Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
September-2014 Volume 45 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2014 Volume 45 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Towards combinatorial targeted therapy in melanoma: From pre-clinical evidence to clinical application (Review)

  • Authors:
    • Giulia Grazia
    • Ilaria Penna
    • Valentina Perotti
    • Andrea Anichini
    • Elena Tassi
  • View Affiliations / Copyright

    Affiliations: Human Tumors Immunobiology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
    Copyright: © Grazia et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
  • Pages: 929-949
    |
    Published online on: June 10, 2014
       https://doi.org/10.3892/ijo.2014.2491
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Over the last few years, clinical trials with BRAF and mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitors have shown significant clinical activity in melanoma, but only a fraction of patients respond to these therapies, and development of resistance is frequent. This has prompted a large set of preclinical studies looking at several new combinatorial approaches of pathway- or target-specific inhibitors. At least five main drug association strategies have been verified in vitro and in preclinical models. The most promising include: i) vertical targeting of either MEK or phosphoinositide-3 kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways, or their combined blockade; ii) association of receptor tyrosine kinases (RTKs) inhibitors with other pro-apoptotic strategies; iii) engagement of death receptors in combination with MEK-, mTOR/PI3K-, histone deacetylase (HDAC)-inhibitors, or with anti-apoptotic molecules modulators; iv) strategies aimed at blocking anti-apoptotic proteins belonging to B-cell lymphoma (Bcl-2) or inhibitors of apoptosis (IAP) families associated with MEK/BRAF/p38 inhibition; v) co-inhibition of other molecules important for survival [proteasome, HDAC and Signal transducers and activators of transcription (Stat)3] and the major pathways activated in melanoma; vi) simultaneous targeting of multiple anti-apoptotic molecules. Here we review the anti-melanoma efficacy and mechanism of action of the above-mentioned combinatorial strategies, together with the potential clinical application of the most promising studies that may eventually lead to therapeutic benefit.
View Figures
View References

1 

Siegel R, Naishadham D and Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar

2 

Jilaveanu LB, Aziz SA and Kluger HM: Chemotherapy and biologic therapies for melanoma: do they work? Clin Dermatol. 27:614–625. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Davies H, Bignell GR, Cox C, et al: Mutations of the BRAF gene in human cancer. Nature. 417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Flaherty KT, Puzanov I, Kim KB, et al: Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 363:809–819. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Chapman PB, Hauschild A, Robert C, et al: Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 364:2507–2516. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Hauschild A, Grob JJ, Demidov LV, et al: Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 380:358–365. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Flaherty KT, Robert C, Hersey P, et al: Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 367:107–114. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Sosman JA, Kim KB, Schuchter L, et al: Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 366:707–714. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Aplin AE, Kaplan FM and Shao Y: Mechanisms of resistance to RAF inhibitors in melanoma. J Invest Dermatol. 131:1817–1820. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Lito P, Rosen N and Solit DB: Tumor adaptation and resistance to RAF inhibitors. Nat Med. 19:1401–1409. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Nikolaou VA, Stratigos AJ, Flaherty KT and Tsao H: Melanoma: new insights and new therapies. J Invest Dermatol. 132:854–863. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Cragg MS, Jansen ES, Cook M, Harris C, Strasser A and Scott CL: Treatment of B-RAF mutant human tumor cells with a MEK inhibitor requires Bim and is enhanced by a BH3 mimetic. J Clin Invest. 118:3651–3659. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Jiang CC, Lai F, Tay KH, et al: Apoptosis of human melanoma cells induced by inhibition of B-RAFV600E involves preferential splicing of bimS. Cell Death Dis. 1:e692010. View Article : Google Scholar : PubMed/NCBI

14 

Eberle J, Fecker LF, Hossini AM, Kurbanov BM and Fechner H: Apoptosis pathways and oncolytic adenoviral vectors: promising targets and tools to overcome therapy resistance of malignant melanoma. Exp Dermatol. 17:1–11. 2008. View Article : Google Scholar

15 

Wang X: The expanding role of mitochondria in apoptosis. Genes Dev. 15:2922–2933. 2001.PubMed/NCBI

16 

Guicciardi ME and Gores GJ: Life and death by death receptors. FASEB J. 23:1625–1637. 2009. View Article : Google Scholar : PubMed/NCBI

17 

LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S and Korneluk RG: IAP-targeted therapies for cancer. Oncogene. 27:6252–6275. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Santarpia L, Lippman SM and El-Naggar AK: Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 16:103–119. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Liu P, Cheng H, Roberts TM and Zhao JJ: Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Pickup M, Novitskiy S and Moses HL: The roles of TGFbeta in the tumour microenvironment. Nat Rev Cancer. 13:788–799. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Ara T and Declerck YA: Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer. 46:1223–1231. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Crowe DL and Shuler CF: Regulation of tumor cell invasion by extracellular matrix. Histol Histopathol. 14:665–671. 1999.PubMed/NCBI

23 

Fedorenko IV, Gibney GT and Smalley KS: NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene. 32:3009–3018. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Shi H, Hong A, Kong X, et al: A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition. Cancer Discov. 4:69–79. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Davies MA, Stemke-Hale K, Tellez C, et al: A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer. 99:1265–1268. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Aguissa-Toure AH and Li G: Genetic alterations of PTEN in human melanoma. Cell Mol Life Sci. 69:1475–1491. 2012. View Article : Google Scholar : PubMed/NCBI

27 

McCubrey JA, Steelman LS, Kempf CR, et al: Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. J Cell Physiol. 226:2762–2781. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Easty DJ, Gray SG, O’Byrne KJ, O’Donnell D and Bennett DC: Receptor tyrosine kinases and their activation in melanoma. Pigment Cell Melanoma Res. 24:446–461. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Straussman R, Morikawa T, Shee K, et al: Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 487:500–504. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Lippitz BE: Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 14:e218–228. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Downward J: Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 3:11–22. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Populo H, Lopes JM and Soares P: The mTOR signalling pathway in human cancer. Int J Mol Sci. 13:1886–1918. 2012. View Article : Google Scholar

33 

Mendoza MC, Er EE and Blenis J: The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 36:320–328. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Shi H, Kong X, Ribas A and Lo RS: Combinatorial treatments that overcome PDGFRbeta-driven resistance of melanoma cells to V600EB-RAF inhibition. Cancer Res. 71:5067–5074. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Britten CD: PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother Pharmacol. 71:1395–1409. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Bjornsti MA and Houghton PJ: The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 4:335–348. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Hay N: The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 8:179–183. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Aziz SA, Jilaveanu LB, Zito C, et al: Vertical targeting of the phosphatidylinositol-3 kinase pathway as a strategy for treating melanoma. Clin Cancer Res. 16:6029–6039. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Werzowa J, Cejka D, Fuereder T, et al: Suppression of mTOR complex 2-dependent AKT phosphorylation in melanoma cells by combined treatment with rapamycin and LY294002. Br J Dermatol. 160:955–964. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Marone R, Erhart D, Mertz AC, et al: Targeting melanoma with dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitors. Mol Cancer Res. 7:601–613. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Babchia N, Calipel A, Mouriaux F, Faussat AM and Mascarelli F: The PI3K/Akt and mTOR/P70S6K signaling pathways in human uveal melanoma cells: interaction with B-Raf/ERK. Invest Ophthalmol Vis Sci. 51:421–429. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Werzowa J, Koehrer S, Strommer S, et al: Vertical inhibition of the mTORC1/mTORC2/PI3K pathway shows synergistic effects against melanoma in vitro and in vivo. J Invest Dermatol. 131:495–503. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Smalley KS: Understanding melanoma signaling networks as the basis for molecular targeted therapy. J Invest Dermatol. 130:28–37. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Emery CM, Vijayendran KG, Zipser MC, et al: MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci USA. 106:20411–20416. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Mitsiades N, Chew SA, He B, et al: Genotype-dependent sensitivity of uveal melanoma cell lines to inhibition of B-Raf, MEK, and Akt kinases: rationale for personalized therapy. Invest Ophthalmol Vis Sci. 52:7248–7255. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Shao Y and Aplin AE: BH3-only protein silencing contributes to acquired resistance to PLX4720 in human melanoma. Cell Death Differ. 19:2029–2039. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Carlino MS, Gowrishankar K, Saunders CA, et al: Antiproliferative effects of continued mitogen-activated protein kinase pathway inhibition following acquired resistance to BRAF and/or MEK inhibition in melanoma. Mol Cancer Ther. 12:1332–1342. 2013. View Article : Google Scholar

48 

King AJ, Arnone MR, Bleam MR, et al: Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions. PLoS One. 8:e675832013. View Article : Google Scholar

49 

Greger JG, Eastman SD, Zhang V, et al: Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther. 11:909–920. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Gadiot J, Hooijkaas AI, Deken MA and Blank CU: Synchronous BRAF(V600E) and MEK inhibition leads to superior control of murine melanoma by limiting MEK inhibitor induced skin toxicity. Onco Targets Ther. 6:1649–1658. 2013.PubMed/NCBI

51 

Su F, Bradley WD, Wang Q, et al: Resistance to selective BRAF inhibition can be mediated by modest upstream pathway activation. Cancer Res. 72:969–978. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Park SJ, Hong SW, Moon JH, et al: The MEK1/2 inhibitor AS703026 circumvents resistance to the BRAF inhibitor PLX4032 in human malignant melanoma cells. Am J Med Sci. 346:494–498. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Nakamura A, Arita T, Tsuchiya S, et al: Antitumor activity of the selective pan-RAF inhibitor TAK-632 in BRAF inhibitor-resistant melanoma. Cancer Res. 73:7043–7055. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Niessner H, Beck D, Sinnberg T, et al: The farnesyl transferase inhibitor lonafarnib inhibits mTOR signaling and enforces sorafenib-induced apoptosis in melanoma cells. J Invest Dermatol. 131:468–479. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Baudy AR, Dogan T, Flores-Mercado JE, et al: FDG-PET is a good biomarker of both early response and acquired resistance in BRAFV600 mutant melanomas treated with vemurafenib and the MEK inhibitor GDC-0973. EJNMMI Res. 2:22–31. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Carracedo A, Ma L, Teruya-Feldstein J, et al: Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 118:3065–3074. 2008.PubMed/NCBI

57 

Kinkade CW, Castillo-Martin M, Puzio-Kuter A, et al: Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest. 118:3051–3064. 2008.PubMed/NCBI

58 

Roberts PJ, Usary JE, Darr DB, et al: Combined PI3K/mTOR and MEK inhibition provides broad antitumor activity in faithful murine cancer models. Clin Cancer Res. 18:5290–5303. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Ho AL, Musi E, Ambrosini G, et al: Impact of combined mTOR and MEK inhibition in uveal melanoma is driven by tumor genotype. PLoS One. 7:e404392012. View Article : Google Scholar : PubMed/NCBI

60 

Gopal YN, Deng W, Woodman SE, et al: Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Res. 70:8736–8747. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Atefi M, von Euw E, Attar N, et al: Reversing melanoma cross-resistance to BRAF and MEK inhibitors by co-targeting the AKT/mTOR pathway. PLoS One. 6:e289732011. View Article : Google Scholar : PubMed/NCBI

62 

Ambrosini G, Musi E, Ho AL, de Stanchina E and Schwartz GK: Inhibition of mutant GNAQ signaling in uveal melanoma induces AMPK-dependent autophagic cell death. Mol Cancer Ther. 12:768–776. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Fowles JS, Denton CL and Gustafson DL: Comparative analysis of MAPK and PI3K/AKT pathway activation and inhibition in human and canine melanoma. Vet Comp Oncol. Jun 7–2013.(Epub ahead of print).

64 

Meier F, Busch S, Lasithiotakis K, et al: Combined targeting of MAPK and AKT signalling pathways is a promising strategy for melanoma treatment. Br J Dermatol. 156:1204–1213. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Lasithiotakis KG, Sinnberg TW, Schittek B, et al: Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells. J Invest Dermatol. 128:2013–2023. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Dankort D, Curley DP, Cartlidge RA, et al: Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet. 41:544–552. 2009. View Article : Google Scholar : PubMed/NCBI

67 

Hoeflich KP, Merchant M, Orr C, et al: Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition. Cancer Res. 72:210–219. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Tassi E, Zanon M, Vegetti C, et al: Role of Apollon in human melanoma resistance to antitumor agents that activate the intrinsic or the extrinsic apoptosis pathways. Clin Cancer Res. 18:3316–3327. 2012. View Article : Google Scholar

69 

Byron SA, Loch DC, Wellens CL, et al: Sensitivity to the MEK inhibitor E6201 in melanoma cells is associated with mutant BRAF and wildtype PTEN status. Mol Cancer. 11:75–89. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Khalili JS, Yu X, Wang J, et al: Combination small molecule MEK and PI3K inhibition enhances uveal melanoma cell death in a mutant GNAQ- and GNA11-dependent manner. Clin Cancer Res. 18:4345–4355. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Choo EF, Ng CM, Berry L, et al: PK-PD modeling of combination efficacy effect from administration of the MEK inhibitor GDC-0973 and PI3K inhibitor GDC-0941 in A2058 xenografts. Cancer Chemother Pharmacol. 71:133–143. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Posch C, Moslehi H, Feeney L, et al: Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc Natl Acad Sci USA. 110:4015–4020. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Ciuffreda L, Di Sanza C, Cesta Incani U, et al: The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms. J Mol Med (Berl). 90:667–679. 2012. View Article : Google Scholar

74 

Bedogni B, O’Neill MS, Welford SM, et al: Topical treatment with inhibitors of the phosphatidylinositol 3′-kinase/Akt and Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways reduces melanoma development in severe combined immunodeficient mice. Cancer Res. 64:2552–2560. 2004.

75 

Bedogni B, Welford SM, Kwan AC, Ranger-Moore J, Saboda K and Powell MB: Inhibition of phosphatidylinositol-3-kinase and mitogen-activated protein kinase kinase 1/2 prevents melanoma development and promotes melanoma regression in the transgenic TPRas mouse model. Mol Cancer Ther. 5:3071–3077. 2006. View Article : Google Scholar

76 

Smalley KS, Haass NK, Brafford PA, Lioni M, Flaherty KT and Herlyn M: Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol Cancer Ther. 5:1136–1144. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Deng W, Gopal YN, Scott A, Chen G, Woodman SE and Davies MA: Role and therapeutic potential of PI3K-mTOR signaling in de novo resistance to BRAF inhibition. Pigment Cell Melanoma Res. 25:248–258. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Jiang CC, Lai F, Thorne RF, et al: MEK-independent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin Cancer Res. 17:721–730. 2011. View Article : Google Scholar : PubMed/NCBI

79 

Molhoek KR, Brautigan DL and Slingluff CL Jr: Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY43-9006 and mTOR inhibitor Rapamycin. J Transl Med. 3:39–49. 2005. View Article : Google Scholar : PubMed/NCBI

80 

Held MA, Langdon CG, Platt JT, et al: Genotype-selective combination therapies for melanoma identified by high-throughput drug screening. Cancer Discov. 3:52–67. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Boisvert-Adamo K and Aplin AE: B-RAF and PI-3 kinase signaling protect melanoma cells from anoikis. Oncogene. 25:4848–4856. 2006. View Article : Google Scholar : PubMed/NCBI

82 

Villanueva J, Infante JR, Krepler C, et al: Concurrent MEK2 mutation and BRAF amplification confer resistance to BRAF and MEK inhibitors in melanoma. Cell Rep. 4:1090–1099. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Curtin JA, Busam K, Pinkel D and Bastian BC: Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 24:4340–4346. 2006. View Article : Google Scholar : PubMed/NCBI

84 

Ashida A, Takata M, Murata H, Kido K and Saida T: Pathological activation of KIT in metastatic tumors of acral and mucosal melanomas. Int J Cancer. 124:862–868. 2009. View Article : Google Scholar : PubMed/NCBI

85 

Thomas RK, Baker AC, Debiasi RM, et al: High-throughput oncogene mutation profiling in human cancer. Nat Genet. 39:347–351. 2007. View Article : Google Scholar : PubMed/NCBI

86 

Prickett TD, Agrawal NS, Wei X, et al: Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat Genet. 41:1127–1132. 2009. View Article : Google Scholar : PubMed/NCBI

87 

Ruhe JE, Streit S, Hart S, et al: Genetic alterations in the tyrosine kinase transcriptome of human cancer cell lines. Cancer Res. 67:11368–11376. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Gitay-Goren H, Halaban R and Neufeld G: Human melanoma cells but not normal melanocytes express vascular endothelial growth factor receptors. Biochem Biophys Res Commun. 190:702–708. 1993. View Article : Google Scholar

89 

Barnhill RL, Xiao M, Graves D and Antoniades HN: Expression of platelet-derived growth factor (PDGF)-A, PDGF-B and the PDGF-alpha receptor, but not the PDGF-beta receptor, in human malignant melanoma in vivo. Br J Dermatol. 135:898–904. 1996. View Article : Google Scholar : PubMed/NCBI

90 

Metzner T, Bedeir A, Held G, et al: Fibroblast growth factor receptors as therapeutic targets in human melanoma: synergism with BRAF inhibition. J Invest Dermatol. 131:2087–2095. 2011. View Article : Google Scholar : PubMed/NCBI

91 

de Wit PE, Moretti S, Koenders PG, et al: Increasing epidermal growth factor receptor expression in human melanocytic tumor progression. J Invest Dermatol. 99:168–173. 1992.PubMed/NCBI

92 

Rakosy Z, Vizkeleti L, Ecsedi S, et al: EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int J Cancer. 121:1729–1737. 2007. View Article : Google Scholar : PubMed/NCBI

93 

Reschke M, Mihic-Probst D, van der Horst EH, et al: HER3 is a determinant for poor prognosis in melanoma. Clin Cancer Res. 14:5188–5197. 2008. View Article : Google Scholar : PubMed/NCBI

94 

Ugurel S, Rappl G, Tilgen W and Reinhold U: Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol. 19:577–583. 2001.

95 

Molhoek KR, Shada AL, Smolkin M, et al: Comprehensive analysis of receptor tyrosine kinase activation in human melanomas reveals autocrine signaling through IGF-1R. Melanoma Res. 21:274–284. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Mendel DB, Laird AD, Xin X, et al: In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 9:327–337. 2003.

97 

Qin JZ, Ziffra J, Stennett L, et al: Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res. 65:6282–6293. 2005. View Article : Google Scholar : PubMed/NCBI

98 

Fernandez Y, Verhaegen M, Miller TP, et al: Differential regulation of noxa in normal melanocytes and melanoma cells by proteasome inhibition: therapeutic implications. Cancer Res. 65:6294–6304. 2005. View Article : Google Scholar

99 

Markovic SN, Geyer SM, Dawkins F, et al: A phase II study of bortezomib in the treatment of metastatic malignant melanoma. Cancer. 103:2584–2589. 2005. View Article : Google Scholar : PubMed/NCBI

100 

Yeramian A, Sorolla A, Velasco A, et al: Inhibition of activated receptor tyrosine kinases by Sunitinib induces growth arrest and sensitizes melanoma cells to Bortezomib by blocking Akt pathway. Int J Cancer. 130:967–978. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Li J, Rix U, Fang B, et al: A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat Chem Biol. 6:291–299. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Dewaele B, Floris G, Finalet-Ferreiro J, et al: Coactivated platelet-derived growth factor receptor {alpha} and epidermal growth factor receptor are potential therapeutic targets in intimal sarcoma. Cancer Res. 70:7304–7314. 2010. View Article : Google Scholar

103 

Vultur A, Villanueva J, Krepler C, et al: MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines. Oncogene. Apr 29–2013.(Epub ahead of print).

104 

Hamai A, Richon C, Meslin F, et al: Imatinib enhances human melanoma cell susceptibility to TRAIL-induced cell death: relationship to Bcl-2 family and caspase activation. Oncogene. 25:7618–7634. 2006. View Article : Google Scholar : PubMed/NCBI

105 

Klosowska-Wardega A, Hasumi Y, Ahgren A, Heldin CH and Hellberg C: Combination therapy using imatinib and vatalanib improves the therapeutic efficiency of paclitaxel towards a mouse melanoma tumor. Melanoma Res. 21:57–65. 2011. View Article : Google Scholar

106 

Molhoek KR, Griesemann H, Shu J, Gershenwald JE, Brautigan DL and Slingluff CL Jr: Human melanoma cytolysis by combined inhibition of mammalian target of rapamycin and vascular endothelial growth factor/vascular endothelial growth factor receptor-2. Cancer Res. 68:4392–4397. 2008. View Article : Google Scholar

107 

O’Reilly T, Lane HA, Wood JM, et al: Everolimus and PTK/ZK show synergistic growth inhibition in the orthotopic BL16/BL6 murine melanoma model. Cancer Chemother Pharmacol. 67:193–200. 2011.PubMed/NCBI

108 

Schicher N, Paulitschke V, Swoboda A, et al: Erlotinib and bevacizumab have synergistic activity against melanoma. Clin Cancer Res. 15:3495–3502. 2009. View Article : Google Scholar : PubMed/NCBI

109 

Vergani E, Vallacchi V, Frigerio S, et al: Identification of MET and SRC activation in melanoma cell lines showing primary resistance to PLX4032. Neoplasia. 13:1132–1142. 2011.PubMed/NCBI

110 

Girotti MR, Pedersen M, Sanchez-Laorden B, et al: Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discov. 3:158–167. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Abel EV, Basile KJ, Kugel CH III, et al: Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J Clin Invest. 123:2155–2168. 2013. View Article : Google Scholar : PubMed/NCBI

112 

Fattore L, Marra E, Pisanu ME, et al: Activation of an early feedback survival loop involving phospho-ErbB3 is a general response of melanoma cells to RAF/MEK inhibition and is abrogated by anti-ErbB3 antibodies. J Transl Med. 11:180–190. 2013. View Article : Google Scholar

113 

Karasic TB, Hei TK and Ivanov VN: Disruption of IGF-1R signaling increases TRAIL-induced apoptosis: a new potential therapy for the treatment of melanoma. Exp Cell Res. 316:1994–2007. 2010. View Article : Google Scholar : PubMed/NCBI

114 

Villanueva J, Vultur A, Lee JT, et al: Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 18:683–695. 2010. View Article : Google Scholar : PubMed/NCBI

115 

Wehrli P, Viard I, Bullani R, Tschopp J and French LE: Death receptors in cutaneous biology and disease. J Invest Dermatol. 115:141–148. 2000. View Article : Google Scholar : PubMed/NCBI

116 

Zhang XD, Franco A, Myers K, Gray C, Nguyen T and Hersey P: Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res. 59:2747–2753. 1999.

117 

Micheau O, Shirley S and Dufour F: Death receptors as targets in cancer. Br J Pharmacol. 169:1723–1744. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Roberts NJ, Zhou S, Diaz LA Jr and Holdhoff M: Systemic use of tumor necrosis factor alpha as an anticancer agent. Oncotarget. 2:739–751. 2011.PubMed/NCBI

119 

Etter AL, Bassi I, Germain S, et al: The combination of chemotherapy and intraperitoneal MegaFas ligand improves treatment of ovarian carcinoma. Gynecol Oncol. 107:14–21. 2007. View Article : Google Scholar : PubMed/NCBI

120 

Gajewski TF: On the TRAIL toward death receptor-based cancer therapeutics. J Clin Oncol. 25:1305–1307. 2007. View Article : Google Scholar : PubMed/NCBI

121 

Duiker EW, Mom CH, de Jong S, et al: The clinical trail of TRAIL. Eur J Cancer. 42:2233–2240. 2006. View Article : Google Scholar : PubMed/NCBI

122 

Zhang XD, Borrow JM, Zhang XY, Nguyen T and Hersey P: Activation of ERK1/2 protects melanoma cells from TRAIL-induced apoptosis by inhibiting Smac/DIABLO release from mitochondria. Oncogene. 22:2869–2881. 2003. View Article : Google Scholar : PubMed/NCBI

123 

Berger A, Quast SA, Plotz M, Kuhn NF, Trefzer U and Eberle J: RAF inhibition overcomes resistance to TRAIL-induced apoptosis in melanoma cells. J Invest Dermatol. 134:430–440. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Quast SA, Berger A and Eberle J: ROS-dependent phosphorylation of Bax by wortmannin sensitizes melanoma cells for TRAIL-induced apoptosis. Cell Death Dis. 4:e8392013. View Article : Google Scholar : PubMed/NCBI

125 

Phipps LE, Hino S and Muschel RJ: Targeting cell spreading: a method of sensitizing metastatic tumor cells to TRAIL-induced apoptosis. Mol Cancer Res. 9:249–258. 2011. View Article : Google Scholar : PubMed/NCBI

126 

Bolden JE, Peart MJ and Johnstone RW: Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 5:769–784. 2006. View Article : Google Scholar : PubMed/NCBI

127 

Zhang XD, Gillespie SK, Borrow JM and Hersey P: The histone deacetylase inhibitor suberic bishydroxamate: a potential sensitizer of melanoma to TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis. Biochem Pharmacol. 66:1537–1545. 2003. View Article : Google Scholar

128 

Gillespie S, Borrow J, Zhang XD and Hersey P: Bim plays a crucial role in synergistic induction of apoptosis by the histone deacetylase inhibitor SBHA and TRAIL in melanoma cells. Apoptosis. 11:2251–2265. 2006. View Article : Google Scholar : PubMed/NCBI

129 

Lillehammer T, Engesaeter BO, Prasmickaite L, Maelandsmo GM, Fodstad O and Engebraaten O: Combined treatment with Ad-hTRAIL and DTIC or SAHA is associated with increased mitochondrial-mediated apoptosis in human melanoma cell lines. J Gene Med. 9:440–451. 2007. View Article : Google Scholar : PubMed/NCBI

130 

Perotti V, Baldassari P, Bersani I, et al: NFATc2 is a potential therapeutic target in human melanoma. J Invest Dermatol. 132:2652–2660. 2012. View Article : Google Scholar : PubMed/NCBI

131 

Zimmerman ZF, Kulikauskas RM, Bomsztyk K, Moon RT and Chien AJ: Activation of Wnt/beta-catenin signaling increases apoptosis in melanoma cells treated with trail. PLoS One. 8:e695932013. View Article : Google Scholar : PubMed/NCBI

132 

Berger A, Quast SA, Plotz M, Kammermeier A and Eberle J: Sensitization of melanoma cells for TRAIL-induced apoptosis by BMS-345541 correlates with altered phosphorylation and activation of Bax. Cell Death Dis. 4:e4772013. View Article : Google Scholar : PubMed/NCBI

133 

Lecis D, Drago C, Manzoni L, et al: Novel SMAC-mimetics synergistically stimulate melanoma cell death in combination with TRAIL and Bortezomib. Br J Cancer. 102:1707–1716. 2010. View Article : Google Scholar : PubMed/NCBI

134 

Baritaki S, Yeung K, Palladino M, Berenson J and Bonavida B: Pivotal roles of snail inhibition and RKIP induction by the proteasome inhibitor NPI-0052 in tumor cell chemoimmunosensitization. Cancer Res. 69:8376–8385. 2009. View Article : Google Scholar : PubMed/NCBI

135 

Chawla-Sarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ and Borden EC: Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ. 11:915–923. 2004. View Article : Google Scholar : PubMed/NCBI

136 

Engesaeter BO, Sathermugathevan M, Hellenes T, et al: Targeting inhibitor of apoptosis proteins in combination with dacarbazine or TRAIL in melanoma cells. Cancer Biol Ther. 12:47–58. 2011. View Article : Google Scholar : PubMed/NCBI

137 

Chetoui N, Sylla K, Gagnon-Houde JV, et al: Down-regulation of mcl-1 by small interfering RNA sensitizes resistant melanoma cells to fas-mediated apoptosis. Mol Cancer Res. 6:42–52. 2008. View Article : Google Scholar : PubMed/NCBI

138 

Safa AR: c-FLIP, a master anti-apoptotic regulator. Exp Oncol. 34:176–184. 2012.PubMed/NCBI

139 

Geserick P, Drewniok C, Hupe M, et al: Suppression of cFLIP is sufficient to sensitize human melanoma cells to TRAIL- and CD95L-mediated apoptosis. Oncogene. 27:3211–3220. 2008. View Article : Google Scholar

140 

Hartman ML and Czyz M: Anti-apoptotic proteins on guard of melanoma cell survival. Cancer Lett. 331:24–34. 2013. View Article : Google Scholar : PubMed/NCBI

141 

Oltersdorf T, Elmore SW, Shoemaker AR, et al: An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 435:677–681. 2005. View Article : Google Scholar : PubMed/NCBI

142 

Hann CL, Daniel VC, Sugar EA, et al: Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer. Cancer Res. 68:2321–2328. 2008. View Article : Google Scholar : PubMed/NCBI

143 

Wroblewski D, Mijatov B, Mohana-Kumaran N, et al: The BH3-mimetic ABT-737 sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors but does not reverse acquired resistance. Carcinogenesis. 34:237–247. 2013. View Article : Google Scholar : PubMed/NCBI

144 

VanBrocklin MW, Verhaegen M, Soengas MS and Holmen SL: Mitogen-activated protein kinase inhibition induces translocation of Bmf to promote apoptosis in melanoma. Cancer Res. 69:1985–1994. 2009. View Article : Google Scholar : PubMed/NCBI

145 

Tse C, Shoemaker AR, Adickes J, et al: ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68:3421–3428. 2008. View Article : Google Scholar : PubMed/NCBI

146 

Sale MJ and Cook SJ: The BH3 mimetic ABT-263 synergizes with the MEK1/2 inhibitor selumetinib/AZD6244 to promote BIM-dependent tumour cell death and inhibit acquired resistance. Biochem J. 450:285–294. 2013. View Article : Google Scholar : PubMed/NCBI

147 

Verhaegen M, Bauer JA, Martin de la Vega C, et al: A novel BH3 mimetic reveals a mitogen-activated protein kinase-dependent mechanism of melanoma cell death controlled by p53 and reactive oxygen species. Cancer Res. 66:11348–11359. 2006. View Article : Google Scholar

148 

Senft D, Berking C, Graf SA, Kammerbauer C, Ruzicka T and Besch R: Selective induction of cell death in melanoma cell lines through targeting of Mcl-1 and A1. PLoS One. 7:e308212012. View Article : Google Scholar : PubMed/NCBI

149 

Haq R, Yokoyama S, Hawryluk EB, et al: BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc Natl Acad Sci USA. 110:4321–4326. 2013. View Article : Google Scholar : PubMed/NCBI

150 

Koul HK, Pal M and Koul S: Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer. 4:342–359. 2013. View Article : Google Scholar : PubMed/NCBI

151 

Keuling AM, Andrew SE and Tron VA: Inhibition of p38 MAPK enhances ABT-737-induced cell death in melanoma cell lines: novel regulation of PUMA. Pigment Cell Melanoma Res. 23:430–440. 2010. View Article : Google Scholar : PubMed/NCBI

152 

Boyle GM, Martyn AC and Parsons PG: Histone deacetylase inhibitors and malignant melanoma. Pigment Cell Res. 18:160–166. 2005. View Article : Google Scholar : PubMed/NCBI

153 

Kortylewski M, Jove R and Yu H: Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev. 24:315–327. 2005. View Article : Google Scholar : PubMed/NCBI

154 

Qin JZ, Xin H, Sitailo LA, Denning MF and Nickoloff BJ: Enhanced killing of melanoma cells by simultaneously targeting Mcl-1 and NOXA. Cancer Res. 66:9636–9645. 2006. View Article : Google Scholar : PubMed/NCBI

155 

Wolter KG, Verhaegen M, Fernandez Y, et al: Therapeutic window for melanoma treatment provided by selective effects of the proteasome on Bcl-2 proteins. Cell Death Differ. 14:1605–1616. 2007. View Article : Google Scholar : PubMed/NCBI

156 

Nguyen M, Marcellus RC, Roulston A, et al: Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA. 104:19512–19517. 2007. View Article : Google Scholar : PubMed/NCBI

157 

Freudlsperger C, Thies A, Pfuller U and Schumacher U: The proteasome inhibitor bortezomib augments anti-proliferative effects of mistletoe lectin-I and the PPAR-gamma agonist rosiglitazone in human melanoma cells. Anticancer Res. 27:207–213. 2007.

158 

Miller LA, Goldstein NB, Johannes WU, et al: BH3 mimetic ABT-737 and a proteasome inhibitor synergistically kill melanomas through Noxa-dependent apoptosis. J Invest Dermatol. 129:964–971. 2009. View Article : Google Scholar : PubMed/NCBI

159 

Reuland SN, Goldstein NB, Partyka KA, et al: ABT-737 synergizes with Bortezomib to kill melanoma cells. Biol Open. 1:92–100. 2011. View Article : Google Scholar

160 

Mlynarczuk-Bialy I, Roeckmann H, Kuckelkorn U, et al: Combined effect of proteasome and calpain inhibition on cisplatin-resistant human melanoma cells. Cancer Res. 66:7598–7605. 2006. View Article : Google Scholar : PubMed/NCBI

161 

Millward M, Price T, Townsend A, et al: Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination. Invest New Drugs. 30:2303–2317. 2012. View Article : Google Scholar

162 

Lai F, Guo ST, Jin L, et al: Cotargeting histone deacetylases and oncogenic BRAF synergistically kills human melanoma cells by necrosis independently of RIPK1 and RIPK3. Cell Death Dis. 4:e6552013. View Article : Google Scholar

163 

Niu G, Wright KL, Huang M, et al: Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene. 21:2000–2008. 2002. View Article : Google Scholar : PubMed/NCBI

164 

van Delft MF, Wei AH, Mason KD, et al: The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell. 10:389–399. 2006.PubMed/NCBI

165 

Konopleva M, Contractor R, Tsao T, et al: Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 10:375–388. 2006. View Article : Google Scholar : PubMed/NCBI

166 

Keuling AM, Felton KE, Parker AA, Akbari M, Andrew SE and Tron VA: RNA silencing of Mcl-1 enhances ABT-737-mediated apoptosis in melanoma: role for a caspase-8-dependent pathway. PLoS One. 4:e66512009. View Article : Google Scholar : PubMed/NCBI

167 

Lucas KM, Mohana-Kumaran N, Lau D, et al: Modulation of NOXA and MCL-1 as a strategy for sensitizing melanoma cells to the BH3-mimetic ABT-737. Clin Cancer Res. 18:783–795. 2012. View Article : Google Scholar : PubMed/NCBI

168 

Pandey MK, Gowda K, Doi K, Sharma AK, Wang HG and Amin S: Proteasomal degradation of Mcl-1 by maritoclax induces apoptosis and enhances the efficacy of ABT-737 in melanoma cells. PLoS One. 8:e785702013. View Article : Google Scholar : PubMed/NCBI

169 

Davies MA, Fox PS, Papadopoulos NE, et al: Phase I study of the combination of sorafenib and temsirolimus in patients with metastatic melanoma. Clin Cancer Res. 18:1120–1128. 2012. View Article : Google Scholar : PubMed/NCBI

170 

Margolin KA, Moon J, Flaherty LE, et al: Randomized phase II trial of sorafenib with temsirolimus or tipifarnib in untreated metastatic melanoma (S0438). Clin Cancer Res. 18:1129–1137. 2012. View Article : Google Scholar : PubMed/NCBI

171 

Hong DS, Sebti SM, Newman RA, et al: Phase I trial of a combination of the multikinase inhibitor sorafenib and the farnesyltransferase inhibitor tipifarnib in advanced malignancies. Clin Cancer Res. 15:7061–7068. 2009. View Article : Google Scholar : PubMed/NCBI

172 

Flaherty KT, Infante JR, Daud A, et al: Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 367:1694–1703. 2012. View Article : Google Scholar : PubMed/NCBI

173 

Su F, Viros A, Milagre C, et al: RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med. 366:207–215. 2012. View Article : Google Scholar : PubMed/NCBI

174 

Hainsworth JD, Infante JR, Spigel DR, et al: Bevacizumab and everolimus in the treatment of patients with metastatic melanoma: a phase 2 trial of the Sarah Cannon Oncology Research Consortium. Cancer. 116:4122–4129. 2010. View Article : Google Scholar : PubMed/NCBI

175 

Slingluff CL Jr, Petroni GR, Molhoek KR, et al: Clinical activity and safety of combination therapy with temsirolimus and bevacizumab for advanced melanoma: a phase II trial (CTEP 7190/Mel47). Clin Cancer Res. 19:3611–3620. 2013. View Article : Google Scholar : PubMed/NCBI

176 

Vaishampayan UN, Burger AM, Sausville EA, et al: Safety, efficacy, pharmacokinetics, and pharmacodynamics of the combination of sorafenib and tanespimycin. Clin Cancer Res. 16:3795–3804. 2010. View Article : Google Scholar : PubMed/NCBI

177 

Vanneman M and Dranoff G: Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 12:237–251. 2012. View Article : Google Scholar

178 

Hodi FS, O’Day SJ, McDermott DF, et al: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 363:711–723. 2010. View Article : Google Scholar

179 

Hamid O, Robert C, Daud A, et al: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 369:134–144. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Grazia G, Penna I, Perotti V, Anichini A and Tassi E: Towards combinatorial targeted therapy in melanoma: From pre-clinical evidence to clinical application (Review). Int J Oncol 45: 929-949, 2014.
APA
Grazia, G., Penna, I., Perotti, V., Anichini, A., & Tassi, E. (2014). Towards combinatorial targeted therapy in melanoma: From pre-clinical evidence to clinical application (Review). International Journal of Oncology, 45, 929-949. https://doi.org/10.3892/ijo.2014.2491
MLA
Grazia, G., Penna, I., Perotti, V., Anichini, A., Tassi, E."Towards combinatorial targeted therapy in melanoma: From pre-clinical evidence to clinical application (Review)". International Journal of Oncology 45.3 (2014): 929-949.
Chicago
Grazia, G., Penna, I., Perotti, V., Anichini, A., Tassi, E."Towards combinatorial targeted therapy in melanoma: From pre-clinical evidence to clinical application (Review)". International Journal of Oncology 45, no. 3 (2014): 929-949. https://doi.org/10.3892/ijo.2014.2491
Copy and paste a formatted citation
x
Spandidos Publications style
Grazia G, Penna I, Perotti V, Anichini A and Tassi E: Towards combinatorial targeted therapy in melanoma: From pre-clinical evidence to clinical application (Review). Int J Oncol 45: 929-949, 2014.
APA
Grazia, G., Penna, I., Perotti, V., Anichini, A., & Tassi, E. (2014). Towards combinatorial targeted therapy in melanoma: From pre-clinical evidence to clinical application (Review). International Journal of Oncology, 45, 929-949. https://doi.org/10.3892/ijo.2014.2491
MLA
Grazia, G., Penna, I., Perotti, V., Anichini, A., Tassi, E."Towards combinatorial targeted therapy in melanoma: From pre-clinical evidence to clinical application (Review)". International Journal of Oncology 45.3 (2014): 929-949.
Chicago
Grazia, G., Penna, I., Perotti, V., Anichini, A., Tassi, E."Towards combinatorial targeted therapy in melanoma: From pre-clinical evidence to clinical application (Review)". International Journal of Oncology 45, no. 3 (2014): 929-949. https://doi.org/10.3892/ijo.2014.2491
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team