
suppressor PTEN/MMAC. Curr Biol. 8:1195–1198. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Li J, Yen C, Liaw D, et al: PTEN, a
putative protein tyrosine phosphatase gene mutated in human brain,
breast and prostate cancer. Science. 275:1943–1947. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
26.
|
Myers MP, Pass I, Batty IH, et al: The
lipid phosphatase activity of PTEN is critical for its tumor
supressor function. Proc Natl Acad Sci USA. 95:13513–13518. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
27.
|
Holland EC, Celestino J, Dai C, Schaefer
L, Sawaya RE and Fuller GN: Combined activation of Ras and Akt in
neural progenitors induces glioblastoma formation in mice. Nat
Genet. 25:55–57. 2000. View
Article : Google Scholar : PubMed/NCBI
|
|
28.
|
Rajasekhar VK, Viale A, Socci ND, Wiedmann
M, Hu X and Holland EC: Oncogenic Ras and Akt signaling contribute
to glioblastoma formation by differential recruitment of existing
mRNAs to polysomes. Mol Cell. 12:889–901. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29.
|
Smith JS, Tachibana I, Passe SM, et al:
PTEN mutation, EGFR amplification and outcome in patients with
anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer
Inst. 93:1246–1256. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
30.
|
Knobbe CB, Merlo A and Reifenberger G:
Pten signaling in gliomas. Neurooncology. 4:196–211.
2002.PubMed/NCBI
|
|
31.
|
Koul D: PTEN signaling pathways in
glioblastoma. Cancer Biol Ther. 7:1321–1325. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32.
|
Li HF, Kim JS and Waldman T:
Radiation-induced Akt activation modulates radioresistance in human
glioblastoma cells. Radiat Oncol. 4:432009. View Article : Google Scholar : PubMed/NCBI
|
|
33.
|
Nakamura JL, Karlsson A, Arvold ND, et al:
PKB/Akt mediates radiosensitization by the signaling inhibitor
LY294002 in human malignant gliomas. J Neurooncol. 71:215–222.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
34.
|
Turriziani M, Di Giacomo AM, Cardillo A,
et al: Residual telomerase activity: a marker of cell survival
after exposure to gamma radiation in vitro. Anticancer Res.
23:4561–4569. 2003.PubMed/NCBI
|
|
35.
|
Wang X, Liu Y, Chow LS, et al: Regulation
of telomerase activity by gamma-radiation in nasopharyngeal
carcinoma cells. Anticancer Res. 20:433–437. 2000.PubMed/NCBI
|
|
36.
|
Perez Mdel R, Dubner D, Michelin S,
Leteurtre F, Carosella ED and Gisone PA: Radiation-induced
upregulation of telomerase in KG1a cells is influenced by dose-rate
and radiation quality. Int J Radiat Biol. 78:1175–1183.
2002.PubMed/NCBI
|
|
37.
|
Wong KK, Chang S, Weiler SR, et al:
Telomere dysfunction impairs DNA repair and enhances sensitivity to
ionizing radiation. Nat Genet. 26:85–88. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
38.
|
Falchetti ML, Pallini R, D’Ambrosio E, et
al: In situ detection of telomerase catalytic subunit mRNA in
glioblastoma multiforme. Int J Cancer. 88:895–901. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
Huang F, Kanno H, Yamamoto I, Lin Y and
Kubota Y: Correlation of clinical features and telomerase activity
in human gliomas. J Neurooncol. 43:137–142. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
40.
|
Harada K, Kurisu K, Tahara H, Tahara E and
Ide T: Telomerase activity in primary and secondary glioblastomas
multiforme as a novel molecular tumor marker. J Neurosurg.
93:618–625. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
41.
|
Fukushima T, Yoshino A, Katayama Y,
Watanabe T, Kusama K and Moro I: Prediction of clinical course of
diffusely infiltrating astrocytomas from telomerase expression and
quantitated activity level. Cancer Lett. 187:191–198. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Boldrini L, Pistolesi S, Gisfredi S, et
al: Telomerase activity and hTERT mRNA expression in glial tumors.
Int J Oncol. 28:1555–1560. 2006.PubMed/NCBI
|
|
43.
|
Wesbuer S, Lanvers-Kaminsky C,
Duran-Seuberth I, et al: Association of telomerase activity with
radio- and chemosensitivity of neuroblastomas. Radiat Oncol.
5:662010. View Article : Google Scholar : PubMed/NCBI
|
|
44.
|
Merle P, Evrard B, Petitjean A, et al:
Telomere targeting with a new G4 ligand enhances radiation-induced
killing of human glioblastoma cells. Mol Cancer Ther. 10:1784–1795.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Marian CO, Cho SK, McEllin BM, et al: The
telomerase antagonist, imetelstat, efficiently targets glioblastoma
tumor-initiating cells leading to decreased proliferation and tumor
growth. Clin Cancer Res. 16:154–163. 2010. View Article : Google Scholar
|
|
46.
|
Zhou FX, Liao ZK, Dai J, et al:
Radiosensitization effect of zidovudine on human malignant glioma
cells. Biochem Biophys Res Commun. 354:351–356. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47.
|
Kang SS, Kwon T, Kwon DY and Do SI: Akt
protein kinase enhances human telomerase activity through
phosphorylation of telomerase reverse transcriptase subunit. J Biol
Chem. 274:13085–13090. 1999. View Article : Google Scholar
|
|
48.
|
Zhou C, Bae-Jump VL, Whang YE, Gehrig PA
and Boggess JF: The PTEN tumor suppressor inhibits telomerase
activity in endometrial cancer cells by decreasing hTERT mRNA
levels. Gynecol Oncol. 101:305–310. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49.
|
Uziel O, Fenig E, Nordenberg J, et al:
Imatinib mesylate (Gleevec) downregulates telomerase activity and
inhibits proliferation in telomerase-expressing cell lines. Br J
Cancer. 92:1881–1891. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
50.
|
Leteurtre F, Li X, Gluckman E and
Carosella ED: Telomerase activity during the cell cycle and in
gamma-irradiated hematopoietic cells. Leukemia. 11:1681–1689. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
51.
|
Finnon P, Silver AR and Bouffler SD:
Upregulation of telomerase activity by X-irradiation in mouse
leukaemia cells is independent of Tert, Terc, Tnks and Myc
transcription. Carcinogenesis. 21:573–578. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
52.
|
Hande MP, Balajee AS and Natarajan AT:
Induction of telomerase activity by UV-irradiation in Chinese
hamster cells. Oncogene. 15:1747–1752. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
53.
|
Hyeon Joo O, Hande MP, Lansdorp PM and
Natarajan AT: Induction of telomerase activity and chromosome
aberrations in human tumour cell lines following X-irradiation.
Mutat Res. 401:121–131. 1998.PubMed/NCBI
|
|
54.
|
Ram R, Uziel O, Eldan O, et al: Ionizing
radiation upregulates telomerase activity in cancer cell lines by
post-translational mechanism via ras/phosphatidylinositol
3-kinase/Akt pathway. Clin Cancer Res. 15:914–923. 2009. View Article : Google Scholar
|
|
55.
|
Lefranc F, Rynkowski M, DeWitte O and Kiss
R: Present and potential future adjuvant issues in high-grade
astrocytic glioma treatment. Adv Tech Stand Neurosurg. 34:3–35.
2009.PubMed/NCBI
|
|
56.
|
Cully M, You H, Levine AJ and Mak TW:
Beyond PTEN mutations: the PI3K pathway as an integrator of
multiple inputs during tumorigenesis. Nat Rev Cancer. 6:184–192.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
57.
|
Hennessy BT, Smith DL, Ram PT, Lu Y and
Mills GB: Exploiting the PI3K/AKT pathway for cancer drug
discovery. Nat Rev Drug Discov. 4:988–1004. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58.
|
Vlahos CJ, Matter WF, Hui KY and Brown RF:
A specific inhibitor of phosphatidylinositol 3-kinase,
2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol
Chem. 269:5241–5248. 1994.PubMed/NCBI
|
|
59.
|
Menet A, Speth C, Larcher C, et al:
Epstein-Barr virus infection of human astrocyte cell lines. J
Virol. 73:7722–7733. 1999.PubMed/NCBI
|
|
60.
|
Pennarun G, Granotier C, Gauthier LR, et
al: Apoptosis related to telomere instability and cell cycle
alterations in human glioma cells treated by new highly selective
G-quadruplex ligands. Oncogene. 24:2917–2928. 2005. View Article : Google Scholar
|
|
61.
|
Walker SM, Leslie NR, Perera NM, Batty IH
and Downes CP: The tumour-suppressor function of PTEN requires an
N-terminal lipid-binding motif. Biochem J. 379:301–307. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
62.
|
Sano T, Asai A, Mishima K, Fujimaki T and
Kirino T: Telomerase activity in 144 brain tumours. Br J Cancer.
77:1633–1637. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
63.
|
Liang J and Slingerland JM: Multiple roles
of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell
Cycle. 2:339–345. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
64.
|
Olive PL: Detection of DNA damage in
individual cells by analysis of histone H2AX phosphorylation.
Methods Cell Biol. 75:355–373. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
65.
|
Nowak E, Etienne O, Millet P, et al:
Radiation-induced H2AX phosphorylation and neural precursor
apoptosis in the developing brain of mice. Radiat Res. 165:155–164.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
66.
|
Rogakou EP, Pilch DR, Orr AH, Ivanova VS
and Bonner WM: DNA double-stranded breaks induce histone H2AX
phosphorylation on serine 139. J Biol Chem. 273:5858–5868. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
67.
|
Fernandez-Capetillo O, Lee A, Nussenzweig
M and Nussenzweig A: H2AX: the histone guardian of the genome. DNA
Repair. 3:959–967. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
68.
|
Stiff T, O’Driscoll M, Rief N, Iwabuchi K,
Lobrich M and Jeggo PA: ATM and DNA-PK function redundantly to
phosphorylate H2AX after exposure to ionizing radiation. Cancer
Res. 64:2390–2396. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
69.
|
Hiraga S, Ohnishi T, Izumoto S, et al:
Telomerase activity and alterations in telomere length in human
brain tumors. Cancer Res. 58:2117–2125. 1998.PubMed/NCBI
|
|
70.
|
Tchirkov A, Rolhion C, Kemeny JL, et al:
Clinical implications of quantitative real-time RT-PCR analysis of
hTERT gene expression in human gliomas. Br J Cancer. 88:516–520.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
71.
|
Shervington A, Patel R, Lu C, et al:
Telomerase subunits expression variation between biopsy samples and
cell lines derived from malignant glioma. Brain Res. 1134:45–52.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
72.
|
Hirao T, Urata Y, Kageyama K, et al:
Dehydroepiandrosterone augments sensitivity to gamma-ray
irradiation in human H4 neuroglioma cells through down-regulation
of Akt signaling. Free Radic Res. 42:957–965. 2008. View Article : Google Scholar
|
|
73.
|
Ramaswamy S, Nakamura N, Vazquez F, et al:
Regulation of G1 progression by the PTEN tumor suppressor protein
is linked to inhibition of the phosphatidylinositol 3-kinase/Akt
pathway. Proc Natl Acad Sci USA. 96:2110–2115. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
74.
|
Gottschalk AR, Basila D, Wong M, et al:
p27Kip1is required for PTEN-induced G1 growth arrest.
Cancer Res. 61:2105–2111. 2001.PubMed/NCBI
|
|
75.
|
Liang J, Zubovitz J, Petrocelli T, et al:
PKB/Akt phosphorylates p27, impairs nuclear import of p27 and
opposes p27-mediated G1 arrest. Nat Med. 8:1153–1160. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
76.
|
Rosenzweig KE, Youmell MB, Palayoor ST and
Price BD: Radiosensitization of human tumor cells by the
phosphatidylinositol3-kinase inhibitors wortmannin and LY294002
correlates with inhibition of DNA-dependent protein kinase and
prolonged G2-M delay. Clin Cancer Res. 3:1149–1156. 1997.
|
|
77.
|
Park JK, Jung HY, Park SH, et al:
Combination of PTEN and gamma-ionizing radiation enhances cell
death and G(2)/M arrest through regulation of AKT activity and p21
induction in non-small-cell lung cancer cells. Int J Radiat Oncol
Biol Phys. 70:1552–1560. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78.
|
Toulany M, Kehlbach R, Florczak U, et al:
Targeting of AKT1 enhances radiation toxicity of human tumor cells
by inhibiting DNA-PKcs-dependent DNA double-strand break repair.
Mol Cancer Ther. 7:1772–1781. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
79.
|
Shtivelman E, Sussman J and Stokoe D: A
role for PI 3-kinase and PKB activity in the G2/M phase of the cell
cycle. Curr Biol. 12:919–924. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
80.
|
Lee SR, Park JH, Park EK, Chung CH, Kang
SS and Bang OS: Akt-induced promotion of cell-cycle progression at
G2/M phase involves upregulation of NF-Y binding activity in PC12
cells. J Cell Physiol. 205:270–277. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
81.
|
He L, Yang X, Cao X, Liu F, Quan M and Cao
J: Casticin induces growth suppression and cell cycle arrest
through activation of FOXO3a in hepatocellular carcinoma. Oncol
Rep. 29:103–108. 2013.PubMed/NCBI
|
|
82.
|
Chung J, Khadka P and Chung IK: Nuclear
import of hTERT requires a bipartite nuclear localization signal
and Akt-mediated phosphorylation. J Cell Sci. 125:2684–2697. 2012.
View Article : Google Scholar
|
|
83.
|
Neuhof D, Zwicker F, Kuepper JH, Debus J
and Weber KJ: Activation of telomerase by ionizing radiation:
differential response to the inhibition of DNA double-strand break
repair by abrogation of poly (ADP-ribosyl)ation, by LY294002, or by
Wortmannin. Int J Radiat Oncol Biol Phys. 69:887–894. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
84.
|
Fu W, Begley JG, Killen MW and Mattson MP:
Anti-apoptotic role of telomerase in pheochromocytoma cells. J Biol
Chem. 274:7264–7271. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
85.
|
Blackburn EH: Switching and signaling at
the telomere. Cell. 106:661–673. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
86.
|
Akiyama M, Yamada O, Kanda N, et al:
Telomerase overexpression in K562 leukemia cells protects against
apoptosis by serum deprivation and double-stranded DNA break
inducing agents, but not against DNA synthesis inhibitors. Cancer
Lett. 178:187–197. 2002. View Article : Google Scholar
|
|
87.
|
Masutomi K, Possemato R, Wong JM, et al:
The telomerase reverse transcriptase regulates chromatin state and
DNA damage responses. Proc Natl Acad Sci USA. 102:8222–8227. 2005.
View Article : Google Scholar
|
|
88.
|
Ferrandon S, Saultier P, Carras J, et al:
Telomere profiling: toward glioblastoma personalized medicine. Mol
Neurobiol. 47:64–76. 2013. View Article : Google Scholar : PubMed/NCBI
|