|
1
|
Genschik P, Sumara I and Lechner E: The
emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular
functions and disease implications. EMBO J. 32:2307–2320. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ciechanover A, Orian A and Schwartz AL:
Ubiquitin-mediated proteolysis: biological regulation via
destruction. Bioessays. 22:442–451. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Smalle J and Vierstra RD: The ubiquitin
26S proteasome proteolytic pathway. Annu Rev Plant Biol.
55:555–590. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Crusio KM, King B, Reavie LB and Aifantis
I: The ubiquitous nature of cancer: the role of the SCF(Fbw7)
complex in development and transformation. Oncogene. 29:4865–4873.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hershko A: The ubiquitin system for
protein degradation and some of its roles in the control of the
cell division cycle. Cell Death Differ. 12:1191–1197. 2005.
View Article : Google Scholar
|
|
6
|
Pickart CM and Rose IA: Functional
heterogeneity of ubiquitin carrier proteins. J Biol Chem.
260:1573–1581. 1985.PubMed/NCBI
|
|
7
|
Jadhav T and Wooten MW: Defining an
embedded code for protein ubiquitination. J Proteomics Bioinform.
2:3162009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Nakayama KI and Nakayama K: Ubiquitin
ligases: cell-cycle control and cancer. Nat Rev Cancer. 6:369–381.
2006. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jackson S and Xiong Y: CRL4s: the
CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci. 34:562–570.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang Z, Liu P, Inuzuka H and Wei W: Roles
of F-box proteins in cancer. Nat Rev Cancer. 14:233–247. 2014.
View Article : Google Scholar
|
|
11
|
Hicke L, Schubert HL and Hill CP:
Ubiquitin-binding domains. Nat Rev Mol Cell Biol. 6:610–621. 2005.
View Article : Google Scholar
|
|
12
|
Cardozo T and Pagano M: The SCF ubiquitin
ligase: insights into a molecular machine. Nat Rev Mol Cell Biol.
5:739–751. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Nandi D, Tahiliani P, Kumar A and Chandu
D: The ubiquitin-proteasome system. J Biosci. 31:137–155. 2006.
View Article : Google Scholar
|
|
14
|
Zheng N, Schulman BA, Song L, et al:
Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin
ligase complex. Nature. 416:703–709. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cenciarelli C, Chiaur DS, Guardavaccaro D,
et al: Identification of a family of human F-box proteins. Curr
Biol. 9:1177–1179. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Winston JT, Koepp DM, Zhu C, et al: A
family of mammalian F-box proteins. Curr Biol. 9:1180–1182. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jin J, Cardozo T, Lovering RC, et al:
Systematic analysis and nomenclature of mammalian F-box proteins.
Genes Dev. 18:2573–2580. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Liu J, Han L, Li B, et al: F-box only
protein 31 (FBXO31) negatively regulates p38 mitogen-activated
protein (MAPK) signaling by mediating lysine 48-linked
ubiquitination and degradation of MAP kinase kinase 6 (MKK6). J
Biol Chem. 289:21508–21518. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Santra MK, Wajapeyee N and Green MR: F-box
protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest
after DNA damage. Nature. 459:722–725. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Koepp DM, Schaefer LK, Ye X, et al:
Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7
ubiquitin ligase. Science. 294:173–177. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Minella AC, Welcker M and Clurman BE: Ras
activity regulates cyclin E degradation by the Fbw7 pathway. Proc
Natl Acad Sci USA. 102:9649–9654. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yada M, Hatakeyama S, Kamura T, et al:
Phosphorylation-dependent degradation of c-Myc is mediated by the
F-box protein Fbw7. EMBO J. 23:2116–2125. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Welcker M, Orian A, Jin J, et al: The Fbw7
tumor suppressor regulates glycogen synthase kinase 3
phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad
Sci USA. 101:9085–9090. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wei W, Jin J, Schlisio S, et al: The v-Jun
point mutation allows c-Jun to escape GSK3-dependent recognition
and destruction by the Fbw7 ubiquitin ligase. Cancer Cell. 8:25–33.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hoeck JD, Jandke A, Blake SM, et al: Fbw7
controls neural stem cell differentiation and progenitor apoptosis
via Notch and c-Jun. Nat Neurosci. 13:1365–1372. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tetzlaff MT, Yu W, Li M, et al: Defective
cardiovascular development and elevated cyclin E and Notch proteins
in mice lacking the Fbw7 F-box protein. Proc Natl Acad Sci USA.
101:3338–3345. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tan M, Zhao Y, Kim SJ, et al:
SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and
neural development by targeting NF1 for degradation. Dev Cell.
21:1062–1076. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Akhoondi S, Sun D, von der Lehr N, et al:
FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer
Res. 67:9006–9012. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Miyaki M, Yamaguchi T, Iijima T, et al:
Somatic mutations of the CDC4 (FBXW7) gene in hereditary
colorectal tumors. Oncology. 76:430–434. 2009.
|
|
30
|
Iwatsuki M, Mimori K, Ishii H, et al: Loss
of FBXW7, a cell cycle regulating gene, in colorectal cancer:
clinical significance. Int J Cancer. 126:1828–1837. 2010.PubMed/NCBI
|
|
31
|
Kemp Z, Rowan A, Chambers W, et al: CDC4
mutations occur in a subset of colorectal cancers but are not
predicted to cause loss of function and are not associated with
chromosomal instability. Cancer Res. 65:11361–11366. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Enkhbold C, Utsunomiya T, Morine Y, et al:
Loss of FBXW7 expression is associated with poor prognosis in
intrahepatic cholangiocarcinoma. Hepatol Res. Feb 19–2014.(Epub
ahead of print).
|
|
33
|
Lee JW, Soung YH, Kim HJ, et al:
Mutational analysis of the hCDC4 gene in gastric carcinomas.
Eur J Cancer. 42:2369–2373. 2006.
|
|
34
|
Sterian A, Kan T, Berki AT, et al:
Mutational and LOH analyses of the chromosome 4q region in
esophageal adenocarcinoma. Oncology. 70:168–172. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Calhoun ES, Jones JB, Ashfaq R, et al:
BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct
subsets of pancreatic cancer: potential therapeutic targets. Am J
Pathol. 163:1255–1260. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cassia R, Moreno-Bueno G,
Rodríguez-Perales S, et al: Cyclin E gene (CCNE)
amplification and hCDC4 mutations in endometrial carcinoma.
J Pathol. 201:589–595. 2003.
|
|
37
|
Woo LJ, Hwa SY, Young KS, et al: Somatic
mutation of hCDC4 gene is rare in lung adenocarcinomas. Acta
Oncol. 45:487–488. 2006.
|
|
38
|
Yan T, Wunder JS, Gokgoz N, et al: hCDC4
variation in osteo-sarcoma. Cancer Genet Cytogenet. 169:138–142.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kwak EL, Moberg KH, Wahrer DC, et al:
Infrequent mutations of Archipelago (hAGO, hCDC4,
Fbw7) in primary ovarian cancer. Gynecol Oncol. 98:124–128.
2005.
|
|
40
|
Inuzuka H, Fukushima H, Shaik S, et al:
Mcl-1 ubiquitination and destruction. Oncotarget. 2:239–244.
2011.
|
|
41
|
Inuzuka H, Shaik S, Onoyama I, et al:
SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for
ubiquitylation and destruction. Nature. 471:104–109. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wertz IE, Kusam S, Lam C, et al:
Sensitivity to antitubulin chemotherapeutics is regulated by MCL1
and FBW7. Nature. 471:110–114. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tsunematsu R, Nakayama K, Oike Y, et al:
Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during
vascular development. J Biol Chem. 279:9417–9423. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gstaiger M, Jordan R, Lim M, et al: Skp2
is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci
USA. 98:5043–5048. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang H, Kobayashi R, Galaktionov K and
Beach D: p19Skp1 and p45Skp2 are essential elements of the cyclin
A-CDK2 S phase kinase. Cell. 82:915–925. 1995. View Article : Google Scholar
|
|
46
|
Bai C, Sen P, Hofmann K, et al: Skp1
connects cell cycle regulators to the ubiquitin proteolysis
machinery through a novel motif, the F-box. Cell. 86:263–274. 1996.
View Article : Google Scholar
|
|
47
|
Carrano AC, Eytan E, Hershko A and Pagano
M: Skp2 is required for ubiquitin-mediated degradation of the CDK
inhibitor p27. Nat Cell Biol. 1:193–199. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kudo Y, Kitajima S, Sato S, et al: High
expression of S-phase kinase-interacting protein 2, human F-box
protein, correlates with poor prognosis in oral squamous cell
carcinomas. Cancer Res. 61:7044–7047. 2001.PubMed/NCBI
|
|
49
|
Hershko D, Bornstein G, Ben-Izhak O, et
al: Inverse relation between levels of p27(Kip1) and of its
ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer.
91:1745–1751. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mori M, Mimori K, Shiraishi T, et al: p27
expression and gastric carcinoma. Nat Med. 3:5931997. View Article : Google Scholar
|
|
51
|
Fukuchi M, Masuda N, Nakajima M, et al:
Inverse correlation between expression levels of p27 and the
ubiquitin ligase subunit Skp2 in early esophageal squamous cell
carcinoma. Anticancer Res. 24:777–783. 2004.
|
|
52
|
Masuda TA, Inoue H, Sonoda H, et al:
Clinical and biological significance of S-phase kinase-associated
protein 2 (Skp2) gene expression in gastric carcinoma: modulation
of malignant phenotype by Skp2 overexpression, possibly via p27
proteolysis. Cancer Res. 62:3819–3825. 2002.
|
|
53
|
Yang G, Ayala G, De Marzo A, et al:
Elevated Skp2 protein expression in human prostate cancer:
association with loss of the cyclin-dependent kinase inhibitor p27
and PTEN and with reduced recurrence-free survival. Clin Cancer
Res. 8:3419–3426. 2002.
|
|
54
|
Timmerbeul I, Garrett-Engele CM, Kossatz
U, et al: Testing the importance of p27 degradation by the SCFSkp2
pathway in murine models of lung and colon cancer. Proc Natl Acad
Sci USA. 103:14009–14014. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Frescas D and Pagano M: Deregulated
proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the
scales of cancer. Nat Rev Cancer. 8:438–449. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kim CJ, Song JH, Cho YG, et al: Somatic
mutations of the beta-TrCP gene in gastric cancer. APMIS.
115:127–133. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Pisani P, Parkin DM and Ferlay J:
Estimates of the worldwide mortality from eighteen major cancers in
1985. Implications for prevention and projections of future burden.
Int J Cancer. 55:891–903. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sarbia M, Verreet P, Bittinger F, et al:
Basaloid squamous cell carcinoma of the esophagus: diagnosis and
prognosis. Cancer. 79:1871–1878. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Berger B and Belka C: Evidence-based
radiation oncology: oesophagus. Radiother Oncol. 92:276–290. 2009.
View Article : Google Scholar
|
|
60
|
Jemal A, Siegel R, Ward E, et al: Cancer
statistics, 2008. CA Cancer J Clin. 58:71–96. 2008. View Article : Google Scholar
|
|
61
|
Bai P, Xiao X, Zou J, et al: Expression of
p14 (ARF), p15 (INK4b), p16 (INK4a) and Skp2 increases during
esophageal squamous cell cancer progression. Exp Ther Med.
3:1026–1032. 2012.PubMed/NCBI
|
|
62
|
Wang XC, Tian LL, Tian J and Jiang XY:
Overexpression of SKP2 promotes the radiation resistance of
esophageal squamous cell carcinoma. Radiat Res. 177:52–58. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Dong S, Zhao J, Wei J, et al: F-box
protein complex FBXL19 regulates TGFβ1-induced E-cadherin
down-regulation by mediating Rac3 ubiquitination and degradation.
Mol Cancer. 13:762014.PubMed/NCBI
|
|
64
|
Engers R, Ziegler S, Mueller M, et al:
Prognostic relevance of increased Rac GTPase expression in prostate
carcinomas. Endocr Relat Cancer. 14:245–256. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Walker MP, Zhang M, Le TP, et al: RAC3 is
a pro-migratory co-activator of ERα. Oncogene. 30:1984–1994.
2011.PubMed/NCBI
|
|
66
|
van Roy F and Berx G: The cell-cell
adhesion molecule E-cadherin. Cell Mol Life Sci. 65:3756–3788.
2008.
|
|
67
|
Rodriguez FJ, Lewis-Tuffin LJ and
Anastasiadis PZ: E-cadherin’s dark side: possible role in tumor
progression. Biochim Biophys Acta. 1826:23–31. 2012.
|
|
68
|
Barbash O, Zamfirova P, Lin DI, et al:
Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and
contribute to cyclin D1 overexpression in human cancer. Cancer
Cell. 14:68–78. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Buckley MF, Sweeney KJ, Hamilton JA, et
al: Expression and amplification of cyclin genes in human breast
cancer. Oncogene. 8:2127–2133. 1993.PubMed/NCBI
|
|
70
|
Shinozaki H, Ozawa S, Ando N, et al:
Cyclin D1 amplification as a new predictive classification for
squamous cell carcinoma of the esophagus, adding gene information.
Clin Cancer Res. 2:1155–1161. 1996.PubMed/NCBI
|
|
71
|
Ikeguchi M, Sakatani T, Ueta T and Kaibara
N: Cyclin D1 expression and retinoblastoma gene protein (pRB)
expression in esophageal squamous cell carcinoma. J Cancer Res Clin
Oncol. 127:531–536. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Okabe H, Lee SH, Phuchareon J, et al: A
critical role for FBXW8 and MAPK in cyclin D1 degradation and
cancer cell proliferation. PLoS One. 1:e1282006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yu ZK, Gervais JL and Zhang H: Human CUL-1
associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1)
and cyclin D proteins. Proc Natl Acad Sci USA. 95:11324–11329.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kanie T, Onoyama I, Matsumoto A, et al:
Genetic reevaluation of the role of F-box proteins in cyclin D1
degradation. Mol Cell Biol. 32:590–605. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Naganawa Y, Ishiguro H, Kuwabara Y, et al:
Decreased expression of FBXW7 is correlated with poor prognosis in
patients with esophageal squamous cell carcinoma. Exp Ther Med.
1:841–846. 2010.PubMed/NCBI
|
|
76
|
Kogo R, Mimori K, Tanaka F, et al: FBXO31
determines poor prognosis in esophageal squamous cell carcinoma.
Int J Oncol. 39:155–159. 2011.PubMed/NCBI
|
|
77
|
Huang HL, Zheng WL, Zhao R, et al: FBXO31
is down-regulated and may function as a tumor suppressor in
hepatocellular carcinoma. Oncol Rep. 24:715–720. 2010.PubMed/NCBI
|
|
78
|
Johansson P, Jeffery J, Al-Ejeh F, et al:
SCF-FBXO31 E3 ligase targets DNA replication factor Cdt1 for
proteolysis in the G2 phase of cell cycle to prevent
re-replication. J Biol Chem. 289:18514–18525. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kumar R, Neilsen PM, Crawford J, et al:
FBXO31 is the chromosome 16q24.3 senescence gene, a
candidate breast tumor suppressor, and a component of an SCF
complex. Cancer Res. 65:11304–11313. 2005. View Article : Google Scholar
|
|
80
|
Dreissigacker U, Mueller MS, Unger M,
Siegert P, et al: Oncogenic K-Ras down-regulates Rac1 and RhoA
activity and enhances migration and invasion of pancreatic
carcinoma cells through activation of p38. Cell Signal.
18:1156–1168. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Tan J, Yang X, Zhuang L, et al:
Pharmacologic disruption of Polycomb-repressive complex 2-mediated
gene repression selectively induces apoptosis in cancer cells.
Genes Dev. 21:1050–1063. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Guo W, Zhang M, Shen S, et al: Aberrant
methylation and decreased expression of the TGF-β/Smad target gene
FBXO32 in esophageal squamous cell carcinoma. Cancer.
120:2412–2413. 2014.
|
|
83
|
Jemal A, Bray F, Center MM, et al: Global
cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar
|
|
84
|
Ma XM, Liu Y, Guo JW, Liu JH and Zuo LF:
Relation of over-expression of S phase kinase-associated protein 2
with reduced expression of p27 and PTEN in human gastric carcinoma.
World J Gastroenterol. 11:6716–6721. 2005.PubMed/NCBI
|
|
85
|
Ma XM, Liu JH, Guo JW, et al: Correlation
of Skp2 expression in gastric carcinoma to expression of P27 and
PTEN. Ai Zheng. 25:56–61. 2006.(In Chinese).
|
|
86
|
Yang L, Kuang LG, Zheng HC, et al: PTEN
encoding product: a marker for tumorigenesis and progression of
gastric carcinoma. World J Gastroenterol. 9:35–39. 2003.PubMed/NCBI
|
|
87
|
Wei Z, Jiang X, Liu F, et al:
Downregulation of Skp2 inhibits the growth and metastasis of
gastric cancer cells in vitro and in vivo. Tumour Biol. 34:181–192.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Cen G, Ding HH, Liu B and Wu WD: FBXL5
targets cortactin for ubiquitination-mediated destruction to
regulate gastric cancer cell migration. Tumour Biol. May
28–2014.(Epub ahead of print).
|
|
89
|
Saitoh T and Katoh M: Expression profiles
of βTRCP1 and βTRCP2, and mutation analysis of βTRCP2 in gastric
cancer. Int J Oncol. 18:959–964. 2001.
|
|
90
|
Milne AN, Leguit R, Corver WE, et al: Loss
of CDC4/FBXW7 in gastric carcinoma. Cell Oncol. 32:347–359.
2010.PubMed/NCBI
|
|
91
|
Yokobori T, Mimori K, Iwatsuki M, et al:
p53-altered FBXW7 expression determines poor prognosis in gastric
cancer cases. Cancer Res. 69:3788–3794. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Martins CP, Brown-Swigart L and Evan GI:
Modeling the therapeutic efficacy of p53 restoration in tumors.
Cell. 127:1323–1334. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ventura A, Kirsch DG, McLaughlin ME, et
al: Restoration of p53 function leads to tumour regression in vivo.
Nature. 445:661–665. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Xue W, Zender L, Miething C, et al:
Senescence and tumour clearance is triggered by p53 restoration in
murine liver carcinomas. Nature. 445:656–660. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhang YW, Brognard J, Coughlin C, et al:
The F box protein Fbx6 regulates Chk1 stability and cellular
sensitivity to replication stress. Mol Cell. 35:442–453. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Merry C, Fu K, Wang J, et al: Targeting
the checkpoint kinase Chk1 in cancer therapy. Cell Cycle.
9:279–283. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Verlinden L, Vanden BI, Eelen G, et al:
The E2F-regulated gene Chk1 is highly expressed in
triple-negative estrogen receptor/progesterone receptor/HER-2
breast carcinomas. Cancer Res. 67:6574–6581. 2007.PubMed/NCBI
|
|
98
|
Zhang L, Hou Y, Wang M, et al: A study on
the functions of ubiquitin metabolic system related gene
FBG2 in gastric cancer cell line. J Exp Clin Cancer Res.
28:782009. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lei KF, Liu BY, Wang YF, et al: SerpinB5
interacts with KHDRBS3 and FBXO32 in gastric cancer cells. Oncol
Rep. 26:1115–1120. 2011.PubMed/NCBI
|
|
100
|
Chen WQ, Zeng HM, Zheng RS, et al: Cancer
incidence and mortality in china, 2007. Chin J Cancer Res. 24:1–8.
2012. View Article : Google Scholar
|
|
101
|
Koga H, Harada M, Ohtsubo M, et al:
Troglitazone induces p27Kip1-associated cell-cycle arrest through
down-regulating Skp2 in human hepatoma cells. Hepatology.
37:1086–1096. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Liao YJ, Bai HY, Li ZH, et al: Longikaurin
A, a natural ent-kaurane, induces G2/M phase arrest via
downregulation of Skp2 and apoptosis induction through
ROS/JNK/c-Jun pathway in hepatocellular carcinoma cells. Cell Death
Dis. 5:e11372014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yan S, Yang X, Chen T, et al: The PPARγ
agonist Troglitazone induces autophagy, apoptosis and necroptosis
in bladder cancer cells. Cancer Gene Ther. 21:188–193. 2014.
|
|
104
|
Zou QF, Du JK, Zhang H, et al: Anti-tumour
activity of longikaurin A (LK-A), a novel natural diterpenoid, in
nasopharyngeal carcinoma. J Transl Med. 11:2002013. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Xu H, Choe C, Shin SH, et al: Silencing of
KIF14 interferes with cell cycle progression and cytokinesis by
blocking the p27 (Kip1) ubiquitination pathway in hepatocellular
carcinoma. Exp Mol Med. 46:e972014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Thériault BL, Basavarajappa HD, Lim H, et
al: Transcriptional and epigenetic regulation of KIF14
overexpression in ovarian cancer. PLoS One. 9:e915402014.PubMed/NCBI
|
|
107
|
Hsiang CY, Wu SL, Chen JC, et al:
Acetaldehyde induces matrix metalloproteinase-9 gene expression via
nuclear factor-kappaB and activator protein 1 signaling pathways in
human hepato-cellular carcinoma cells: association with the
invasive potential. Toxicol Lett. 171:78–86. 2007. View Article : Google Scholar
|
|
108
|
Imura S, Tovuu LO, Utsunomiya T, et al:
The role of Fbxw7 expression in hepatocellular carcinoma and
adjacent non-tumor liver tissue. J Gastroenterol Hepatol. Apr
14–2014.(Epub ahead of print).
|
|
109
|
Tu K, Yang W, Li C, et al: Fbxw7 is an
independent prognostic marker and induces apoptosis and growth
arrest by regulating YAP abundance in hepatocellular carcinoma. Mol
Cancer. 13:1102014. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Steinhardt AA, Gayyed MF, Klein AP, et al:
Expression of Yes-associated protein in common solid tumors. Hum
Pathol. 39:1582–1589. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Tu K, Zheng X, Zan X, et al: Evaluation of
Fbxw7 expression and its correlation with the expression of c-Myc,
cyclin E and p53 in human hepatocellular carcinoma. Hepatol Res.
42:904–910. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Tu K, Zheng X, Zhou Z, et al: Recombinant
human adenovirus-p53 injection induced apoptosis in hepatocellular
carcinoma cell lines mediated by p53-Fbxw7 pathway, which controls
c-Myc and Cyclin E. PLoS One. 8:e685742013. View Article : Google Scholar
|
|
113
|
Fu J, Qiu H, Cai M, et al: Low cyclin F
expression in hepatocellular carcinoma associates with poor
differentiation and unfavorable prognosis. Cancer Sci. 104:508–515.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhao Y, Tang Q, Ni R, et al: Early mitotic
inhibitor-1, an anaphase-promoting complex/cyclosome inhibitor, can
control tumor cell proliferation in hepatocellular carcinoma:
correlation with Skp2 stability and degradation of p27 (Kip1). Hum
Pathol. 44:365–373. 2013. View Article : Google Scholar
|
|
115
|
Sanada T, Yokoi S, Arii S, et al: Skp2
overexpression is a p27Kip1-independent predictor of poor prognosis
in patients with biliary tract cancers. Cancer Sci. 95:969–976.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Hashimoto N, Yachida S, Okano K, et al:
Immunohistochemically detected expression of p27(Kip1) and Skp2
predicts survival in patients with intrahepatic
cholangiocarcinomas. Ann Surg Oncol. 16:395–403. 2009. View Article : Google Scholar
|
|
117
|
Zhang B, Ji LH, Liu W, et al: Skp2-RNAi
suppresses proliferation and migration of gallbladder carcinoma
cells by enhancing p27 expression. World J Gastroenterol.
19:4917–4924. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Ferlay J, Shin HR, Bray F, et al:
Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int
J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Greenlee RT, Hill-Harmon MB, Murray T and
Thun M: Cancer statistics, 2001. CA Cancer J Clin. 51:15–36. 2001.
View Article : Google Scholar
|
|
120
|
Li D, Xie K, Wolff R and Abbruzzese JL:
Pancreatic cancer. Lancet. 363:1049–1057. 2004. View Article : Google Scholar
|
|
121
|
Hidalgo M: Pancreatic cancer. N Engl J
Med. 362:1605–1617. 2010. View Article : Google Scholar
|
|
122
|
Einama T, Kagata Y, Tsuda H, et al:
High-level Skp2 expression in pancreatic ductal adenocarcinoma:
correlation with the extent of lymph node metastasis, higher
histological grade, and poorer patient outcome. Pancreas.
32:376–381. 2006. View Article : Google Scholar
|
|
123
|
Schüler S, Diersch S, Hamacher R, et al:
Skp2 confers resistance of pancreatic cancer cells towards
TRAIL-induced apoptosis. Int J Oncol. 38:219–225. 2011.PubMed/NCBI
|
|
124
|
Müerköster S, Arlt A, Sipos B, et al:
Increased expression of the E3-ubiquitin ligase receptor subunit
betaTRCP1 relates to constitutive nuclear factor-kappaB activation
and chemo-resistance in pancreatic carcinoma cells. Cancer Res.
65:1316–1324. 2005.
|
|
125
|
Ma J, Cheng L, Liu H, et al: Genistein
down-regulates miR-223 expression in pancreatic cancer cells. Curr
Drug Targets. 14:1150–1156. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Wang H, Chen Y, Lin P, et al: The
CUL7/F-box and WD repeat domain containing 8 (CUL7/Fbxw8) ubiquitin
ligase promotes degradation of hematopoietic progenitor kinase 1. J
Biol Chem. 289:4009–4017. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Frescas D, Guardavaccaro D, Bassermann F,
et al: JHDM1B/ FBXL10 is a nucleolar protein that represses
transcription of ribosomal RNA genes. Nature. 450:309–313. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
He J, Nguyen AT and Zhang Y: KDM2b/JHDM1b,
an H3K36me2-specific demethylase, is required for initiation and
maintenance of acute myeloid leukemia. Blood. 117:3869–3880. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Tzatsos A, Paskaleva P, Ferrari F, et al:
KDM2B promotes pancreatic cancer via Polycomb-dependent and
-independent transcriptional programs. J Clin Invest. 123:727–739.
2013.PubMed/NCBI
|
|
130
|
Center MM, Jemal A and Ward E:
International trends in colorectal cancer incidence rates. Cancer
Epidemiol Biomarkers Prev. 18:1688–1694. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Center MM, Jemal A, Smith RA and Ward E:
Worldwide variations in colorectal cancer. CA Cancer J Clin.
59:366–378. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Li JQ, Wu F, Mai T, et al: Correlation of
Skp2 with carcinogenesis, invasion, metastasis, and prognosis in
colorectal tumors. Int J Oncol. 25:87–95. 2004.PubMed/NCBI
|
|
133
|
Woenckhaus C, Maile S, Uffmann S, et al:
Expression of Skp2 and p27KIP1 in naevi and malignant melanoma of
the skin and its relation to clinical outcome. Histol Histopathol.
20:501–508. 2005.PubMed/NCBI
|
|
134
|
Shapira M, Ben-Izhak O, Linn S, et al: The
prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in
colorectal carcinoma. Cancer. 103:1336–1346. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Xu SY, Wang F, Wei G, et al: S-phase
kinase-associated protein 2 knockdown blocks colorectal cancer
growth via regulation of both p27 and p16 expression. Cancer Gene
Ther. 20:690–694. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Chen H, Mo X, Yu J, et al: Interference of
Skp2 effectively inhibits the development and metastasis of colon
carcinoma. Mol Med Rep. 10:1129–1135. 2014.PubMed/NCBI
|
|
137
|
Zhu J, Li K, Dong L and Chen Y: Role of
FBXL20 in human colorectal adenocarcinoma. Oncol Rep. 28:2290–2298.
2012.PubMed/NCBI
|
|
138
|
Zhu J, Deng S, Duan J, et al: FBXL20 acts
as an invasion inducer and mediates E-cadherin in colorectal
adenocarcinoma. Oncol Lett. 7:2185–2191. 2014.PubMed/NCBI
|
|
139
|
Babaei-Jadidi R, Li N, Saadeddin A, et al:
FBXW7 influences murine intestinal homeostasis and cancer,
targeting Notch, Jun, and DEK for degradation. J Exp Med.
208:295–312. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Rajagopalan H, Jallepalli PV, Rago C, et
al: Inactivation of hCDC4 can cause chromosomal instability.
Nature. 428:77–81. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Sancho R, Jandke A, Davis H, et al: F-box
and WD repeat domain-containing 7 regulates intestinal cell lineage
commitment and is a haploinsufficient tumor suppressor.
Gastroenterology. 139:929–941. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Jahid S, Sun J, Edwards RA, et al: miR-23a
promotes the transition from indolent to invasive colorectal
cancer. Cancer Discov. 2:540–553. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Wang Y, Liu Y, Lu J, et al: Rapamycin
inhibits FBXW7 loss-induced epithelial-mesenchymal transition and
cancer stem cell-like characteristics in colorectal cancer cells.
Biochem Biophys Res Commun. 434:352–356. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Aberle H, Bauer A, Stappert J, et al:
Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO
J. 16:3797–3804. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Zhang N, Wei P, Gong A, et al: FoxM1
promotes β-catenin nuclear localization and controls Wnt
target-gene expression and glioma tumorigenesis. Cancer Cell.
20:427–442. 2011.
|
|
146
|
Mokkapati S, Niopek K, Huang L, et al:
β-catenin activation in a novel liver progenitor cell type is
sufficient to cause hepatocellular carcinoma and hepatoblastoma.
Cancer Res. 74:4515–4525. 2014.
|
|
147
|
Shirane M, Hatakeyama S, Hattori K, et al:
Common pathway for the ubiquitination of IkappaBalpha, IkappaBbeta,
and IkappaBepsilon mediated by the F-box protein FWD1. J Biol Chem.
274:28169–28174. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Spiegelman VS, Slaga TJ, Pagano M, et al:
Wnt/beta-catenin signaling induces the expression and activity of
beta-TrCP ubiquitin ligase receptor. Mol Cell. 5:877–882. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Ougolkov A, Zhang B, Yamashita K, et al:
Associations among beta-TrCP, an E3 ubiquitin ligase receptor,
beta-catenin, and NF-kappaB in colorectal cancer. J Natl Cancer
Inst. 96:1161–1170. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Alinari L, White VL, Earl CT, et al:
Combination bortezomib and rituximab treatment affects multiple
survival and death pathways to promote apoptosis in mantle cell
lymphoma. MAbs. 1:31–40. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Kane RC, Bross PF, Farrell AT and Pazdur
R: Velcade: U.S. FDA approval for the treatment of multiple myeloma
progressing on prior therapy. Oncologist. 8:508–513. 2003.
View Article : Google Scholar : PubMed/NCBI
|