|
1.
|
Ozben T: Mechanisms and strategies to
overcome multiple drug resistance in cancer. FEBS Lett.
580:2903–2909. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
2.
|
Xie X, Tang B, Zhou J, Gao Q and Zhang P:
Inhibition of the PI3K/Akt pathway increases the chemosensitivity
of gastric cancer to vincristine. Oncol Rep. 30:773–782.
2013.PubMed/NCBI
|
|
3.
|
Pluchino KM, Hall MD, Goldsborough AS,
Callaghan R and Gottesman MM: Collateral sensitivity as a strategy
against cancer multidrug resistance. Drug Resist Updat. 15:98–105.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
4.
|
Burris HA III: Overcoming acquired
resistance to anticancer therapy: focus on the PI3K/AKT/mTOR
pathway. Cancer Chemother Pharmacol. 71:829–842. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5.
|
Garanger E, Boturyn D and Dumy P: Tumor
targeting with RGD peptide ligands-design of new molecular
conjugates for imaging and therapy of cancers. Anticancer Agents
Med Chem. 7:552–558. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6.
|
Tolmachev V: Imaging of HER-2
overexpression in tumors for guiding therapy. Curr Pharm Des.
14:2999–3019. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Kaklamani V and O’Regan RM: New targeted
therapies in breast cancer. Semin Oncol. 31:20–25. 2004. View Article : Google Scholar
|
|
8.
|
Mankoff DA, Link JM, Linden HM,
Sundararajan L and Krohn KA: Tumor receptor imaging. J Nucl Med.
49:S149–S163. 2008. View Article : Google Scholar
|
|
9.
|
Nunn AD: Molecular imaging and
personalized medicine: an uncertain future. Cancer Biother
Radiopharm. 22:722–739. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Mankoff DA: A definition of molecular
imaging. J Nucl Med. 48:N18–N21. 2007.
|
|
11.
|
Sherwood NM, Krueckl SL and McRory JE: The
origin and function of the pituitary adenylate cyclase-activating
polypeptide (PACAP)/glucagon superfamily. Endocr Rev. 21:619–670.
2000.PubMed/NCBI
|
|
12.
|
Said SI and Mutt V: Polypeptide with broad
biological activity: isolation from small intestine. Science.
169:1217–1218. 1970. View Article : Google Scholar : PubMed/NCBI
|
|
13.
|
Piper PJ, Said SI and Vane JR: Effects on
smooth muscle preparations of unidentified vasoactiv peptides from
intestine and lung. Nature. 225:1144–1146. 1970. View Article : Google Scholar : PubMed/NCBI
|
|
14.
|
Barbezat GO and Grossman MI: Intestinal
secretion: stimulation by peptides. Science. 174:422–424. 1971.
View Article : Google Scholar : PubMed/NCBI
|
|
15.
|
Gozes I, Fridkinb M, Hill JM and Brenneman
DE: Pharmaceutical VIP: prospects and problems. Curr Med Chem.
6:1019–1034. 1999.PubMed/NCBI
|
|
16.
|
Gozes I and Furman S: VIP and drug design.
Curr Pharm Des. 9:483–494. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17.
|
Tsukada T, Horovitch SJ, Montminy MR,
Mandel G and Goodman RH: Structure of the human vasoactive
intestinal polypeptide gene. DNA. 4:293–300. 1985.
|
|
18.
|
Gozes I, Avidor R, Yahav Y, Katznelson D,
Croce CM and Huebner K: The gene encoding vasoactive intestinal
peptide is located on human chromosome 6p21-6qter. Hum Genet.
75:41–44. 1987.PubMed/NCBI
|
|
19.
|
Davidson A, Moody TW and Gozes I:
Regulation of VIP gene expression in general. Human lung cancer
cells in particular. J Mol Neurosci. 7:99–110. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
20.
|
Itoh N, Obata K, Yanaihara N and Okamoto
H: Human preprovasoactive intestinal polypeptide contains a novel
PHI-27-like peptide, PHM-27. Nature. 304:547–549. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Bodner M, Fridkin M and Gozes I: Coding
sequences for vasoactive intestinal peptide and PHM-27 peptide are
located on two adjacent exons in the human genome. Proc Natl Acad
Sci USA. 82:3548–3551. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
22.
|
Vandermeers A, Vandenborre S, Hou X, de
Neef P, Robberecht P, Vandermeers-Piret MC and Christophe J:
Antagonistic properties are shifted back to agonistic properties by
further N-terminal shortening of pituitary
adenylate-cyclase-activating peptides in human neuroblastoma
NB-OK-1 cell membranes. Eur J Biochem. 208:815–819. 1992.
View Article : Google Scholar
|
|
23.
|
Vaudry D, Gonzalez BJ, Basille M, Yon L,
Fournier A and Vaudry H: Pituitary adenylate cyclase-activating
polypeptide and its receptors: from structure to functions.
Pharmacol Rev. 52:269–324. 2000.PubMed/NCBI
|
|
24.
|
Fahrenkrug J: VIP and PACAP. Results Probl
Cell Differ. 50:221–234. 2010.
|
|
25.
|
Dickson L and Finlayson K: VPAC and PAC
receptors: From ligands to function. Pharmacol Ther. 121:294–316.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
26.
|
Vaudry D, Falluel-Morel A, Bourgault S,
Basille M, Burel D, Wurtz O, Fournier A, Chow BK, Hashimoto H,
Galas L and Vaudry H: Pituitary adenylate cyclase-activating
polypeptide and its receptors: 20 years after the discovery.
Pharmacol Rev. 61:283–357. 2009.PubMed/NCBI
|
|
27.
|
Muller JM, Debaigt C, Goursaud S, Montoni
A, Pineau N, Meunier AC and Janet T: Unconventional binding sites
and receptors for VIP and related peptides PACAP and PHI/PHM: an
update. Peptides. 28:1655–1666. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28.
|
Laburthe M, Couvineau A and Marie JC: VPAC
receptors for VIP and PACAP. Recept Chann. 8:137–153. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
29.
|
Couvineau A, Lacapere JJ, Tan YV,
Rouyer-Fessard C, Nicole P and Laburthe M: Identification of
cytoplasmic domains of hVPAC1 receptor required for activation of
adenylyl cyclase. Crucial role of two charged amino acids strictly
conserved in class II G protein-coupled receptors. J Biol Chem.
278:24759–24766. 2003. View Article : Google Scholar
|
|
30.
|
Dickson L, Aramori I, McCulloch J, Sharkey
J and Finlayson K: A systematic comparison of intracellular cyclic
AMP and calcium signalling highlights complexities in human
VPAC/PAC receptor pharmacology. Neuropharmacology. 51:1086–1098.
2006. View Article : Google Scholar
|
|
31.
|
Barrie AP, Clohessy AM, Buensuceso CS,
Rogers MV and Allen JM: Pituitary adenylyl cyclase-activating
peptide stimulates extracellular signal-regulated kinase 1 or 2
(ERK1/2) activity in a Ras-independent, mitogen-activated protein
Kinase/ERK kinase 1 or 2-dependent manner in PC12 cells. J Biol
Chem. 272:19666–19671. 1997. View Article : Google Scholar
|
|
32.
|
Lelièvre V, Pineau N, Du J, Wen CH, Nguyen
T, Janet T, Muller JM and Waschek JA: Differential effects of
peptide histidine isoleucine (PHI) and related peptides on
stimulation and suppression of neuroblastoma cell proliferation. A
novel VIP-independent action of PHI via MAP kinase. J Biol Chem.
273:19685–19690. 1998.PubMed/NCBI
|
|
33.
|
Delgado M and Ganea D: Vasoactive
intestinal peptide and pituitary adenylate cyclase-activating
polypeptide inhibit interleukin-12 transcription by regulating
nuclear factor kappaB and Ets activation. J Biol Chem.
274:31930–31940. 1999. View Article : Google Scholar
|
|
34.
|
Hashimoto H, Shintani N, Tanaka K, Mori W,
Hirose M, Matsuda T, Sakaue M, Miyazaki J, Niwa H, Tashiro F,
Yamamoto K, Koga K, Tomimoto S, Kunugi A, Suetake S and Baba A:
Altered psychomotor behaviors in mice lacking pituitary adenylate
cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci USA.
98:13355–13360. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
35.
|
Jozsa R, Hollosy T, Nemeth J, Tamás A,
Lubics A, Jakab B, Olah A, Arimura A and Reglödi D: Presence of
PACAP and VIP in embryonic chicken brain. Ann NY Acad Sci.
1070:348–353. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36.
|
Valdehita A, Carmena MJ, Collado B, Prieto
JC and Bajo AM: Vasoactive intestinal peptide (VIP) increases
vascular endothelial growth factor (VEGF) expression and secretion
in human breast cancer cells. Regul Pept. 144:101–108. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
37.
|
Valdehita A, Bajo AM, Schally AV, Varga
JL, Carmena MJ and Prieto JC: Vasoactive intestinal peptide (VIP)
induces transactivation of EGFR and HER2 in human breast cancer
cells. Mol Cell Endocrinol. 302:41–48. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38.
|
Sreedharan SP, Patel DR, Huang JX and
Goetzl EJ: Cloning and functional expression of a human
neuroendocrine vasoactive intestinal peptide receptor. Biochem
Biophys Res Commun. 193:546–553. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
Usdin TB, Bonner TI and Mezey E: Two
receptors for vasoactive intestinal polypeptide with similar
specificity and complementary distributions. Endocrinology.
135:2662–2680. 1994.PubMed/NCBI
|
|
40.
|
Wei Y and Mojsov S: Tissue specific
expression of different human receptor types for pituitary
adenylate cyclase activating polypeptide and vasoactive intestinal
polypeptide: implications for their role in human physiology. J
Neuroendocrinol. 8:811–817. 1996. View Article : Google Scholar
|
|
41.
|
Moller K and Sundler F: Expression of
pituitary adenylate cyclase activating peptide (PACAP) and PACAP
type I receptors in the rat adrenal medulla. Regul Pept.
63:129–139. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Zeng N, Kang T, Lyu RM, Wong H, Wen Y,
Walsh JH, Sachs G and Pisegna JR: The pituitary adenylate cyclase
activating polypeptide type 1 receptor (PAC1-R) is expressed on
gastric ECL cells: evidence by immunocytochemistry and RT-PCR. Ann
NY Acad Sci. 865:147–156. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
43.
|
Reubi JC, Läderach U, Waser B, Gebbers JO,
Robberecht P and Laissue JA: Vasoactive intestinal
peptide/pituitary adenylate cyclase-activating peptide receptor
subtypes in human tumors and their tissues of origin. Cancer Res.
60:3105–3112. 2000.
|
|
44.
|
Reubi JC, Körner M, Waser B, Mazzucchelli
L and Guillou L: High expression of peptide receptors as a novel
target in gastrointestinal stromal tumours. Eur J Nucl Med Mol
Imaging. 31:803–810. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Gozes I and Furman S: Clinical
endocrinology and metabolism. Potential clinical applications of
vasoactive intestinal peptide: a selected update. Best Pract Res
Clin Endocrinol Metab. 18:623–640. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46.
|
Whitmarsh AJ and Davis RJ: Transcription
factor AP-1 regulation by mitogen-activated protein kinase signal
transduction pathways. J Mol Med. 74:589–607. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
47.
|
Casibang M, Purdom S, Jakowlew S, Neckers
L, Zia F, Ben-Av P, Hla T, You L, Jablons DM and Moody TW:
Prostaglandin E2 and vasoactive intestinal peptide
increase vascular endothelial cell growth factor mRNAs in lung
cancer cells. Lung Cancer. 31:203–212. 2001.
|
|
48.
|
Mankoff DA, O’Sullivan F, Barlow WE and
Krohn KA: Molecular imaging research in the outcomes era: measuring
outcomes for individualized cancer therapy. Acad Radiol.
14:398–405. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49.
|
Goldenberg DM, DeLand F, Kim E, Bennett S,
Primus FJ, van Nagell JR Jr, Estes N, DeSimone P and Rayburn P: Use
of radiolabeled antibodies to carcinoembryonic antigen for the
detection and localization of diverse cancers by external
photo-scanning. N Engl J Med. 298:1384–1386. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
50.
|
Behr TM, Memtsoudis S, Sharkey RM,
Blumenthal RD, Dunn RM, Gratz S, Wieland E, Nebendahl K,
Schmidberger H, Goldenberg DM and Becker W: Experimental studies on
the role of antibody fragments in cancer radio-immunotherapy:
influence of radiation dose and dose rate on toxicity and
anti-tumor efficacy. Int J Cancer. 77:787–795. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
51.
|
Reubi JC: Peptide receptors as molecular
targets for cancer diagnosis and therapy. Endocr Rev. 24:389–427.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
52.
|
Virgolini I, Raderer M, Kurtaran A,
Angelberger P, Banyai S, Yang Q, Li S, Banyai M, Pidlich J,
Niederle B, Scheithauer W and Valent P: Vasoactive intestinal
peptide-receptor imaging for the localization of intestinal
adenocarcinomas and endocrine tumors. N Engl J Med. 33:1116–1121.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
53.
|
Raderer M, Kurtaran A, Hejna M, Vorbeck F,
Angelberger P, Scheithauer W and Virgolini I:
123I-labelled vasoactive intestinal peptide receptor
scintigraphy in patients with colorectal cancer. Br J Cancer.
78:1–5. 1998. View Article : Google Scholar
|
|
54.
|
Raderer M, Kurtaran A, Yang Q, Meghdadi S,
Vorbeck F, Hejna M, Angelberger P, Kornek G, Pidlich J, Scheithauer
W and Virgolini I: Iodine-123-vasoactive intestinal peptide
receptor scanning in patients with pancreatic cancer. J Nucl Med.
39:1570–1575. 1998.PubMed/NCBI
|
|
55.
|
Virgolini I, Kurtaran A, Leimer M, Kaserer
K, Peck-Radosavljevic M, Angelberger P, Hübsch P, Dvorak M, Valent
P and Niederle B: Location of a VIPoma by iodine-123-vasoactive
intestinal peptide scintigraphy. J Nucl Med. 39:1575–1579.
1998.PubMed/NCBI
|
|
56.
|
Virgolini I, Kurtaran A, Raderer M, Leimer
M, Angelberger P, Havlik E, Li S, Scheithauer W, Niederle B and
Valent P: Vasoactive intestinal peptide receptor scintigraphy. J
Nucl Med. 36:1732–1739. 1995.PubMed/NCBI
|
|
57.
|
Raderer M, Becherer A, Kurtaran A,
Angelberger P, Li S, Leimer M, Weinlaender G, Kornek G, Kletter K,
Scheithauer W and Virgolini I: Comparison of iodine-123-vasoactive
intestinal peptide receptor scintigraphy and indium-111-CYT-103
immunoscintigraphy. J Nucl Med. 37:1480–1487. 1996.PubMed/NCBI
|
|
58.
|
Thakur ML, Marcus CS, Saeed S, Pallela V,
Minami C, Diggles L, Le Pham H, Ahdoot R and Kalinowski EA:
99mTc-labeled vasoactive intestinal peptide analog for
rapid localization of tumors in humans. J Nucl Med. 41:107–110.
2000.
|
|
59.
|
Pallela VR, Thakur ML, Chakder S and
Rattan S: 99mTc-labeled vasoactive intestinal peptide
receptor agonist: functional studies. J Nucl Med. 40:352–360.
1999.
|
|
60.
|
Thakur ML, Marcus CS, Saeed S, Pallela V,
Minami C, Diggles L, Pham HL, Ahdoot R, Kalinowski EA and Moody T:
Imaging tumors in humans with Tc-99m-VIP. Ann NY Acad Sci.
921:37–44. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
61.
|
Rao PS, Thakur ML, Pallela V, Patti R,
Reddy K, Li H, Sharma S, Pham HL, Diggles L, Minami C and Marcus
CS: 99mTc labeled VIP analog: evaluation for imaging
colorectal cancer. Nucl Med Biol. 28:445–450. 2001. View Article : Google Scholar
|
|
62.
|
Kothari K, Prasad S, Korde A, Mukherjee A,
Mathur A, Jaggi M, Venkatesh M, Pillai AM, Mukherjee R and
Ramamoorthy N: 99mTc(CO)3-VIP analogues: preparation and
evaluation as tumor imaging agent. Appl Radiat Isot. 65:382–386.
2007. View Article : Google Scholar
|
|
63.
|
Moody TW, Leyton J, Unsworth E, John C,
Lang L and Eckelman WC: (Arg15, Arg21) VIP:
evaluation of biological activity and localization to breast cancer
tumors. Peptides. 19:585–592. 1998.
|
|
64.
|
Jagoda EM, Aloj L, Seidel J, Lang L, Moody
TW, Green S, Caraco C, Daube-Witherspoon M, Green MV and Eckelman
WC: Comparison of an 18F labeled derivative of
vasoactive intestinal peptide and
2-deoxy-2-[18F]fluoro-D-glucose in nude mice bearing
breast cancer xenografts. Mol Imaging Biol. 4:369–379. 2002.
|
|
65.
|
Cheng D, Yin D, Zhang L, Wang M, Li G and
Wang Y: Radiosynthesis of 18F-(R8,15,21,
L17)-vasoactive intestinal peptide and preliminary
evaluation in mice bearing C26 colorectal tumours. Nucl Med Commun.
28:501–506. 2007.
|
|
66.
|
Cheng D, Yin D, Li G, Wang M, Li S, Zheng
M, Cai H and Wang Y: Radiolabeling and in vitro and in vivo
characterization of [18F]FB-[R8,15,21,
L17]-VIP as a PET imaging agent for tumor overexpressed
VIP receptors. Chem Biol Drug Des. 68:319–325. 2006.
|
|
67.
|
Chen X, Edwards WB, Anderson CJ, Mccarthy
TJ and Welch MJ: Solid phase synthesis of TETA conjugated
vasoactive intestinal peptide and in vivo behavior of copper-64
radiolabeled VIP conjugate. J Labelled Compds Radiopharm.
44:S688–S690. 2001. View Article : Google Scholar
|
|
68.
|
Thakur ML, Aruva MR, Gariepy J, Acton P,
Rattan S, Prasad S, Wickstrom E and Alavi A: PET imaging of
oncogene over-expression using 64Cu-vasoactive
intestinal peptide (VIP) analog: comparison with
99mTc-VIP analog. J Nucl Med. 45:1381–1389.
2004.PubMed/NCBI
|
|
69.
|
Zhang K, Aruva MR, Shanthly N, Cardi CA,
Rattan S, Patel C, Kim C, McCue PA, Wickstrom E and Thakur ML: PET
imaging of VPAC1 expression in experimental and spontaneous
prostate cancer. J Nucl Med. 49:112–121. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70.
|
Zhang K, Aruva MR, Shanthly N, Cardi CA,
Patel CA, Rattan S, Cesarone G, Wickstrom E and Thakur ML:
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase
activating peptide (PACAP) receptor specific peptide analogues for
PET imaging of breast cancer: In vitro/in vivo evaluation. Regul
Pept. 144:91–100. 2007. View Article : Google Scholar
|
|
71.
|
Collado B, Carmena MJ, Clemente C, Prieto
JC and Bajo AM: Vasoactive intestinal peptide enhances growth and
angiogenesis of human experimental prostate cancer in a xenograft
model. Peptides. 28:1896–1901. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72.
|
Fernández-Martínez AB, Bajo AM,
Sánchez-Chapado M, Prieto JC and Carmena MJ: Vasoactive intestinal
peptide behaves as a pro-metastatic factor in human prostate cancer
cells. Prostate. 69:774–786. 2009.PubMed/NCBI
|
|
73.
|
Moody TW, Zia F, Draoui M, Brenneman DE,
Fridkin M, Davidson A and Gozes I: A vasoactive intestinal peptide
antagonist inhibits non-small cell lung cancer growth. Proc Natl
Acad Sci USA. 90:4345–4349. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
74.
|
Zia H, Hida T, Jakowlew S, Birrer M, Gozes
Y, Reubi JC, Fridkin M, Gozes I and Moody TW: Breast cancer growth
is inhibited by vasoactive intestinal peptide (VIP) hybrid, a
synthetic VIP receptor antagonist. Cancer Res. 56:3486–3489.
1996.PubMed/NCBI
|
|
75.
|
Levy A, Gal R, Granoth R, Dreznik Z,
Fridkin M and Gozes I: In vitro and in vivo treatment of colon
cancer by VIP antagonists. Regul Pept. 109:127–133. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
76.
|
Moody TW, Jensen RT, Fridkin M and Gozes
I: (N-stearyl, norleucine 17) VIP hybrid is a broad spectrum
vasoactive intestinal peptide receptor antagonist. J Mol Neurosci.
18:29–35. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
77.
|
Moody TW, Leyton J, Coelho T, Jakowlew S,
Takahashi K, Jameison F, Koh M, Fridkin M, Gozes I and Knight M:
(Stearyl, Norleucine 17) VIP hybrid antagonizes VIP receptors on
non-small cell lung cancer cells. Life Sci. 61:1657–1666. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
78.
|
Zia H, Leyton J, Casibang M, Hau V,
Brenneman D, Fridkin M, Gozes I and Moody TW: (N-stearyl,
norleucine17) VIP hybrid inhibits the growth of pancreatic cancer
cell lines. Life Sci. 66:379–387. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
79.
|
Moody TW, Leyton J, Chan D, Brenneman DC,
Fridkin M, Gelber E, Levy A and Gozes I: VIP receptor antagonists
and chemotherapeutic drugs inhibit the growth of breast cancer
cells. Breast Cancer Res Treat. 68:55–64. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
80.
|
Pan CQ, Hamren S, Roczniak S, Tom I and
DeRome M: Generation of PEGylated VPAC1-selective antagonists that
inhibit proliferation of a lung cancer cell line. Peptides.
29:479–486. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
81.
|
Schally AV and Nagy A: Chemotherapy
targeted to cancers through tumoral hormone receptors. Trends
Endocrinol Metab. 15:300–310. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
82.
|
Kim JA: Targeted therapies for the
treatment of cancer. Am J Surg. 186:264–268. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
83.
|
Moody TW, Czerwinski G, Tarasova NI and
Michejda CJ: VIP-ellipticine derivatives inhibit the growth of
breast cancer cells. Life Sci. 71:1005–1014. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
84.
|
Moody TW, Czerwinski G, Tarasova NI, Moody
DL and Michejda CJ: The development of VIP-ellipticine conjugates.
Regul Pept. 123:187–192. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
85.
|
Moody TW, Mantey SA, Fuselier JA, Coy DH
and Jensen RT: Vasoactive intestinal peptide-camptothecin
conjugates inhibit the proliferation of breast cancer cells.
Peptides. 28:1883–1890. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
86.
|
Zaccaro L, Del Gatto A, Pedone C and
Saviano M: Peptides for tumour therapy and diagnosis: current
status and future directions. Curr Med Chem. 16:780–795. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
87.
|
Tang B, Li Z, Huang D, Zheng L and Li Q:
Screening of a specific peptide binding to VPAC1 receptor from a
phage display peptide library. PLoS One. 8:e542642013. View Article : Google Scholar : PubMed/NCBI
|
|
88.
|
de Visser M, Verwijnen SM and de Jong M:
Update: improvement strategies for peptide receptor scintigraphy
and radionuclide therapy. Cancer Biother Radiopharm. 23:137–157.
2008.PubMed/NCBI
|
|
89.
|
Balon HR, Goldsmith SJ, Siegel BA,
Silberstein EB, Krenning EP, Lang O and Donohoe KJ: Procedure
guideline for somatostatin receptor scintigraphy with
(111)In-pentetreotide. J Nucl Med. 42:1134–1138. 2001.PubMed/NCBI
|
|
90.
|
Kwekkeboom DJ, Kam BL, van Essen M,
Teunissen JJ, van Eijck CH, Valkema R, de Jong M, de Herder WW and
Krenning EP: Somatostatin-receptor-based imaging and therapy of
gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer.
17:R53–R73. 2010. View Article : Google Scholar : PubMed/NCBI
|