Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May-2014 Volume 44 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2014 Volume 44 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Metalloproteinase dependent reduction of cell surface cluster determinants upon the induction of apoptosis

  • Authors:
    • Albert Magro
    • Alice Magro
    • Sirish Shrestha
    • Kathy Brundage
    • Gary Rankin
  • View Affiliations / Copyright

    Affiliations: Department of Biology, Fairmont State University, Fairmont, WV, USA, Department of Statistics, West Virginia University, Morgantown, WV, USA, Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA, Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
  • Pages: 1539-1550
    |
    Published online on: March 13, 2014
       https://doi.org/10.3892/ijo.2014.2344
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

LN18 glioblastoma cells were used as a model to examine changes in surface cluster determinants (CDs) as the cells undergo apoptosis. LN18 cells proceeding through apoptosis manifested a decrease in cell adhesion molecules, growth factor receptors and other surface proteins. Apoptosis was induced by MK886, a known FLAP and PPAR-α inhibitor, or staurosporine, a known inhibitor of protein kinases including protein kinase C (PKC). The detection and decrease of surface CDs were observed by flow cytometry using CD-specific primary antibodies followed by secondary antibodies conjugated to phycoerythrin. It was determined that there was an apoptotic induced decrease of α and β integrin determinants and the growth factor receptors EGFR and IGF1R. The MHC-1 cell surface marker HLA-ABC was also reduced in the apoptotic cells. The level of EGFR, IGF1R and detected α and β integrin determinants dropped dramatically. The degradation takes place in mid to late apoptosis. It was determined by real-time RT-PCR that the decrease in integrins, EGFR, IGF1R and MHC-1 determinants were not due to a reduction in transcription. Inhibitors of metallo­proteinases blocked the apoptotic decrease in cell surface determinants indicating that metalloproteinases mediated the reduction in these CDs in a manner that can reduce growth and survival signals while stimulating the NK surveillance system. Overall, the data indicate that the final stages of the pharmacological induction of apoptosis, while proceeding to a full commitment to non-necrotic cell death, involves the degradation of integrin, insulin and epidermal growth factor receptors caused by a programmed dysregulation of the cell's metalloproteinases.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

View References

1. 

Lockshin RA and Williams CM: Programmed cell death-II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol. 10:643–649. 1964. View Article : Google Scholar

2. 

Sulston J and Brenner S: The DNA of Caenorhabditis elegans. Genetics. 77:95–104. 1974.

3. 

Sulston JE and Horvitz HR: Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 56:110–156. 1977. View Article : Google Scholar : PubMed/NCBI

4. 

Jacobson MD, Weil M and Raff MC: Programmed cell death in animal development. Cell. 88:347–354. 1997. View Article : Google Scholar : PubMed/NCBI

5. 

Horvitz HR: Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res. 59(Suppl 7): 1701–1706. 1999.PubMed/NCBI

6. 

Li Y, Fengyi W, Sudeshna D, et al: Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA. 103:4952–4957. 2006. View Article : Google Scholar : PubMed/NCBI

7. 

Elmore S: Apoptosis: a review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI

8. 

Taddei ML, Giannoni E, Fiaschi T and Chiarugi P: Anoikis: an emerging hallmark in health and diseases. J Pathol. 226:380–393. 2012. View Article : Google Scholar : PubMed/NCBI

9. 

Hirsch T, Marchetti P, Susin SA, et al: The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene. 15:1573–1581. 1997. View Article : Google Scholar

10. 

Proskuryakov SY, Konoplyannikov A and Gabai VL: Necrosis: a specific form of programmed cell death. Exp Cell Res. 283:1–16. 2003. View Article : Google Scholar : PubMed/NCBI

11. 

Gilmore AP, Metcalfe AD, Romer LH and Streuli CH: Integrin-mediated survival signals regulate the apoptotic function of bax through its conformation and subcellular localization. J Cell Biol. 149:431–445. 2000. View Article : Google Scholar : PubMed/NCBI

12. 

LeRoith D, Werner H, Beitner-Johnson D and Roberts CT Jr: Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 16:143–163. 1995. View Article : Google Scholar

13. 

Jorissen RN, Walker F, Pouliot N, Garrett TPJ, Ward CW and Burgessa AW: Epidermal growth factor receptor: mechanisms of activation and signaling. Exp Cell Res. 284:31–53. 2003. View Article : Google Scholar : PubMed/NCBI

14. 

Adams TE, McKern NM and Ward CW: Signalling by the type 1 insulin-like growth factor receptor: interplay with the epidermal growth factor receptor. Growth Factors. 22:89–95. 2004. View Article : Google Scholar : PubMed/NCBI

15. 

van der Veeken J, Oliveira S, Schiffelers RM, Storm G, van Bergen En Henegouwen PM and Roovers RC: Crosstalk between epidermal growth factor receptor- and insulin-like growth factor-1 receptor signaling: implications for cancer therapy. Curr Cancer Drug Targets. 9:748–760. 2009.PubMed/NCBI

16. 

Kerr JF, Wyllie AH and Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26:239–257. 1972. View Article : Google Scholar

17. 

Frisch SM and Francis H: Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol. 124:619–626. 1994. View Article : Google Scholar : PubMed/NCBI

18. 

Ruoslahti E and Pierschbacher MD: New perspectives in cell adhesion: RGD and integrins. Science. 238:491–497. 1987. View Article : Google Scholar : PubMed/NCBI

19. 

Ruoslahti E: Integrins. J Clin Invest. 87:1–5. 1991. View Article : Google Scholar

20. 

Ruoslahti E and Reed JC: Anchorange independence, integrins, and apoptosis. Cell. 77:477–478. 1994. View Article : Google Scholar : PubMed/NCBI

21. 

Frisch SM and Ruoslahti E: Integrins and anoikis. Curr Opin Cell Biol. 9:701–706. 1997. View Article : Google Scholar : PubMed/NCBI

22. 

Reed JC: Apoptosis-targeted therapies for cancer. Cancer Cell. 3:17–22. 2003. View Article : Google Scholar

23. 

Zhong X and Rescorla FJ: Cell surface adhesion molecules and adhesion-initiated signaling: understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell Signal. 24:393–401. 2012. View Article : Google Scholar : PubMed/NCBI

24. 

Baguley BC: Multiple drug resistance mechanisms in cancer. Mol Biotechnol. 46:308–316. 2010. View Article : Google Scholar : PubMed/NCBI

25. 

Zahreddine H and Borden KL: Mechanisms and insights into drug resistance in cancer. Front Pharmacol. 4:282013. View Article : Google Scholar

26. 

Beier D, Schulz JP and Beier CP: Chemoresistance of glioblastoma cancer stem cells-much more complex than expected. Mol Cancer. 10:1282011. View Article : Google Scholar : PubMed/NCBI

27. 

Zeiss CJ: The apoptosis-necrosis continuum: insights from genetically altered mice. Vet Pathol. 40:481–495. 2003. View Article : Google Scholar : PubMed/NCBI

28. 

Hacker G: The morphology of apoptosis. Cell Tissue Res. 301:5–17. 2000. View Article : Google Scholar

29. 

Diserens AC, de Tribolet N, Martin-Achard A, et al: Characterization of an established human malignant glioma cell line: LN-18. Acta Neuorpathol. 53:21–28. 1981. View Article : Google Scholar : PubMed/NCBI

30. 

Anderson KM, Seed T, Jajeh A, et al: An in vivo inhibitor of 5-lipoxygenase, MK886, at micormolar concentration induces apoptosis in U937 and CML cells. Anticancer Res. 16:2589–2599. 1966.PubMed/NCBI

31. 

Ghosh J and Myers CE: Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci USA. 95:13182–13187. 1998. View Article : Google Scholar

32. 

Ghosh J and Myers CE: Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem Biophys Res Commun. 235:418–423. 1997. View Article : Google Scholar : PubMed/NCBI

33. 

Tong WG, Ding XZ and Adrian TE: The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochem Biophys Res Commun. 296:942–948. 2002. View Article : Google Scholar : PubMed/NCBI

34. 

Dixon RAF, Diehl RE, Opas E, et al: Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature. 343:282–284. 1990. View Article : Google Scholar : PubMed/NCBI

35. 

Miller DK, Gillard JW, Vickers PJ, et al: Identification and isolation of a membrane protein necessary for leukotriene production. Nature. 343:278–281. 1990. View Article : Google Scholar : PubMed/NCBI

36. 

Ford-Hutchinson AW: FLAP: a novel drug target for inhibiting the synthesis of leukotrienes. Trends Pharmacol Sci. 12:68–70. 1991. View Article : Google Scholar : PubMed/NCBI

37. 

Vegesna RV, Wu HL, Mong S and Crooke ST: Staurosporine inhibits protein kinase C and prevents phorbol ester-mediated leukotriene D4 receptor desensitization in RBL-1 cells. Mol Pharmacol. 33:537–542. 1998.

38. 

Belmokhtar CA, Hillion J and Ségal-Bendirdjian E: Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene. 20:3354–3362. 2001. View Article : Google Scholar : PubMed/NCBI

39. 

Kabir J, Lobo M and Zachary I: Staurosporine induces endothelial cell apoptosis via focal adhesion kinase dephosphorylation and focal adhesion disassembly independent of focal adhesion kinase proteolysis. Biochem J. 367:145–155. 2002. View Article : Google Scholar

40. 

Yang E, Zha J, Jockel J, Boise LH, Thompson CB and Korsmeyer SJ: Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 80:285–291. 1995. View Article : Google Scholar : PubMed/NCBI

41. 

Hetz C, Vitte PA, Bombrun A, et al: Bax channel inhibitors prevent mitochondrion-mediated apoptosis and protect neurons in a model of global brain ischemia. J Biol Chem. 280:42960–42970. 2005. View Article : Google Scholar : PubMed/NCBI

42. 

Narita M, Shimizu S, Ito T, et al: Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA. 95:14681–14686. 1998. View Article : Google Scholar : PubMed/NCBI

43. 

Zamzami N, Marchetti P, Castedo M, et al: Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 182:367–377. 1995. View Article : Google Scholar : PubMed/NCBI

44. 

Kluck RM, Bossy-Wetzel E, Green DR and Newmeyer DD: The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 275:1132–1136. 1997. View Article : Google Scholar : PubMed/NCBI

45. 

Adrain C, Creagh EM and Martin SJ: Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J. 20:6627–6636. 1997. View Article : Google Scholar : PubMed/NCBI

46. 

Hill MM, Adrain C, Duriez PJ, Creagh EM and Martin SJ: Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J. 23:2134–2145. 2004. View Article : Google Scholar : PubMed/NCBI

47. 

Zou H, Li Y, Liu X and Wang X: An APAF-1 cytochrome c multimeric complex is a function apoptosome that activates procaspase-9. J Biol Chem. 274:11549–11556. 1999. View Article : Google Scholar : PubMed/NCBI

48. 

Du C, Fang M, Li Y, Li L and Wang X: Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 102:33–42. 2000. View Article : Google Scholar : PubMed/NCBI

49. 

Li P, Nijhawan D, Budihardjo I, et al: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91:479–489. 1997. View Article : Google Scholar : PubMed/NCBI

50. 

McIlwain DR, Berger T and Mak TW: Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 5:a0086562013. View Article : Google Scholar

51. 

Martin SJ and Green DR: Protease activation during apoptosis: death by a thousand cuts? Cell. 82:349–352. 1995. View Article : Google Scholar : PubMed/NCBI

52. 

Earnshaw WC, Martins LM and Kaufmann SH: Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev. 68:383–424. 1999.PubMed/NCBI

53. 

Zhang JH and Xu M: DNA fragmentation in apoptosis. Cell Res. 10:205–211. 2000. View Article : Google Scholar

54. 

Okayama H: Cell cycle control by anchorage signaling. Cell Signal. 24:1599–1609. 2012. View Article : Google Scholar : PubMed/NCBI

55. 

Aplin AE, Howe A, Alahari SK and Juliano RL: Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev. 50:197–263. 1998.PubMed/NCBI

56. 

Schwartz MA and Baron V: Interactions between mitogenic stimuli, or, a thousand and one connections. Curr Opin Cell Biol. 11:197–202. 1999. View Article : Google Scholar : PubMed/NCBI

57. 

McCubrey JA, Steelman LS, Abrams SL, et al: Roles of the RAF/ MEK/ERK and P13K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul. 46:249–279. 2006. View Article : Google Scholar : PubMed/NCBI

58. 

Chitnis MM, Yuen JS, Protheroe AS, Pollak M and Macaulay VM: The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res. 14:6364–6370. 2008. View Article : Google Scholar : PubMed/NCBI

59. 

Ivaska J and Heino J: Cooperation between integrins and growth factor receptors in signaling and endocytosis. Ann Rev Cell Dev Biol. 27:291–320. 2011. View Article : Google Scholar : PubMed/NCBI

60. 

Werb Z: ECM and cell surface proteolysis: regulating cellular ecology. Cell. 91:439–442. 1997. View Article : Google Scholar : PubMed/NCBI

61. 

Mott JD and Werb Z: Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol. 16:558–564. 2004. View Article : Google Scholar : PubMed/NCBI

62. 

Massova I, Kotra LP, Fridman R and Mobashery S: Matrix metalloproteinases: structures, evolution, and diversification. FASEB J. 12:1075–1095. 1998.PubMed/NCBI

63. 

Nagase H and Woessner JF Jr: Matrix metalloproteinases. J Biol Chem. 274:21491–21494. 1999. View Article : Google Scholar

64. 

Seiki M: Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett. 194:1–11. 2003. View Article : Google Scholar : PubMed/NCBI

65. 

Sohail A, Sun Q, Zhao H, Bernardo MM, Cho JA and Fridman R: MT4-(MMP17) and MT6-MMP (MMP25), a unique set of membrane-anchored matrix metalloproteinases: properties and expression in cancer. Cancer Metastasis Rev. 27:289–302. 2008. View Article : Google Scholar : PubMed/NCBI

66. 

Edwards DR, Handsley MM and Pennington CJ: The ADAM metalloproteinases. Mol Aspects Med. 5:258–289. 2008. View Article : Google Scholar

67. 

Tang BL: ADAMTS: a novel family of extracellular matrix proteases. Int J Biochem Cell Biol. 33:33–44. 2001. View Article : Google Scholar : PubMed/NCBI

68. 

Kang T, Nagase H and Pei D: Activation of membrane-type matrix metalloproteinase 3 zymogen by the proprotein convertase furin in the trans-Golgi network. Cancer Res. 62:675–681. 2002.PubMed/NCBI

69. 

Kang T, Zhao YG, Pei D, Sucic JF and Sang QX: Intracellular activation of human adamalysin 19/disintegrin and metalloproteinase 19 by furin occurs via one of the two consecutive recognition sites. J Biol Chem. 277:25583–25591. 2002. View Article : Google Scholar

70. 

Stawowy P, Meyborg H, Stibenz D, et al: Furin-like proprotein convertases are central regulators of the membrane type matrix metalloproteinase-pro-matrix metalloproteinase-2 proteolytic cascade in atherosclerosis. Circ. 111:2820–2827. 2005. View Article : Google Scholar

71. 

Dubois CM, Laprise M-H, Blanchette F, Gentry LE and Leduc R: Processing of transforming growth factor β1 precursor by human furin convertase. J Biol Chem. 270:10618–10624. 1995.

72. 

Dubois CM, Blanchette F, Laprise MH, Leduc R, Grondin F and Seidah NG: Evidence that furin is an authentic transforming growth factor-beta1-converting enzyme. Am J Pathol. 158:305–316. 2001. View Article : Google Scholar : PubMed/NCBI

73. 

Letterio JJ and Roberts AB: Regulation of immune responses by TGF-beta. Annu Rev Immunol. 16:137–161. 1998. View Article : Google Scholar : PubMed/NCBI

74. 

Mantel PY and Schmidt-Weber CB: Transforming growth factor-beta: recent advances on its role in immune tolerance. Methods Mol Biol. 677:303–338. 2011. View Article : Google Scholar : PubMed/NCBI

75. 

Bommireddy R and Doetschman T: TGFβ1 and Treg cells: alliance for tolerance Trends. Mol Med. 11:492–501. 2007.

76. 

Gomez GG and Kruse CA: Mechanisms of malignant glioma resistance and sources of immunosuppression. Gene Ther Mol Biol. 10:133–146. 2006.PubMed/NCBI

77. 

Avril T, Vauleon E, Tanguy-Royer S, Mosser J and Quillien V: Mechanisms of immunomodulation in human glioblastoma. Immunotherapy. 3(Suppl 4): 42–44. 2011. View Article : Google Scholar : PubMed/NCBI

78. 

Leitlein J, Aulwurm S, Waltereit R, et al: Processing of immunosuppressive pro-TGF-beta 1,2 by human glioblastoma cells involves cytoplasmic and secreted furin-like proteases. J Immunol. 166:7238–7243. 2001. View Article : Google Scholar : PubMed/NCBI

79. 

Mercapide J, Lopez De Cicco R, Bassi DE, Castresana JS, Thomas G and Klein-Szanto AJ: Inhibition of furin-mediated processing results in suppression of astrocytoma cell growth and invasiveness. Clin Cancer Res. 8:1740–1746. 2002.PubMed/NCBI

80. 

Poli A, Kmiecik J, Domingues O, et al: NK cells in central nervous system disorders. J Immunol. 190:5355–5362. 2013. View Article : Google Scholar : PubMed/NCBI

81. 

Lodoen MB and Lanier LL: Viral modulation of NK cell immunity. Nat Rev Microbiol. 3:59–69. 2005. View Article : Google Scholar : PubMed/NCBI

82. 

Vivier E, Raulet DH, Moretta A, et al: Innate or adaptive immunity? The example of natural killer cells. Science. 331:44–49. 2011. View Article : Google Scholar : PubMed/NCBI

83. 

Daga A, Bottino C, Castriconi R, Gangemi R and Ferrini S: New perspectives in glioma immunotherapy. Curr Pharm Des. 17:2439–2467. 2011. View Article : Google Scholar : PubMed/NCBI

84. 

Hegi ME, Rajakannu P and Weller M: Epidermal growth factor receptor: a re-emerging target in glioblastoma. Curr Opin Neurol. 25:774–779. 2012. View Article : Google Scholar : PubMed/NCBI

85. 

Pala A, Karpel-Massler G, Kast RE, Wirtz CR and Halatsch ME: Epidermal to mesenchymal transition and failure of EGFR-targeted therapy in glioblastoma. Cancers. 4:523–530. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Magro A, Magro A, Shrestha S, Brundage K and Rankin G: Metalloproteinase dependent reduction of cell surface cluster determinants upon the induction of apoptosis. Int J Oncol 44: 1539-1550, 2014.
APA
Magro, A., Magro, A., Shrestha, S., Brundage, K., & Rankin, G. (2014). Metalloproteinase dependent reduction of cell surface cluster determinants upon the induction of apoptosis. International Journal of Oncology, 44, 1539-1550. https://doi.org/10.3892/ijo.2014.2344
MLA
Magro, A., Magro, A., Shrestha, S., Brundage, K., Rankin, G."Metalloproteinase dependent reduction of cell surface cluster determinants upon the induction of apoptosis". International Journal of Oncology 44.5 (2014): 1539-1550.
Chicago
Magro, A., Magro, A., Shrestha, S., Brundage, K., Rankin, G."Metalloproteinase dependent reduction of cell surface cluster determinants upon the induction of apoptosis". International Journal of Oncology 44, no. 5 (2014): 1539-1550. https://doi.org/10.3892/ijo.2014.2344
Copy and paste a formatted citation
x
Spandidos Publications style
Magro A, Magro A, Shrestha S, Brundage K and Rankin G: Metalloproteinase dependent reduction of cell surface cluster determinants upon the induction of apoptosis. Int J Oncol 44: 1539-1550, 2014.
APA
Magro, A., Magro, A., Shrestha, S., Brundage, K., & Rankin, G. (2014). Metalloproteinase dependent reduction of cell surface cluster determinants upon the induction of apoptosis. International Journal of Oncology, 44, 1539-1550. https://doi.org/10.3892/ijo.2014.2344
MLA
Magro, A., Magro, A., Shrestha, S., Brundage, K., Rankin, G."Metalloproteinase dependent reduction of cell surface cluster determinants upon the induction of apoptosis". International Journal of Oncology 44.5 (2014): 1539-1550.
Chicago
Magro, A., Magro, A., Shrestha, S., Brundage, K., Rankin, G."Metalloproteinase dependent reduction of cell surface cluster determinants upon the induction of apoptosis". International Journal of Oncology 44, no. 5 (2014): 1539-1550. https://doi.org/10.3892/ijo.2014.2344
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team