|
1
|
Farhi DC and Rosenthal NS: Acute
lymphoblastic leukemia. Clin Lab Med. 20:17–28. 2000.
|
|
2
|
Mullighan CG: Molecular genetics of
B-precursor acute lymphoblastic leukemia. J Clin Invest.
122:3407–3415. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Brown C: The genomics revolution:
relevance in healthcare today and tomorrow. J R Coll Physicians
Edinb. 42:248–250. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhao WL: Targeted therapy in T-cell
malignancies: dysregulation of the cellular signaling pathways.
Leukemia. 24:13–21. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kox C, Zimmermann M, Stanulla M, et al:
The favorable effect of activating NOTCH1 receptor mutations on
long-term outcome in T-ALL patients treated on the ALL-BFM 2000
protocol can be separated from FBXW7 loss of function. Leukemia.
24:2005–2013. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Pui CH, Robison LL and Look AT: Acute
lymphoblastic leukaemia. Lancet. 371:1030–1043. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Koch U and Radtke F: Notch in T-ALL: new
players in a complex disease. Trends Immunol. 32:434–442. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hoelzer D and Gokbuget N: T-cell
lymphoblastic lymphoma and T-cell acute lymphoblastic leukemia: a
separate entity? Clin Lymphoma Myeloma. 9:S214–S221. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Alharbi RA, Pettengell R, Pandha HS and
Morgan R: The role of HOX genes in normal hematopoiesis and acute
leukemia. Leukemia. 27:1000–1008. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Iacobucci I, Papayannidis C, Lonetti A,
Ferrari A, Baccarani M and Martinelli G: Cytogenetic and molecular
predictors of outcome in acute lymphocytic leukemia: recent
developments. Curr Hematol Malig Rep. 7:133–143. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bains T, Heinrich MC, Loriaux MM, et al:
Newly described activating JAK3 mutations in T-cell acute
lymphoblastic leukemia. Leukemia. 26:2144–2146. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jenkinson S, Koo K, Mansour MR, et al:
Impact of NOTCH1/FBXW7 mutations on outcome in pediatric T-cell
acute lymphoblastic leukemia patients treated on the MRC UKALL 2003
trial. Leukemia. 27:41–47. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Blackburn JS, Liu S, Raiser DM, et al:
Notch signaling expands a pre-malignant pool of T-cell acute
lymphoblastic leukemia clones without affecting
leukemia-propagating cell frequency. Leukemia. 26:2069–2078. 2012.
View Article : Google Scholar
|
|
14
|
Lhermitte L, Ben Abdelali R, Villarese P,
et al: Receptor kinase profiles identify a rationale for
multitarget kinase inhibition in immature T-ALL. Leukemia.
27:305–314. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cialfi S, Palermo R, Manca S, et al:
Glucocorticoid sensitivity of T-cell lymphoblastic
leukemia/lymphoma is associated with glucocorticoid
receptor-mediated inhibition of Notch1 expression. Leukemia.
27:485–488. 2013. View Article : Google Scholar
|
|
16
|
Malyukova A, Brown S, Papa R, et al: FBXW7
regulates glucocorticoid response in T-cell acute lymphoblastic
leukaemia by targeting the glucocorticoid receptor for degradation.
Leukemia. 27:1053–1062. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Correia NC, Durinck K, Leite AP, et al:
Novel TAL1 targets beyond protein-coding genes: identification of
TAL1-regulated microRNAs in T-cell acute lymphoblastic leukemia.
Leukemia. 27:1603–1606. 2013. View Article : Google Scholar
|
|
18
|
Lv M, Zhang X, Jia H, et al: An oncogenic
role of miR-142-3p in human T-cell acute lymphoblastic leukemia
(T-ALL) by targeting glucocorticoid receptor-a and cAMP/PKA
pathways. Leukemia. 26:769–777. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Schotte D, Pieters R and Den Boer ML:
MicroRNAs in acute leukemia: from biological players to clinical
contributors. Leukemia. 26:1–12. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Tosello V and Ferrando AA: The NOTCH
signaling pathway: role in the pathogenesis of T-cell acute
lymphoblastic leukemia and implication for therapy. Ther Adv
Hematol. 4:199–210. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Van Vlierberghe P and Ferrando A: The
molecular basis of T cell acute lymphoblastic leukemia. J Clin
Invest. 122:3398–3406. 2012.PubMed/NCBI
|
|
22
|
Buss EC and Ho AD: Leukemia stem cells.
Int J Cancer. 129:2328–2336. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Clevers H: The cancer stem cell: premises,
promises and challenges. Nat Med. 17:313–319. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kreso A and Dick JE: Evolution of the
cancer stem cell model. Cell Stem Cell. 14:275–291. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Cox CV, Martin HM, Kearns PR, Virgo P,
Evely RS and Blair A: Characterization of a progenitor cell
population in childhood T-cell acute lymphoblastic leukemia. Blood.
109:674–682. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chiu PP, Jiang H and Dick JE:
Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit
glucocorticoid resistance. Blood. 116:5268–5279. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ma W, Gutierrez A, Goff DJ, et al: NOTCH1
signaling promotes human T-cell acute lymphoblastic leukemia
initiating cell regeneration in supportive niches. PloS One.
7:e397252012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Gerby B, Clappier E, Armstrong F, et al:
Expression of CD34 and CD7 on human T-cell acute lymphoblastic
leukemia discriminates functionally heterogeneous cell populations.
Leukemia. 25:1249–1258. 2011. View Article : Google Scholar
|
|
29
|
Silva A, Girio A, Cebola I, Santos CI,
Antunes F and Barata JT: Intracellular reactive oxygen species are
essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of
T-cell acute lymphoblastic leukemia cells. Leukemia. 25:960–967.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Benjamin D, Colombi M, Moroni C and Hall
MN: Rapamycin passes the torch: a new generation of mTOR
inhibitors. Nat Rev Drug Discov. 10:868–880. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lv X, Ma X and Hu Y: Furthering the design
and the discovery of small molecule ATP-competitive mTOR inhibitors
as an effective cancer treatment. Expert Opin Drug Discov.
8:991–1012. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dienstmann R, Rodon J, Serra V and
Tabernero J: Picking the point of inhibition: a comparative review
of PI3K/AKT/mTOR pathway inhibitors. Mol Cancer Ther. 13:1021–1031.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Steelman LS, Franklin RA, Abrams SL, et
al: Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy.
Leukemia. 25:1080–1094. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Memmott RM and Dennis PA: Akt-dependent
and -independent mechanisms of mTOR regulation in cancer. Cell
Signal. 21:656–664. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Finlay MR and Griffin RJ: Modulation of
DNA repair by pharmacological inhibitors of the PIKK protein kinase
family. Bioorg Med Chem Lett. 22:5352–5359. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Laplante M and Sabatini DM: mTOR signaling
in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zoncu R, Efeyan A and Sabatini DM: mTOR:
from growth signal integration to cancer, diabetes and ageing. Nat
Rev Mol Cell Biol. 12:21–35. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Fingar DC and Blenis J: Target of
rapamycin (TOR): an integrator of nutrient and growth factor
signals and coordinator of cell growth and cell cycle progression.
Oncogene. 23:3151–3171. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Inoki K, Li Y, Zhu T, Wu J and Guan KL:
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR
signalling. Nat Cell Biol. 4:648–657. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Volkers M and Sussman M: mTOR/PRAS40
interaction: hypertrophy or proliferation. Cell Cycle.
12:3579–3580. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Laplante M and Sabatini DM: mTOR signaling
at a glance. J Cell Sci. 122:3589–3594. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Browne GJ and Proud CG: A novel
mTOR-regulated phosphorylation site in elongation f actor 2 kinase
modulates the activity of the kinase and its binding to calmodulin.
Mol Cell Biol. 24:2986–2997. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ma XM and Blenis J: Molecular mechanisms
of mTOR-mediated translational control. Nat Rev Mol Cell Biol.
10:307–318. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
McCubrey JA, Steelman LS, Chappell WH, et
al: Mutations and deregulation of Ras/Raf/MEK/ERK and
PI3K/PTEN/Akt/mTOR cascades which alter therapy response.
Oncotarget. 3:954–987. 2012.PubMed/NCBI
|
|
45
|
Martelli AM, Evangelisti C, Chappell W, et
al: Targeting the translational apparatus to improve leukemia
therapy: roles of the PI3K/PTEN/Akt/mTOR pathway. Leukemia.
25:1064–1079. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cunningham JT, Rodgers JT, Arlow DH,
Vazquez F, Mootha VK and Puigserver P: mTOR controls mitochondrial
oxidative function through a YY1-PGC-1a transcriptional complex.
Nature. 450:736–740. 2007. View Article : Google Scholar
|
|
47
|
Majumder PK, Febbo PG, Bikoff R, et al:
mTOR inhibition reverses Akt-dependent prostate intraepithelial
neoplasia through regulation of apoptotic and HIF-1-dependent
pathways. Nat Med. 10:594–601. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yecies JL and Manning BD: Transcriptional
control of cellular metabolism by mTOR signaling. Cancer Res.
71:2815–2820. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hosokawa N, Hara T, Kaizuka T, et al:
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200
complex required for autophagy. Mol Biol Cell. 20:1981–1991. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mizushima N: The role of the Atg1/ULK1
complex in autophagy regulation. Curr Opin Cell Biol. 22:132–139.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zeng Z, Sarbassov dos D, Samudio IJ, et
al: Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT
activation in AML. Blood. 109:3509–3512. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sarbassov DD, Guertin DA, Ali SM and
Sabatini DM: Phosphorylation and regulation of Akt/PKB by the
rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Garcia-Martinez JM and Alessi DR: mTOR
complex 2 (mTORC2) controls hydrophobic motif phosphorylation and
activation of serum- and glucocorticoid-induced protein kinase 1
(SGK1). Biochem J. 416:375–385. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ikenoue T, Inoki K, Yang Q, Zhou X and
Guan KL: Essential function of TORC2 in PKC and Akt turn motif
phosphorylation, maturation and signalling. EMBO J. 27:1919–1931.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Oh WJ and Jacinto E: mTOR complex 2
signaling and functions. Cell Cycle. 10:2305–2316. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tamburini J, Green AS, Chapuis N, et al:
Targeting translation in acute myeloid leukemia: a new paradigm for
therapy? Cell Cycle. 8:3893–3899. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shah OJ, Wang Z and Hunter T:
Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces
IRS1/2 depletion, insulin resistance, and cell survival
deficiencies. Curr Biol. 14:1650–1656. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bhaskar PT and Hay N: The two TORCs and
Akt. Dev Cell. 12:487–502. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lang SA, Hackl C, Moser C, et al:
Implication of RICTOR in the mTOR inhibitor-mediated induction of
insulin-like growth factor-I receptor (IGF-IR) and human epidermal
growth factor receptor-2 (Her2) expression in gastrointestinal
cancer cells. Biochim Biophys Acta. 1803:435–442. 2010. View Article : Google Scholar
|
|
61
|
Xu X, Sarikas A, Dias-Santagata DC, et al:
The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1
for ubiquitin-dependent degradation. Mol Cell. 30:403–414. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sriburi R, Jackowski S, Mori K and Brewer
JW: XBP1: a link between the unfolded protein response, lipid
biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell
Biol. 167:35–41. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Boulbes D, Chen CH, Shaikenov T, et al:
Rictor phosphorylation on the Thr-1135 site does not require
mammalian target of rapamycin complex 2. Mol Cancer Res. 8:896–906.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Maehama T and Dixon JE: The tumor
suppressor, PTEN/MMAC1, dephosphorylates the lipid second
messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem.
273:13375–13378. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sansal I and Sellers WR: The biology and
clinical relevance of the PTEN tumor suppressor pathway. J Clin
Oncol. 22:2954–2963. 2004. View Article : Google Scholar
|
|
66
|
Kalesnikoff J, Sly LM, Hughes MR, et al:
The role of SHIP in cytokine-induced signaling. Rev Physiol Biochem
Pharmacol. 149:87–103. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liu Q, Sasaki T, Kozieradzki I, et al:
SHIP is a negative regulator of growth factor receptor-mediated
PKB/Akt activation and myeloid cell survival. Genes Dev.
13:786–791. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bunney TD and Katan M: Phosphoinositide
signalling in cancer: beyond PI3K and PTEN. Nat Rev Cancer.
10:342–352. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Seshacharyulu P, Pandey P, Datta K and
Batra SK: Phosphatase: PP2A structural importance, regulation and
its aberrant expression in cancer. Cancer Lett. 335:9–18. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Guo W, Lasky JL, Chang CJ, et al:
Multi-genetic events collaboratively contribute to Pten-null
leukaemia stem-cell formation. Nature. 453:529–533. 2008.
View Article : Google Scholar
|
|
71
|
Guo W, Schubbert S, Chen JY, et al:
Suppression of leukemia development caused by PTEN loss. Proc Natl
Acad Sci USA. 108:1409–1414. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hoshii T, Kasada A, Hatakeyama T, et al:
Loss of mTOR complex 1 induces developmental blockage in early
T-lymphopoiesis and eradicates T-cell acute lymphoblastic leukemia
cells. Proc Natl Acad Sci USA. 111:3805–3810. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kang SA, Pacold ME, Cervantes CL, et al:
mTORC1 phosphorylation sites encode their sensitivity to starvation
and rapamycin. Science. 341:12365662013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chiarini F, Fala F, Tazzari PL, et al:
Dual inhibition of class IA phosphatidylinositol 3-kinase and
mammalian target of rapamycin as a new therapeutic option for
T-cell acute lymphoblastic leukemia. Cancer Res. 69:3520–3528.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Evangelisti C, Ricci F, Tazzari P, et al:
Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR
inhibitors has cytotoxic effects in T-cell acute lymphoblastic
leukemia. Leukemia. 25:781–791. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bressanin D, Evangelisti C, Ricci F, et
al: Harnessing the PI3K/Akt/mTOR pathway in T-cell acute
lymphoblastic leukemia: eliminating activity by targeting at
different levels. Oncotarget. 3:811–823. 2012.PubMed/NCBI
|
|
77
|
Magee JA, Ikenoue T, Nakada D, Lee JY,
Guan KL and Morrison SJ: Temporal changes in PTEN and mTORC2
regulation of hematopoietic stem cell self-renewal and leukemia
suppression. Cell Stem Cell. 11:415–428. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Mullighan CG: Genomic profiling of
B-progenitor acute lymphoblastic leukemia. Best Pract Res Clin
Haematol. 24:489–503. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Inaba H, Greaves M and Mullighan CG: Acute
lymphoblastic leukaemia. Lancet. 381:1943–1955. 2013. View Article : Google Scholar
|
|
80
|
Jotta PY, Ganazza MA, Silva A, et al:
Negative prognostic impact of PTEN mutation in pediatric T-cell
acute lymphoblastic leukemia. Leukemia. 24:239–242. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Karrman K, Forestier E, Heyman M, et al:
Clinical and cytogenetic features of a population-based consecutive
series of 285 pediatric T-cell acute lymphoblastic leukemias: rare
T-cell receptor gene rearrangements are associated with poor
outcome. Genes Chromosomes Cancer. 48:795–805. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Martelli AM, Chiarini F, Evangelisti C, et
al: Two hits are better than one: targeting both
phosphatidylinositol 3-kinase and mammalian target of rapamycin as
a therapeutic strategy for acute leukemia treatment. Oncotarget.
3:371–394. 2012.PubMed/NCBI
|
|
83
|
Nemes K, Sebestyen A, Mark A, et al:
Mammalian target of rapamycin (mTOR) activity dependent
phospho-protein expression in childhood acute lymphoblastic
leukemia (ALL). PLoS One. 8:e593352013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Gutierrez A, Sanda T, Grebliunaite R, et
al: High frequency of PTEN, PI3K, and AKT abnormalities in T-cell
acute lymphoblastic leukemia. Blood. 114:647–650. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bandapalli OR, Zimmermann M, Kox C, et al:
NOTCH1 activation clinically antagonizes the unfavorable effect of
PTEN inactivation in BFM-treated children with precursor T-cell
acute lymphoblastic leukemia. Haematologica. 98:928–936. 2013.
View Article : Google Scholar
|
|
86
|
Trinquand A, Tanguy-Schmidt A, Ben
Abdelali R, et al: Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic
risk classification of adult T-cell acute lymphoblastic leukemia: a
Group for Research in Adult Acute Lymphoblastic Leukemia study. J
Clin Oncol. 31:4333–4342. 2013. View Article : Google Scholar
|
|
87
|
Grossmann V, Haferlach C, Weissmann S, et
al: The molecular profile of adult T-cell acute lymphoblastic
leukemia: mutations in RUNX1 and DNMT3A are associated with poor
prognosis in T-ALL. Genes Chromosomes Cancer. 52:410–422. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Palomero T, Sulis ML, Cortina M, et al:
Mutational loss of PTEN induces resistance to NOTCH1 inhibition in
T-cell leukemia. Nat Med. 13:1203–1210. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Palomero T, Lim WK, Odom DT, et al: NOTCH1
directly regulates c-MYC and activates a feed-forward-loop
transcriptional network promoting leukemic cell growth. Proc Natl
Acad Sci USA. 103:18261–18266. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Gutierrez A, Grebliunaite R, Feng H, et
al: Pten mediates Myc oncogene dependence in a conditional
zebrafish model of T cell acute lymphoblastic leukemia. J Exp Med.
208:1595–1603. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mavrakis KJ, Wolfe AL, Oricchio E, et al:
Genome-wide RNA-mediated interference screen identifies miR-19
targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat
Cell Biol. 12:372–379. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Silva A, Yunes JA, Cardoso BA, et al: PTEN
posttranslational inactivation and hyperactivation of the PI3K/Akt
pathway sustain primary T cell leukemia viability. J Clin Invest.
118:3762–3774. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Hales EC, Orr SM, Larson Gedman A, Taub JW
and Matherly LH: Notch1 receptor regulates AKT protein activation
loop (Thr308) dephosphorylation through modulation of the PP2A
phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell
acute lymphoblastic leukemia cells. J Biol Chem. 288:22836–22848.
2013. View Article : Google Scholar
|
|
94
|
Medyouf H, Gusscott S, Wang H, et al:
High-level IGF1R expression is required for leukemia-initiating
cell activity in T-ALL and is supported by Notch signaling. J Exp
Med. 208:1809–1822. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Cardoso BA, Martins LR, Santos CI, et al:
Interleukin-4 stimulates proliferation and growth of T-cell acute
lymphoblastic leukemia cells by activating mTOR signaling.
Leukemia. 23:206–208. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Barata JT, Silva A, Brandao JG, Nadler LM,
Cardoso AA and Boussiotis VA: Activation of PI3K is indispensable
for interleukin 7-mediated viability, proliferation, glucose use,
and growth of T cell acute lymphoblastic leukemia cells. J Exp Med.
200:659–669. 2004. View Article : Google Scholar
|
|
97
|
Scupoli MT, Vinante F, Krampera M, et al:
Thymic epithelial cells promote survival of human T-cell acute
lymphoblastic leukemia blasts: the role of interleukin-7.
Haematologica. 88:1229–1237. 2003.PubMed/NCBI
|
|
98
|
Zenatti PP, Ribeiro D, Li W, et al:
Oncogenic IL7R gain-of-function mutations in childhood T-cell acute
lymphoblastic leukemia. Nat Genet. 43:932–939. 2011. View Article : Google Scholar
|
|
99
|
Wong D and Korz W: Translating an
antagonist of chemokine receptor CXCR4: from bench to bedside. Clin
Cancer Res. 14:7975–7980. 2008. View Article : Google Scholar
|
|
100
|
Scupoli MT, Donadelli M, Cioffi F, et al:
Bone marrow stromal cells and the upregulation of interleukin-8
production in human T-cell acute lymphoblastic leukemia through the
CXCL12/CXCR4 axis and the NF-κB and JNK/AP-1 pathways.
Haematologica. 93:524–532. 2008.PubMed/NCBI
|
|
101
|
Pillozzi S, Masselli M, De Lorenzo E, et
al: Chemotherapy resistance in acute lymphoblastic leukemia
requires hERG1 channels and is overcome by hERG1 blockers. Blood.
117:902–914. 2011. View Article : Google Scholar
|
|
102
|
Heitman J, Movva NR and Hall MN: Targets
for cell cycle arrest by the immunosuppressant rapamycin in yeast.
Science. 253:905–909. 1991. View Article : Google Scholar
|
|
103
|
Zhou H, Luo Y and Huang S: Updates of mTOR
inhibitors. Anticancer Agents Med Chem. 10:571–581. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Schuler W, Sedrani R, Cottens S, et al:
SDZ RAD, a new rapamycin derivative: pharmacological properties in
vitro and in vivo. Transplantation. 64:36–42. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Avellino R, Romano S, Parasole R, et al:
Rapamycin stimulates apoptosis of childhood acute lymphoblastic
leukemia cells. Blood. 106:1400–1406. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Chan SM, Weng AP, Tibshirani R, Aster JC
and Utz PJ: Notch signals positively regulate activity of the mTOR
pathway in T-cell acute lymphoblastic leukemia. Blood. 110:278–286.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wu KN, Zhao YM, He Y, et al: Rapamycin
interacts synergistically with idarubicin to induce T-leukemia cell
apoptosis in vitro and in a mesenchymal stem cell simulated
drug-resistant microenvironment via Akt/mammalian target of
rapamycin and extracellular signal-related kinase signaling
pathways. Leuk Lymphoma. 55:668–676. 2014.
|
|
108
|
Akers LJ, Fang W, Levy AG, Franklin AR,
Huang P and Zweidler-McKay PA: Targeting glycolysis in leukemia: a
novel inhibitor 3-BrOP in combination with rapamycin. Leukemia Res.
35:814–820. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Batista A, Barata JT, Raderschall E, et
al: Targeting of active mTOR inhibits primary leukemia T cells and
synergizes with cytotoxic drugs and signaling inhibitors. Exp
Hematol. 39:457–472. e4532011. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Houghton PJ, Morton CL, Kolb EA, et al:
Initial testing (stage 1) of the mTOR inhibitor rapamycin by the
pediatric preclinical testing program. Pediatr Blood Cancer.
50:799–805. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yee KW, Zeng Z, Konopleva M, et al: Phase
I/II study of the mammalian target of rapamycin inhibitor
everolimus (RAD001) in patients with relapsed or refractory
hematologic malignancies. Clin Cancer Res. 12:5165–5173. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Rizzieri DA, Feldman E, Dipersio JF, et
al: A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a
novel mammalian target of rapamycin inhibitor, in patients with
relapsed or refractory hematologic malignancies. Clin Cancer Res.
14:2756–2762. 2008. View Article : Google Scholar
|
|
113
|
Tamburini J, Green AS, Bardet V, et al:
Protein synthesis is resistant to rapamycin and constitutes a
promising therapeutic target in acute myeloid leukemia. Blood.
114:1618–1627. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chiarini F, Grimaldi C, Ricci F, et al:
Activity of the novel dual phosphatidylinositol 3-kinase/mammalian
target of rapamycin inhibitor NVP-BEZ235 against T-cell acute
lymphoblastic leukemia. Cancer Res. 70:8097–8107. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Fox CJ, Hammerman PS and Thompson CB: The
Pim kinases control rapamycin-resistant T cell survival and
activation. J Exp Med. 201:259–266. 2005. View Article : Google Scholar
|
|
116
|
Zhang F, Beharry ZM, Harris TE, et al:
PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR
activity in FDCP1 cells. Cancer Biol Ther. 8:846–853. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lin YW, Beharry ZM, Hill EG, et al: A
small molecule inhibitor of Pim protein kinases blocks the growth
of precursor T-cell lymphoblastic leukemia/lymphoma. Blood.
115:824–833. 2010. View Article : Google Scholar
|
|
118
|
Tamburini J, Chapuis N, Bardet V, et al:
Mammalian target of rapamycin (mTOR) inhibition activates
phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like
growth factor-1 receptor signaling in acute myeloid leukemia:
rationale for therapeutic inhibition of both pathways. Blood.
111:379–382. 2008. View Article : Google Scholar
|
|
119
|
Carracedo A, Ma L, Teruya-Feldstein J, et
al: Inhibition of mTORC1 leads to MAPK pathway activation through a
PI3K-dependent feedback loop in human cancer. J Clin Invest.
118:3065–3074. 2008.PubMed/NCBI
|
|
120
|
Efeyan A and Sabatini DM: mTOR and cancer:
many loops in one pathway. Curr Opin Cell Biol. 22:169–176. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Bertacchini J, Guida M, Accordi B, et al:
Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in
acute myeloid leukemia revealed by pathway selective inhibition and
phosphoproteome analysis. Leukemia. Apr 4–2014.(E-pub ahead of
print).
|
|
122
|
Park S, Chapuis N, Saint Marcoux F, et al:
A phase Ib GOELAMS study of the mTOR inhibitor RAD001 in
association with chemotherapy for AML patients in first relapse.
Leukemia. 27:1479–1486. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Daver N, Kantarjian H, Thomas D, et al: A
phase I/II study of hyper-CVAD plus everolimus in patients with
relapsed/refractory acute lymphoblastic leukemia. In: 55th ASH
Annual Meeting; Blood. 122. abs. 3916. 2013
|
|
124
|
Fan QW, Knight ZA, Goldenberg DD, et al: A
dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma.
Cancer Cell. 9:341–349. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Cho DC, Cohen MB, Panka DJ, et al: The
efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235
compared with rapamycin in renal cell carcinoma. Clin Cancer Res.
16:3628–3638. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Karar J, Cerniglia GJ, Lindsten T,
Koumenis C and Maity A: Dual PI3K/mTOR inhibitor NVP-BEZ235
suppresses hypoxia-inducible factor (HIF)-1α expression by blocking
protein translation and increases cell death under hypoxia. Cancer
Biol Ther. 13:1102–1111. 2012.PubMed/NCBI
|
|
127
|
Schenone S, Brullo C, Musumeci F, Radi M
and Botta M: ATP-competitive inhibitors of mTOR: an update. Curr
Med Chem. 18:2995–3014. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Shepherd C, Banerjee L, Cheung CW, et al:
PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an
impaired cytotoxic response. Leukemia. 27:650–660. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Raynaud FI, Eccles S, Clarke PA, et al:
Pharmacologic characterization of a potent inhibitor of class I
phosphatidylinositide 3-kinases. Cancer Res. 67:5840–5850. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Maira SM, Stauffer F, Brueggen J, et al:
Identification and characterization of NVP-BEZ235, a new orally
available dual phosphatidylinositol 3-kinase/mammalian target of
rapamycin inhibitor with potent in vivo antitumor activity. Mol
Cancer Ther. 7:1851–1863. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Schult C, Dahlhaus M, Glass A, et al: The
dual kinase inhibitor NVP-BEZ235 in combination with cytotoxic
drugs exerts anti-proliferative activity towards acute
lymphoblastic leukemia cells. Anticancer Res. 32:463–474.
2012.PubMed/NCBI
|
|
132
|
Shortt J, Martin BP, Newbold A, et al:
Combined inhibition of PI3K-related DNA damage response kinases and
mTORC1 induces apoptosis in MYC-driven B-cell lymphomas. Blood.
121:2964–2974. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Woods D and Turchi JJ: Chemotherapy
induced DNA damage response: convergence of drugs and pathways.
Cancer Biol Ther. 14:379–389. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Kampa-Schittenhelm KM, Heinrich MC, Akmut
F, et al: Cell cycle-dependent activity of the novel dual
PI3K-mTORC1/2 inhibitor NVP-BGT226 in acute leukemia. Mol Cancer.
12:462013. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Soria JC, Cortes J, Massard C, et al:
Phase I safety, pharmacokinetic and pharmacodynamic trial of
BMS-599626 (AC480), an oral pan-HER receptor tyrosine kinase
inhibitor, in patients with advanced solid tumors. Ann Oncol.
23:463–471. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Janes MR, Limon JJ, So L, et al: Effective
and selective targeting of leukemia cells using a TORC1/2 kinase
inhibitor. Nat Med. 16:205–213. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Garcia-Echeverria C and Sellers WR: Drug
discovery approaches targeting the PI3K/Akt pathway in cancer.
Oncogene. 27:5511–5526. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Garcia-Echeverria C: Allosteric and
ATP-competitive kinase inhibitors of mTOR for cancer treatment.
Bioorg Med Chem Lett. 20:4308–4312. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Gentzler RD, Altman JK and Platanias LC:
An overview of the mTOR pathway as a target in cancer therapy.
Expert Opin Ther Targets. 16:481–489. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Altman JK, Sassano A, Kaur S, et al: Dual
mTORC2/mTORC1 targeting results in potent suppressive effects on
acute myeloid leukemia (AML) progenitors. Clin Cancer Res.
17:4378–4388. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Willems L, Chapuis N, Puissant A, et al:
The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor
activity in acute myeloid leukemia. Leukemia. 26:1195–1202. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Gupta M, Hendrickson AE, Yun SS, et al:
Dual mTORC1/mTORC2 inhibition diminishes Akt activation and induces
Puma-dependent apoptosis in lymphoid malignancies. Blood.
119:476–487. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Feldman ME, Apsel B, Uotila A, et al:
Active-site inhibitors of mTOR target rapamycin-resistant outputs
of mTORC1 and mTORC2. PLoS Biol. 7:e382009. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Janes MR, Vu C, Mallya S, et al: Efficacy
of the investigational mTOR kinase inhibitor MLN0128/INK128 in
models of B-cell acute lymphoblastic leukemia. Leukemia.
27:586–594. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Peng C, Chen Y, Li D and Li S: Role of
Pten in leukemia stem cells. Oncotarget. 1:156–160. 2010.PubMed/NCBI
|
|
146
|
Yilmaz OH, Valdez R, Theisen BK, et al:
Pten dependence distinguishes haematopoietic stem cells from
leukaemia-initiating cells. Nature. 441:475–482. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Kaplan B, Qazi Y and Wellen JR: Strategies
for the management of adverse events associated with mTOR
inhibitors. Transplant Rev. Mar 12–2014.(Epub ahead of print).
|
|
148
|
Markman B, Tabernero J, Krop I, et al:
Phase I safety, pharmacokinetic, and pharmacodynamic study of the
oral phosphatidylinositol-3-kinase and mTOR inhibitor BGT226 in
patients with advanced solid tumors. Ann Oncol. 23:2399–2408. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Mallya S, Fitch BA, Lee JS, So L, Janes MR
and Fruman DA: Resistance to mTOR kinase inhibitors in lymphoma
cells lacking 4EBP1. PloS One. 9:e888652014. View Article : Google Scholar
|