Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
August 2013 Volume 43 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August 2013 Volume 43 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: Altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism

  • Authors:
    • William J. Fredericks
    • Hankun Yin
    • Priti Lal
    • Raghunath Puthiyaveettil
    • Stephen B. Malkowicz
    • Nathaniel J. Fredericks
    • John Tomaszewski
    • Frank J. Rauscher
    • S. Bruce Malkowicz
  • View Affiliations / Copyright

    Affiliations: Division of Urology, Department of Surgery, University of Pennsylvania and Veterans Affairs Medical Center Philadelphia, Philadelphia, PA 19104, USA, Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA, Pathology and Anatomical Sciences, Buffalo, NY 14214, USA, The Wistar Institute, Philadelphia, PA 19104, USA
  • Pages: 638-652
    |
    Published online on: June 12, 2013
       https://doi.org/10.3892/ijo.2013.1985
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Current studies of the TERE1 (UBIAD1) protein emphasize its multifactorial influence on the cell, in part due to its broad sub-cellular distribution to mitochondria, endoplasmic reticulum and golgi. However, the profound effects of TERE1 relate to its prenyltransferase activity for synthesis of the bioactive quinones menaquinone and COQ10. Menaquinone (aka, vitamin K-2) serves multiple roles: as a carrier in mitochondrial electron transport, as a ligand for SXR nuclear hormone receptor activation, as a redox modulator, and as an alkylator of cellular targets. We initially described the TERE1 (UBIAD1) protein as a tumor suppressor based upon reduced expression in urological cancer specimens and the inhibition of growth of tumor cell lines/xenografts upon ectopic expression. To extend this potential tumor suppressor role for the TERE1 protein to renal cell carcinoma (RCC), we applied TERE1 immunohistochemistry to a TMA panel of 28 RCC lesions and determined that in 57% of RCC lesions, TERE1 expression was reduced (36%) or absent (21%). Ectopic TERE1 expression caused an 80% decrease in growth of Caki-1 and Caki-2 cell lines, a significantly decreased colony formation, and increased caspase 3/7 activity in a panel of RCC cell lines. Furthermore, TERE1 expression increased mitochondrial oxygen consumption and hydrogen production, oxidative stress and NO production. Based on the elevated cholesterol and altered metabolic phenotype of RCC, we also examined the effects of TERE1 and the interacting protein TBL2 on cellular cholesterol. Ectopic TERE1 or TBL2 expression in Caki-1, Caki-2 and HEK 293 cells reduced cholesterol by up to 40%. RT-PCR analysis determined that TERE1 activated several SXR targets known to regulate lipid metabolism, consistent with predictions based on its role in menaquinone synthesis. Loss of TERE1 may contribute to the altered lipid metabolic phenotype associated with progression in RCC via an uncoupling of ROS/RNS and SXR signaling from apoptosis by elevation of cholesterol.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1. 

Li L and Kaelin WG Jr: New insights into the biology of renal cell carcinoma. Hematol Oncol Clin North Am. 25:667–686. 2011. View Article : Google Scholar : PubMed/NCBI

2. 

Messer J, Drabick J and Kaag M: Rational therapy for renal cell carcinoma based on its genetic targets. Adv Exp Med Biol. 779:291–308. 2013. View Article : Google Scholar : PubMed/NCBI

3. 

Pischon T, Nöthlings U and Boeing H: Obesity and cancer. Proc Nutr Soc. 67:128–145. 2008. View Article : Google Scholar

4. 

Drabkin HA and Gemmill RM: Obesity, cholesterol, and clear-cell renal cell carcinoma (RCC). Adv Cancer Res. 107:39–56. 2010. View Article : Google Scholar : PubMed/NCBI

5. 

Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M and De Bruine AP: VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 221:125–138. 2010. View Article : Google Scholar : PubMed/NCBI

6. 

Keith B, Johnson RS and Simon MC: HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 12:9–22. 2012.PubMed/NCBI

7. 

Banumathy G and Cairns P: Signaling pathways in renal cell carcinoma. Cancer Biol Ther. 10:658–664. 2010. View Article : Google Scholar : PubMed/NCBI

8. 

Linehan WM, Bratslavsky G, Pinto PA, et al: Molecular diagnosis and therapy of kidney cancer. Annu Rev Med. 61:329–343. 2010. View Article : Google Scholar : PubMed/NCBI

9. 

Mihaly Z, Sztupinszki Z, Surowiak P and Gyorffy B: A comprehensive overview of targeted therapy in metastatic renal cell carcinoma. Curr Cancer Drug Targets. 12:857–872. 2012. View Article : Google Scholar : PubMed/NCBI

10. 

Pal SK, Williams S, Josephson DY, Carmichael C, Vogelzang NJ and Quinn DI: Novel therapies for metastatic renal cell carcinoma: efforts to expand beyond the VEGF/mTOR signaling paradigm. Mol Cancer Ther. 11:526–537. 2012. View Article : Google Scholar : PubMed/NCBI

11. 

Gebhard RL, Clayman RV, Prigge WF, et al: Abnormal cholesterol metabolism in renal clear cell carcinoma. J Lipid Res. 28:1177–1184. 1987.PubMed/NCBI

12. 

Christenson E, Merlin S, Saito M and Schlesinger P: Cholesterol effects on BAX pore activation. J Mol Biol. 381:1168–1183. 2008. View Article : Google Scholar : PubMed/NCBI

13. 

Li YC, Park MJ, Ye SK, Kim CW and Kim YN: Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol. 168:1107–1118. 2006. View Article : Google Scholar : PubMed/NCBI

14. 

Martinez-Abundis E, Garcia N, Correa F, Franco M and Zazueta C: Changes in specific lipids regulate BAX-induced mitochondrial permeability transition. FEBS J. 274:6500–6510. 2007. View Article : Google Scholar : PubMed/NCBI

15. 

Oh HY, Lee EJ, Yoon S, Chung BH, Cho KS and Hong SJ: Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction. Prostate. 67:1061–1069. 2007. View Article : Google Scholar : PubMed/NCBI

16. 

Swinnen JV, Brusselmans K and Verhoeven G: Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care. 9:358–365. 2006. View Article : Google Scholar : PubMed/NCBI

17. 

Prenen H, Gil T and Awada A: New therapeutic developments in renal cell cancer. Crit Rev Oncol Hematol. 69:56–63. 2009. View Article : Google Scholar : PubMed/NCBI

18. 

Srinivasan R, Armstrong AJ, Dahut W and George DJ: Anti-angiogenic therapy in renal cell cancer. BJU Int. 99:1296–1300. 2007. View Article : Google Scholar : PubMed/NCBI

19. 

Selak MA, Armour SM, MacKenzie ED, et al: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 7:77–85. 2005. View Article : Google Scholar : PubMed/NCBI

20. 

Ashrafian H, O’Flaherty L, Adam J, et al: Expression profiling in progressive stages of fumarate-hydratase deficiency: the contribution of metabolic changes to tumorigenesis. Cancer Res. 70:9153–9165. 2010. View Article : Google Scholar : PubMed/NCBI

21. 

O’Flaherty L, Adam J, Heather LC, et al: Dysregulation of hypoxia pathways in fumarate hydratase-deficient cells is independent of defective mitochondrial metabolism. Hum Mol Genet. 19:3844–3851. 2010.PubMed/NCBI

22. 

Yang Y, Valera VA, Padilla-Nash HM, et al: UOK 262 cell line, fumarate hydratase deficient (FH-/FH-) hereditary leiomyomatosis renal cell carcinoma: in vitro and in vivo model of an aberrant energy metabolic pathway in human cancer. Cancer Genet Cytogenet. 196:45–55. 2010. View Article : Google Scholar

23. 

Nakagawa K, Hirota Y, Sawada N, et al: Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature. 468:117–121. 2010. View Article : Google Scholar : PubMed/NCBI

24. 

Fredericks WJ, McGarvey T, Wang H, et al: The TERE1 (UBIAD1) bladder tumor suppressor protein interacts with mitochondrial TBL2: regulation of trans-membrane potential, oxidative stress and SXR signaling to the nucleus. J Cell Biochem. View Article : Google Scholar : 2013.[Epub ahead of print].

25. 

McGarvey TW, Nguyen T, Tomaszewski JE, Monson FC and Malkowicz SB: Isolation and characterization of the TERE1 gene, a gene down-regulated in transitional cell carcinoma of the bladder. Oncogene. 20:1042–1051. 2001. View Article : Google Scholar : PubMed/NCBI

26. 

McGarvey TW, Nguyen T, Puthiyaveettil R, Tomaszewski JE and Malkowicz SB: TERE1, a novel gene affecting growth regulation in prostate carcinoma. Prostate. 54:144–155. 2003. View Article : Google Scholar : PubMed/NCBI

27. 

Fredericks WJ, McGarvey T, Wang H, et al: The bladder tumor suppressor protein TERE1 (UBIAD1) modulates cell cholesterol: implications for tumor progression. DNA Cell Biol. 30:851–864. 2011. View Article : Google Scholar : PubMed/NCBI

28. 

McGarvey TW, Nguyen TB and Malkowicz SB: An interaction between apolipoprotein E and TERE1 with a possible association with bladder tumor formation. J Cell Biochem. 95:419–428. 2005. View Article : Google Scholar : PubMed/NCBI

29. 

Weiss JS, Kruth HS, Kuivaniemi H, et al: Mutations in the UBIAD1 gene on chromosome short arm 1, region 36, cause Schnyder crystalline corneal dystrophy. Invest Ophthalmol Vis Sci. 48:5007–5012. 2007. View Article : Google Scholar : PubMed/NCBI

30. 

Nickerson ML, Kostiha BN, Brandt W, et al: UBIAD1 mutation alters a mitochondrial prenyltransferase to cause Schnyder corneal dystrophy. PLoS One. 5:e107602010. View Article : Google Scholar : PubMed/NCBI

31. 

Nickerson ML, Bosley AD, Weiss JS, et al: The UBIAD1 prenyltransferase links menaquione-4 synthesis to cholesterol metabolic enzymes. Hum Mutat. 34:317–329. 2013. View Article : Google Scholar : PubMed/NCBI

32. 

Ihunnah CA, Jiang M and Xie W: Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim Biophys Acta. 1812:956–963. 2011. View Article : Google Scholar : PubMed/NCBI

33. 

Zhou C, Verma S and Blumberg B: The steroid and xenobiotic receptor (SXR), beyond xenobiotic metabolism. Nucl Recept Signal. 7:e0012009.PubMed/NCBI

34. 

Lamson DW and Plaza SM: The anticancer effects of vitamin K. Altern Med Rev. 8:303–318. 2003.PubMed/NCBI

35. 

Nishikawa Y, Wang Z, Kerns J, Wilcox CS and Carr BI: Inhibition of hepatoma cell growth in vitro by arylating and non-arylating K vitamin analogs. Significance of protein tyrosine phosphatase inhibition. J Biol Chem. 274:34803–34810. 1999. View Article : Google Scholar : PubMed/NCBI

36. 

Gilloteaux J, Jamison JM, Neal DR, Loukas M, Doberzstyn T and Summers JL: Cell damage and death by autoschizis in human bladder (RT4) carcinoma cells resulting from treatment with ascorbate and menadione. Ultrastruct Pathol. 34:140–160. 2010. View Article : Google Scholar : PubMed/NCBI

37. 

Nowicka B and Kruk J: Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta. 1797:1587–1605. 2010. View Article : Google Scholar : PubMed/NCBI

38. 

Tielens AG, Rotte C, van Hellemond JJ and Martin W: Mitochondria as we don’t know them. Trends Biochem Sci. 27:564–572. 2002.

39. 

Vos M, Esposito G, Edirisinghe JN, et al: Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science. 336:1306–1310. 2012. View Article : Google Scholar : PubMed/NCBI

40. 

Spurgeon SL, Jones RC and Ramakrishnan R: High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One. 3:e16622008. View Article : Google Scholar : PubMed/NCBI

41. 

Mugoni V, Postel R, Catanzaro V, et al: Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell. 152:504–518. 2013. View Article : Google Scholar : PubMed/NCBI

42. 

Jamin N, Neumann JM, Ostuni MA, et al: Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol Endocrinol. 19:588–594. 2005. View Article : Google Scholar : PubMed/NCBI

43. 

Hulce JJ, Cognetta AB, Niphakis MJ, Tully SE and Cravatt BF: Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat Methods. 10:259–264. 2013. View Article : Google Scholar : PubMed/NCBI

44. 

Wu M, Neilson A, Swift AL, et al: Multiparameter metabolic analysis reveals a close l link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 292:C125–C136. 2007. View Article : Google Scholar

45. 

Klaus V, Hartmann T, Gambini J, et al: 1,4-Naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes. Arch Biochem Biophys. 496:93–100. 2010. View Article : Google Scholar : PubMed/NCBI

46. 

Sano M, Fujita H, Morita I, Uematsu H and Murota S: Vitamin K2 (menatetrenone) induces iNOS in bovine vascular smooth muscle cells: no relationship between nitric oxide production and gamma-carboxylation. J Nutr Sci Vitaminol (Tokyo). 45:711–723. 1999. View Article : Google Scholar

47. 

Bhalerao S and Clandinin TR: Cell biology. Vitamin K2 takes charge. Science. 336:1241–1242. 2012. View Article : Google Scholar : PubMed/NCBI

48. 

Shearer MJ and Newman P: Metabolism and cell biology of vitamin K. Thromb Haemost. 100:530–547. 2008.

49. 

Zhou C, King N, Chen KY and Breslow JL: Activation of PXR induces hypercholesterolemia in wild-type and accelerates atherosclerosis in apoE deficient mice. J Lipid Res. 50:2004–2013. 2009. View Article : Google Scholar : PubMed/NCBI

50. 

Landes N: Homologous metabolic and gene activating routes for vitamins E and K. Mol Aspects Med. 24:337–344. 2003. View Article : Google Scholar : PubMed/NCBI

51. 

Lim YP and Huang JD: Interplay of pregnane X receptor with other nuclear receptors on gene regulation. Drug Metab Pharmacokinet. 23:14–21. 2008. View Article : Google Scholar : PubMed/NCBI

52. 

Brown AJ and Jessup W: Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol Aspects Med. 30:111–122. 2009.PubMed/NCBI

53. 

Sonoda J, Chong LW, Downes M, et al: Pregnane X receptor prevents hepatorenal toxicity from cholesterol metabolites. Proc Natl Acad Sci USA. 102:2198–2203. 2005. View Article : Google Scholar : PubMed/NCBI

54. 

Wang Y, Rogers PM, Su C, Varga G, Stayrook KR and Burris TP: Regulation of cholesterologenesis by the oxysterol receptor, LXRalpha. J Biol Chem. 283:26332–26339. 2008. View Article : Google Scholar : PubMed/NCBI

55. 

Wang X and Rader DJ: Molecular regulation of macrophage reverse cholesterol transport. Curr Opin Cardiol. 22:368–372. 2007. View Article : Google Scholar : PubMed/NCBI

56. 

Wang X, Collins HL, Ranalletta M, et al: Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest. 117:2216–2224. 2007. View Article : Google Scholar : PubMed/NCBI

57. 

Lordan S, Mackrill JJ and O’Brien NM: Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases. J Nutr Biochem. 20:321–336. 2009. View Article : Google Scholar : PubMed/NCBI

58. 

Shibayama-Imazu T, Aiuchi T and Nakaya K: Vitamin K2-mediated apoptosis in cancer cells: role of mitochondrial trans-membrane potential. Vitam Horm. 78:211–226. 2008. View Article : Google Scholar : PubMed/NCBI

59. 

Jamison JM, Gilloteaux J, Nassiri MR, Venugopal M, Neal DR and Summers JL: Cell cycle arrest and autoschizis in a human bladder carcinoma cell line following Vitamin C and Vitamin K3 treatment. Biochem Pharmacol. 67:337–351. 2004. View Article : Google Scholar : PubMed/NCBI

60. 

Jamison JM, Gilloteaux J, Perlaky L, et al: Nucleolar changes and fibrillarin redistribution following apatone treatment of human bladder carcinoma cells. J Histochem Cytochem. 58:635–651. 2010. View Article : Google Scholar : PubMed/NCBI

61. 

Karasawa S, Azuma M, Kasama T, et al: Vitamin K2 covalently binds to Bak and induces Bak-mediated apoptosis. Mol Pharmacol. 83:613–620. 2013. View Article : Google Scholar : PubMed/NCBI

62. 

Dranka BP, Hill BG and Darley-Usmar VM: Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species. Free Radic Biol Med. 48:905–914. 2010. View Article : Google Scholar : PubMed/NCBI

63. 

Benz CC, Atsriku C, Yau C, et al: Novel pathways associated with quinone-induced stress in breast cancer cells. Drug Metab Rev. 38:601–613. 2006. View Article : Google Scholar : PubMed/NCBI

64. 

Bolton JL, Trush MA, Penning TM, Dryhurst G and Monks TJ: Role of quinones in toxicology. Chem Res Toxicol. 13:135–160. 2000. View Article : Google Scholar : PubMed/NCBI

65. 

Lamson DW, Gu YH, Plaza SM, Brignall MS, Brinton CA and Sadlon AE: The vitamin C: vitamin K3 system - enhancers and inhibitors of the anticancer effect. Altern Med Rev. 15:345–351. 2010.PubMed/NCBI

66. 

Ambs S and Glynn SA: Candidate pathways linking inducible nitric oxide synthase to a basal-like transcription pattern and tumor progression in human breast cancer. Cell Cycle. 10:619–624. 2011. View Article : Google Scholar

67. 

Lee J, Giordano S and Zhang J: Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 441:523–540. 2012. View Article : Google Scholar : PubMed/NCBI

68. 

Doulias PT, Tenopoulou M, Greene JL, Raju K and Ischiropoulos H: Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci Signal. 6:rs12013. View Article : Google Scholar : PubMed/NCBI

69. 

Lusini L, Tripodi SA, Rossi R, et al: Altered glutathione anti-oxidant metabolism during tumor progression in human renal-cell carcinoma. Int J Cancer. 91:55–59. 2001. View Article : Google Scholar : PubMed/NCBI

70. 

Fitzgerald JP, Nayak B, Shanmugasundaram K, et al: Nox4 mediates renal cell carcinoma cell invasion through hypoxia-induced interleukin 6- and 8- production. PLoS One. 7:e307122012. View Article : Google Scholar : PubMed/NCBI

71. 

Abdelmohsen K: Epidermal growth factor receptor is a common mediator of quinone-induced signaling leading to phosphorylation of connexin-43: Role of glutathione and tyrosine phosphatases. J Biol Chem. 278:38360–38367. 2003. View Article : Google Scholar

72. 

Suhara Y, Hanada N, Okitsu T, et al: Structure-activity relationship of novel menaquinone-4 analogues: modification of the side chain affects their biological activities. J Med Chem. 55:1553–1558. 2012. View Article : Google Scholar

73. 

Suhara Y, Watanabe M, Motoyoshi S, et al: Synthesis of new vitamin K analogues as steroid and xenobiotic receptor (SXR) agonists: insights into the biological role of the side chain part of vitamin K. J Med Chem. 54:4918–4922. 2011. View Article : Google Scholar : PubMed/NCBI

74. 

Mazurek S: Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 43:969–980. 2011. View Article : Google Scholar : PubMed/NCBI

75. 

Wong N, De Melo J and Tang D: PKM2, a central point of regulation in cancer metabolism. Int J Cell Biol. 2013:2425132013. View Article : Google Scholar : PubMed/NCBI

76. 

Chen J, Jiang Z, Wang B, Wang Y and Hu X: Vitamin K(3) and K(5) are inhibitors of tumor pyruvate kinase M2. Cancer Lett. 316:204–210. 2012. View Article : Google Scholar : PubMed/NCBI

77. 

Anastasiou D, Poulogiannis G, Asara JM, et al: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 334:1278–1283. 2011. View Article : Google Scholar : PubMed/NCBI

78. 

Zaunmuller T, Kelly DJ, Glockner FO and Unden G: Succinate dehydrogenase functioning by a reverse redox loop mechanism and fumarate reductase in sulphate-reducing bacteria. Microbiology. 152:2443–2453. 2006. View Article : Google Scholar : PubMed/NCBI

79. 

Sakai C, Tomitsuka E, Esumi H, Harada S and Kita K: Mitochondrial fumarate reductase as a target of chemotherapy: from parasites to cancer cells. Biochim Biophys Acta. 1820:643–651. 2012. View Article : Google Scholar : PubMed/NCBI

80. 

Tomitsuka E, Kita K and Esumi H: The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments. Ann NY Acad Sci. 1201:44–49. 2010. View Article : Google Scholar

81. 

Tomitsuka E, Kita K and Esumi H: An anticancer agent, pyrvinium pamoate inhibits the NADH-fumarate reductase system - a unique mitochondrial energy metabolism in tumour microenvironments. J Biochem. 152:171–183. 2012. View Article : Google Scholar

82. 

Tomlinson IP, Alam NA, Rowan AJ, et al: Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 30:406–410. 2002. View Article : Google Scholar : PubMed/NCBI

83. 

Yang Y, Valera V, Sourbier C, et al: A novel fumarate hydratase-deficient HLRCC kidney cancer cell line, UOK268: a model of the Warburg effect in cancer. Cancer Genet. 205:377–390. 2012. View Article : Google Scholar : PubMed/NCBI

84. 

Ternette N, Yang M, Laroyia M, et al: Inhibition of mitochondrial aconitase by succination in fumarate hydratase deficiency. Cell Rep. 3:689–700. 2013. View Article : Google Scholar : PubMed/NCBI

85. 

Barrios-Rodiles M, Brown KR, Ozdamar B, et al: High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 307:1621–1625. 2005. View Article : Google Scholar : PubMed/NCBI

86. 

Behrends C, Sowa ME, Gygi SP and Harper JW: Network organization of the human autophagy system. Nature. 466:68–76. 2010. View Article : Google Scholar : PubMed/NCBI

87. 

Perez Jurado LA, Wang YK, Francke U and Cruces J: TBL2, a novel transducin family member in the WBS deletion: characterization of the complete sequence, genomic structure, transcriptional variants and the mouse ortholog. Cytogenet Cell Genet. 86:277–284. 1999.

88. 

Tieu Q and Nunnari J: Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J Cell Biol. 151:353–366. 2000. View Article : Google Scholar : PubMed/NCBI

89. 

Tieu Q, Okreglak V, Naylor K and Nunnari J: The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J Cell Biol. 158:445–452. 2002. View Article : Google Scholar : PubMed/NCBI

90. 

Feng Y, Zhang C, Luo Q, et al: A novel WD-repeat protein, WDR26, inhibits apoptosis of cardiomyocytes induced by oxidative stress. Free Radic Res. 46:777–784. 2012. View Article : Google Scholar : PubMed/NCBI

91. 

Blattmann P, Schuberth C, Pepperkok R and Runz H: RNAi-based functional profiling of loci from blood lipid genome-wide association studies identifies genes with cholesterol-regulatory function. PLoS Genet. 9:e10033382013. View Article : Google Scholar

92. 

Rothblat GH, De la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL and Phillips MC: Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res. 40:781–796. 1999.PubMed/NCBI

93. 

Hoekstra M, van Berkel TJ and van Eck M: Scavenger receptor BI: a multi-purpose player in cholesterol and steroid metabolism. World J Gastroenterol. 16:5916–5924. 2010.PubMed/NCBI

94. 

Maitra U and Li L: Molecular mechanisms responsible for the reduced expression of cholesterol transporters from macrophages by low-dose endotoxin. Arterioscler Thromb Vasc Biol. 33:24–33. 2013. View Article : Google Scholar : PubMed/NCBI

95. 

Saddar S, Carriere V, Lee WR, et al: Scavenger receptor class B type I is a plasma membrane cholesterol sensor. Circ Res. 112:140–151. 2013. View Article : Google Scholar : PubMed/NCBI

96. 

Crestani M, De Fabiani E, Caruso D, et al: LXR (liver X receptor) and HNF-4 (hepatocyte nuclear factor-4): key regulators in reverse cholesterol transport. Biochem Soc Trans. 32:92–96. 2004. View Article : Google Scholar : PubMed/NCBI

97. 

Tu K, Zheng X, Yin G, Zan X, Yao Y and Liu Q: Evaluation of Fbxw7 expression and its correlation with expression of SREBP-1 in a mouse model of NAFLD. Mol Med Rep. 6:525–530. 2012.PubMed/NCBI

98. 

Kumadaki S, Karasawa T, Matsuzaka T, et al: Inhibition of ubiquitin ligase F-box and WD repeat domain-containing 7alpha (Fbw7alpha) causes hepatosteatosis through Kruppel-like factor 5 (KLF5)/peroxisome proliferator-activated receptor gamma2 (PPARgamma2) pathway but not SREBP-1c protein in mice. J Biol Chem. 286:40835–40846. 2011. View Article : Google Scholar

99. 

Ntambi JM, Miyazaki M and Dobrzyn A: Regulation of stearoyl-CoA desaturase expression. Lipids. 39:1061–1065. 2004. View Article : Google Scholar : PubMed/NCBI

100. 

Wang J, Ban MR, Zou GY, et al: Polygenic determinants of severe hypertriglyceridemia. Hum Mol Genet. 17:2894–2899. 2008. View Article : Google Scholar : PubMed/NCBI

101. 

Kathiresan S, Melander O, Guiducci C, et al: Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 40:189–197. 2008. View Article : Google Scholar : PubMed/NCBI

102. 

Verma S, Tabb MM and Blumberg B: Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells. BMC Cancer. 9:32009. View Article : Google Scholar : PubMed/NCBI

103. 

Pani G, Galeotti T and Chiarugi P: Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev. 29:351–378. 2010.

104. 

Montero J, Morales A, Llacuna L, et al: Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res. 68:5246–5256. 2008. View Article : Google Scholar : PubMed/NCBI

105. 

Garcia-Ruiz C, Mari M, Colell A, et al: Mitochondrial cholesterol in health and disease. Histol Histopathol. 24:117–132. 2009.

106. 

Bonuccelli G, Tsirigos A, Whitaker-Menezes D, et al: Ketones and lactate ‘fuel’ tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 9:3506–3514. 2010.

107. 

Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, et al: The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle. 9:1960–1971. 2010. View Article : Google Scholar

108. 

Behrend L, Henderson G and Zwacka RM: Reactive oxygen species in oncogenic transformation. Biochem Soc Trans. 31:1441–1444. 2003. View Article : Google Scholar : PubMed/NCBI

109. 

Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E and Moreno-Sánchez R: The causes of cancer revisited: ‘Mitochondrial malignancy’ and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Mol Aspects Med. 31:145–170. 2010.

110. 

Sone H, Akanuma H and Fukuda T: Oxygenomics in environmental stress. Redox Rep. 15:98–114. 2010. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Fredericks WJ, Yin H, Lal P, Puthiyaveettil R, Malkowicz SB, Fredericks NJ, Tomaszewski J, Rauscher FJ and Malkowicz SB: Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: Altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism. Int J Oncol 43: 638-652, 2013.
APA
Fredericks, W.J., Yin, H., Lal, P., Puthiyaveettil, R., Malkowicz, S.B., Fredericks, N.J. ... Malkowicz, S.B. (2013). Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: Altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism. International Journal of Oncology, 43, 638-652. https://doi.org/10.3892/ijo.2013.1985
MLA
Fredericks, W. J., Yin, H., Lal, P., Puthiyaveettil, R., Malkowicz, S. B., Fredericks, N. J., Tomaszewski, J., Rauscher , F. J., Malkowicz, S. B."Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: Altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism". International Journal of Oncology 43.2 (2013): 638-652.
Chicago
Fredericks, W. J., Yin, H., Lal, P., Puthiyaveettil, R., Malkowicz, S. B., Fredericks, N. J., Tomaszewski, J., Rauscher , F. J., Malkowicz, S. B."Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: Altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism". International Journal of Oncology 43, no. 2 (2013): 638-652. https://doi.org/10.3892/ijo.2013.1985
Copy and paste a formatted citation
x
Spandidos Publications style
Fredericks WJ, Yin H, Lal P, Puthiyaveettil R, Malkowicz SB, Fredericks NJ, Tomaszewski J, Rauscher FJ and Malkowicz SB: Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: Altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism. Int J Oncol 43: 638-652, 2013.
APA
Fredericks, W.J., Yin, H., Lal, P., Puthiyaveettil, R., Malkowicz, S.B., Fredericks, N.J. ... Malkowicz, S.B. (2013). Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: Altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism. International Journal of Oncology, 43, 638-652. https://doi.org/10.3892/ijo.2013.1985
MLA
Fredericks, W. J., Yin, H., Lal, P., Puthiyaveettil, R., Malkowicz, S. B., Fredericks, N. J., Tomaszewski, J., Rauscher , F. J., Malkowicz, S. B."Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: Altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism". International Journal of Oncology 43.2 (2013): 638-652.
Chicago
Fredericks, W. J., Yin, H., Lal, P., Puthiyaveettil, R., Malkowicz, S. B., Fredericks, N. J., Tomaszewski, J., Rauscher , F. J., Malkowicz, S. B."Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: Altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism". International Journal of Oncology 43, no. 2 (2013): 638-652. https://doi.org/10.3892/ijo.2013.1985
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team