|
1
|
Liu L, Lai S, Andrews G and Tollefsbol TO:
Genetic and epigenetic modulation of telomerase activity in
development and disease. Gene. 340:1–10. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Liu L, Saldanha SN, Pate MS, Andrews LG
and Tollefsbol TO: Epigenetic regulation of human telomerase
reverse transcriptase promoter activity during cellular
differentiation. Genes Chromosomes Cancer. 41:26–37. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Blackburn EH: Switching and signaling at
the telomere. Cell. 106:661–673. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Blackburn EH: Telomerase and cancer: Kirk
A. Landon - AACR prize for basic cancer research lecture. Mol
Cancer Res. 3:477–482. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Blackburn EH, Greider CW and Szostak JW:
Telomeres and telomerase: the path from maize, Tetrahymena and
yeast to human cancer and aging. Nat Med. 12:1133–1138. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kim NW, Piatyszek MA, Prowse KR, Harley
CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL and Shay
JW: Specific association of human telomerase activity with immortal
cells and cancer. Science. 266:2011–2015. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Shay JW, Zou Y, Hiyama E and Wright WE:
Telomerase and cancer. Hum Mol Genet. 10:677–685. 2001. View Article : Google Scholar
|
|
8
|
Greider CW: Telomerase activation. One
step on the road to cancer? Trends Genet. 15:109–112. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Nugent CI and Lundblad V: The telomerase
reverse transcriptase: components and regulation. Genes Dev.
12:1073–1085. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Feng J, Funk WD, Wang SS, Weinrich SL,
Avilion AA, Chiu CP, Adams RR, Chang E, Allsopp RC and Yu J: The
RNA component of human telomerase. Science. 269:1236–1241. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nakamura TM, Morin GB, Chapman KB,
Weinrich SL, Andrews WH, Lingner J, Harley CB and Cech TR:
Telomerase catalytic subunit homologs from fission yeast and human.
Science. 277:955–959. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Smogorzewska A and de Lange T: Regulation
of telomerase by telomeric proteins. Annu Rev Biochem. 73:177–208.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chang JT, Chen YL, Yang HT, Chen CY and
Cheng AJ: Differential regulation of telomerase activity by six
telomerase subunits. Eur J Biochem. 269:3442–3450. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Qi DL, Ohhira T, Fujisaki C, Inoue T, Ohta
T, Osaki M, Ohshiro E, Seko T, Aoki S and Oshimura M:
Identification of PITX1 as a TERT suppressor gene located on human
chromosome 5. Mol Cell Biol. 31:1624–1636. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Gonzalez-Suarez E, Flores JM and Blasco
MA: Cooperation between p53 mutation and high telomerase transgenic
expression in spontaneous cancer development. Mol Cell Biol.
22:291–301. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hahn WC, Counter CM, Lundberg AS,
Beijersbergen RL, Brooks MW and Weinberg RA: Creation of human
tumour cells with defined genetic elements. Nature. 400:464–468.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Harley CB: Telomerase and cancer
therapeutics. Nat Rev Cancer. 8:167–179. 2008. View Article : Google Scholar
|
|
18
|
Cong Y and Shay JW: Actions of human
telomerase beyond telomeres. Cell Res. 18:725–732. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kan CY, Wen VW, Pasquier E, Jankowski K,
Chang M, Richards LA, Kavallaris M and MacKenzie KL: Endothelial
cell dysfunction and cytoskeletal changes associated with
repression of p16(INK4a) during immortalization. Oncogene.
31:4815–4827. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tátrai P, Szepesi Á, Matula Z, Szigeti A,
Buchan G, Mádi A, Uher F and Német K: Combined introduction of
Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal
cells with low risk of transformation. Biochem Biophys Res Commun.
422:28–35. 2012.PubMed/NCBI
|
|
22
|
Simonsen JL, Rosada C, Serakinci N,
Justesen J, Stenderup K, Rattan SI, Jensen TG and Kassem M:
Telomerase expression extends the proliferative life-span and
maintains the osteogenic potential of human bone marrow stromal
cells. Nat Biotechnol. 20:592–596. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gao K, Lu YR, Wei LL, Lu XF, Li SF, Wan L,
Li YP and Cheng JQ: Immortalization of mesenchymal stem cells from
bone marrow of rhesus monkey by transfection with human telomerase
reverse transcriptase gene. Transplant Proc. 40:634–637. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Huang GP, Pan ZJ, Huang JP, Yang JF, Guo
CJ, Wang YG, Zheng Q, Chen R, Xu YL, Wang GZ, Xi YM, Shen D, Jin J
and Wang JF: Proteomic analysis of human bone marrow mesenchymal
stem cells transduced with human telomerase reverse transcriptase
gene during proliferation. Cell Prolif. 41:625–644. 2008.
View Article : Google Scholar
|
|
25
|
Wei LL, Gao K, Liu PQ, Lu XF, Li SF, Cheng
JQ, Li YP and Lu YR: Mesenchymal stem cells from Chinese Guizhou
minipig by hTERT gene transfection. Transplant Proc. 40:547–550.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Alvarez MB, Childress P, Philip BK,
Gerard-O’Riley R, Hanlon M, Herbert BS, Robling AG, Pavalko FM and
Bidwell JP: Immortalization and characterization of osteoblast cell
lines generated from wild-type and Nmp4-null mouse bone marrow
stromal cells using murine telomerase reverse transcriptase
(mTERT). J Cell Physiol. 227:1873–1882. 2012. View Article : Google Scholar
|
|
27
|
Zhao XS, Malhotra GK, Lele SM, Lele MS,
West WW, Eudy JD, Band H and Band V: Telomerase-immortalized human
mammary stem/progenitor cells with ability to self-renew and
differentiate. Proc Natl Acad Sci USA. 14146–14151. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Stewart SA, Hahn WC, O’Connor BF, Banner
EN, Lundberg AS, Modha P, Mizuno H, Brooks MW, Fleming M, Zimonjic
DB, Popescu NC and Weinberg RA: Telomerase contributes to
tumorigenesis by a telomere length-independent mechanism. Proc Natl
Acad Sci USA. 12606–12611. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Dudognon C, Pendino F, Hillion J, Saumet
A, Lanotte M and Ségal-Bendirdjian E: Death receptor signaling
regulatory function for telomerase: hTERT abolishes TRAIL-induced
apoptosis, independently of telomere maintenance. Oncogene.
23:7469–7474. 2004. View Article : Google Scholar
|
|
30
|
Beliveau A, Bassett E, Lo AT, Garbe J,
Rubio MA, Bissell MJ, Campisi J and Yaswen P: p53-dependent
integration of telomere and growth factor deprivation signals. Proc
Natl Acad Sci USA. 104:4431–4436. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Del Bufalo D, Rizzo A, Trisciuoglio D,
Cardinali G, Torrisi MR, Zangemeister-Wittke U, Zupi G and Biroccio
A: Involvement of hTERT in apoptosis induced by interference with
Bcl-2 expression and function. Cell Death Differ. 12:1429–1438.
2005.PubMed/NCBI
|
|
32
|
Park JI, Venteicher AS, Hong JY, Choi J,
Jun S, Shkreli M, Chang W, Meng Z, Cheung P, Ji H, McLaughlin M,
Veenstra TD, Nusse R, McCrea PD and Artandi SE: Telomerase
modulates Wnt signalling by association with target gene chromatin.
Nature. 460:66–72. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Choi JK, Southworth LK, Sarin KY,
Venteicher AS, Ma WX, Chang W, Cheung P, Jun SH, Artandi MK and
Shah N: TERT promotes epithelial proliferation through
transcriptional control of a Myc- and Wnt-related developmental
program. PLoS Genet. 4:e102008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
González-Suárez E, Samper E, Ramírez A,
Flores JM, Martín-Caballero J, Jorcano JL and Blasco MA: Increased
epidermal tumors and increased skin wound healing in transgenic
mice overexpressing the catalytic subunit of telomerase, mTERT, in
basal keratinocytes. EMBO J. 20:2619–2630. 2001.PubMed/NCBI
|
|
35
|
Mukherjee S, Firpo EJ, Wang Y and Roberts
JM: Separation of telomerase functions by reverse genetics. Proc
Natl Acad Sci USA. 108:1363–1371. 2011. View Article : Google Scholar
|
|
36
|
Indran IR, Hande MP and Pervaiz S: hTERT
overexpression alleviates intracellular ROS production, improves
mitochondrial function, and inhibits ROS-mediated apoptosis in
cancer cells. Cancer Res. 71:266–276. 2011. View Article : Google Scholar
|
|
37
|
Gupta GP and Massague J: Cancer
metastasis: building a framework. Cell. 127:679–695. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Talmadge JE and Fidler IJ: AACR centennial
series: the biology of cancer metastasis: historical perspective.
Cancer Res. 70:5649–5669. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Fidler IJ: The pathogenesis of cancer
metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev
Cancer. 3:453–458. 2003.
|
|
40
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tsuji T, Ibaragi S and Hu GF:
Epithelial-mesenchymal transition and cell cooperativity in
metastasis. Cancer Res. 69:7135–7139. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Polyak K and Weinberg RA: Transitions
between epithelial and mesenchymal states: acquisition of malignant
and stem cell traits. Nat Rev Cancer. 9:265–273. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Huber MA, Kraut N and Beug H: Molecular
requirements for epithelial-mesenchymal transition during tumor
progression. Curr Opin Cell Biol. 17:548–558. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Berx G and van Roy F: Involvement of
members of the cadherin superfamily in cancer. Cold Spring Harb
Perspect Biol. 1:a0031292009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yu ST, Chen L, Wang HJ, Tang XD, Fang DC
and Yang SM: hTERT promotes the invasion of telomerase-negative
tumor cells in vitro. Int J Oncol. 35:329–336.
2009.PubMed/NCBI
|
|
47
|
Okawa T, Michaylira CZ, Kalabis J, Stairs
DB, Nakagawa H, Andl CD, Johnstone CN, Klein-Szanto AJ, El-Deiry WS
and Cukierman E: The functional interplay between EGFR
overexpression, hTERT activation, and p53 mutation in esophageal
epithelial cells with activation of stromal fibroblasts induces
tumor development, invasion, and differentiation. Genes Dev.
21:2788–2803. 2007. View Article : Google Scholar
|
|
48
|
Bagheri S, Nosrati M, Li S, Fong S,
Torabian S, Rangel J, Moore DH, Federman S, Laposa RR, Baehner FL,
Sagebiel RW, Cleaver JE, Haqq C, Debs RJ, Blackburn EH and
Kashani-Sabet M: Genes and pathways downstream of telomerase in
melanoma metastasis. Proc Natl Acad Sci USA. 103:11306–11311. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chen PC, Peng JR, Huang L, Li WX, Wang WZ,
Cui ZQ, Han H, Gong L, Xiang DP, Qiao SS, Yu X, Wei YH, Ma LP, Li
N, Zhu JY and Leng XS: Overexpression of human telomerase reverse
transcriptase promotes the motility and invasiveness of HepG2 cells
in vitro. Oncol Rep. 30:1157–1164. 2013.PubMed/NCBI
|
|
50
|
Thiery JP and Sleeman JP: Complex networks
orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell
Biol. 7:131–142. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liu Z, Li Q, Li K, Chen L, Li W, Hou M,
Liu T, Yang J, Lindvall C, Björkholm M, Jia J and Xu D: Telomerase
reverse transcriptase promotes epithelial-mesenchymal transition
and stem cell-like traits in cancer cells. Oncogene. 32:4203–4213.
2012. View Article : Google Scholar
|
|
52
|
Okamoto N, Yasukawa M, Nguyen C, Kasim V,
Maida Y, Possemato R, Shibata T, Ligon KL, Fukami K, Hahn WC and
Masutomi K: Maintenance of tumor initiating cells of defined
genetic composition by nucleostemin. Proc Natl Acad Sci USA.
108:20388–20393. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Clarke MF, Dick JE, Dirks PB, Eaves CJ,
Jamieson CH, Jones DL, Visvader J, Weissman IL and Wahl GM: Cancer
stem cells - perspectives on current status and future directions:
AACR Workshop on cancer stem cells. Cancer Res. 66:9339–9344. 2006.
View Article : Google Scholar
|
|
54
|
Guo W, Lasky JL and Wu H: Cancer stem
cells. Pediatr Res. 59:59–64. 2006. View Article : Google Scholar
|
|
55
|
Visvader JE and Lindeman GJ: Cancer stem
cells in solid tumours: accumulating evidence and unresolved
questions. Nat Rev Cancer. 8:755–768. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xia J, Chen C, Chen Z, Miele L, Sarkar FH
and Wang Z: Targeting pancreatic cancer stem cells for cancer
therapy. Biochim Biophys Acta. 1826:385–399. 2012.PubMed/NCBI
|
|
57
|
Park IH, Zhao R, West JA, Yabuuchi A, Huo
H, Ince TA, Lerou PH, Lensch MW and Daley GQ: Reprogramming of
human somatic cells to pluripotency with defined factors. Nature.
45:141–146. 2008. View Article : Google Scholar
|
|
58
|
Zhao X, Malhotra GK, Band H and Band V: A
block in lineage differentiation of immortal human mammary
stem/progenitor cells by ectopically-expressed oncogenes. J
Carcinog. 10:392011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan
A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell
LL, Polyak K, Brisken C, Yang J and Weinberg RA: The
epithelial-mesenchymal transition generates cells with properties
of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Rosen JM and Jordan CT: The increasing
complexity of the cancer stem cell paradigm. Science.
324:1670–1673. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Morel AP, Lièvre M, Thomas C, Hinkal G,
Ansieau S and Puisieux A: Generation of breast cancer stem cells
through epithelial-mesenchymal transition. PLoS One. 3:e28882008.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Miki J, Furusato B, Li H, Gu Y, Takahashi
H, Egawa S, Sesterhenn IA, McLeod DG, Srivastava S and Rhim JS:
Identification of putative stem cell markers, CD133 and CXCR4, in
hTERT-immortalized primary nonmalignant and malignant tumor-derived
human prostate epithelial cell lines and in prostate cancer
specimens. Cancer Res. 67:3153–3161. 2007. View Article : Google Scholar
|
|
63
|
Paranjape AN, Mandal T, Mukherjee G, Kumar
MV, Sengupta K and Rangarajan A: Introduction of SV40ER and hTERT
into mammospheres generates breast cancer cells with stem cell
properties. Oncogene. 31:1896–1909. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Castelo-Branco P, Zhang C, Lipman T,
Fujitani M, Hansford L, Clarke I, Harley CB, Tressler R, Malkin D,
Walker E, Kaplan DR, Dirks P and Tabori U: Neural tumor-initiating
cells have distinct telomere maintenance and can be safely targeted
for telomerase inhibition. Clin Cancer Res. 17:111–121. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Vermeulen L, De Sousa E, Melo F, van der
Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M,
Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G and
Medema JP: Wnt activity defines colon cancer stem cells and is
regulated by the microenvironment. Nat Cell Biol. 12:468–476. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lü MH, Liao ZL, Zhao XY, Fan YH, Lin XL,
Fang DC, Guo H and Yang SM: hTERT-based therapy: a universal
anticancer approach (Review). Oncol Rep. 28:1945–1952.
2012.PubMed/NCBI
|
|
67
|
Kuppuswamy M, Spencer JF, Doronin K,
Tollefson AE, Wold WS and Toth K: Oncolytic adenovirus that
overproduces ADP and replicates selectively in tumors due to hTERT
promoter-regulated E4 gene expression. Gene Ther. 12:1608–1617.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liu JP, Chen W, Schwarer AP and Li H:
Telomerase in cancer immunotherapy. Biochim Biophys Acta.
1805:35–42. 2010.PubMed/NCBI
|
|
69
|
Nair SK, Heiser A, Boczkowski D, Majumdar
A, Naoe M, Lebkowski JS, Vieweg J and Gilboa E: Induction of
cytotoxic T cell responses and tumor immunity against unrelated
tumors using telomerase reverse transcriptase RNA transfected
dendritic cells. Nat Med. 6:1011–1017. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kyte JA: Cancer vaccination with
telomerase peptide GV1001. Expert Opin Investig Drugs. 18:687–694.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Nava-Parada P and Emens LA: GV-1001, an
injectable telomerase peptide vaccine for the treatment of solid
cancers. Curr Opin Mol Ther. 9:490–497. 2007.PubMed/NCBI
|
|
72
|
Mavroudis D, Bolonakis I, Cornet S,
Myllaki G, Kanellou P, Kotsakis A, Galanis A, Nikoloudi I,
Spyropoulou M, Menez J, Miconnet I, Niniraki M, Cordopatis P,
Kosmatopoulos K and Georgoulias V: A phase I study of the optimized
cryptic peptide TERT(572y) in patients with advanced malignancies.
Oncology. 70:306–314. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Menez-Jamet J and Kosmatopoulos K:
Development of optimized cryptic peptides for immunotherapy.
IDrugs. 12:98–102. 2009.PubMed/NCBI
|
|
74
|
Pascolo E, Wenz C, Lingner J, Hauel N,
Priepke H, Kauffmann I, Garin-Chesa P, Rettig WJ, Damm K and
Schnapp A: Mechanism of human telomerase inhibition by BIBR1532, a
synthetic, non-nucleosidic drug candidate. J Biol Chem.
277:15566–15572. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Philippi C, Loretz B, Schaefer UF and Lehr
CM: Telomerase as an emerging target to fight cancer -
opportunities and challenges for nanomedicine. J Control Release.
146:228–240. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Cong YS, Wright WE and Shay JW: Human
telomerase and its regulation. Microbiol Mol Biol Rev. 66:407–425.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Buseman CM, Wright WE and Shay JW: Is
telomerase a viable target in cancer? Mutat Res. 730:90–97. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Schepelmann S, Ogilvie LM, Hedley D,
Friedlos F, Martin J, Scanlon I, Chen P, Marais R and Springer CJ:
Suicide gene therapy of human colon carcinoma xenografts using an
armed oncolytic adenovirus expressing carboxypeptidase G2. Cancer
Res. 67:4949–4955. 2007. View Article : Google Scholar
|
|
79
|
Majumdar AS, Hughes DE, Lichtsteiner SP,
Wang Z, Lebkowski JS and Vasserot AP: The telomerase reverse
transcriptase promoter drives efficacious tumor suicide gene
therapy while preventing hepatotoxicity encountered with
constitutive promoters. Gene Ther. 8:568–578. 2001. View Article : Google Scholar
|
|
80
|
Zhou JH, Tang B, Liu XL, He DW and Yang
DT: hTERT-targeted E. coli purine nucleoside phosphorylase
gene/6-methylpurine deoxyribose therapy for pancreatic cancer. Chin
Med J (Engl). 120:1348–1352. 2007.PubMed/NCBI
|
|
81
|
Xue Y, Li L, Zhang D, Wu K, Chen Y, Zeng
J, Wang X and He D: Twisted epithelial-to-mesenchymal transition
promotes progression of surviving bladder cancer T24 cells with
hTERT-dysfunction. PLoS One. 6:e277482011. View Article : Google Scholar
|
|
82
|
Hu J, Hwang SS, Liesa M, Gan B, Sahin E,
Jaskelioff M, Ding Z, Ying H, Boutin AT, Zhang H, Johnson S,
Ivanova E, Kost-Alimova M, Protopopov A, Wang YA, Shirihai OS, Chin
L and DePinho RA: Antitelomerase therapy provokes ALT and
mitochondrial adaptive mechanisms in cancer. Cell. 148:651–663.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bechter OE, Zou Y, Walker W, Wright WE and
Shay JW: Telomeric recombination in mismatch repair deficient human
colon cancer cells after telomerase inhibition. Cancer Res.
64:3444–3451. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Cukusić A, Skrobot Vidacek N, Sopta M and
Rubelj I: Telomerase regulation at the crossroads of cell fate.
Cytogenet Genome Res. 122:263–272. 2008.PubMed/NCBI
|