Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December-2014 Volume 45 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2014 Volume 45 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Roles of F‑box proteins in human digestive system tumors (Review)

  • Authors:
    • Jian Gong
    • Liang Lv
    • Jirong Huo
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
  • Pages: 2199-2207
    |
    Published online on: September 29, 2014
       https://doi.org/10.3892/ijo.2014.2684
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

F‑box proteins (FBPs), the substrate‑recognition subunit of E3 ubiquitin (Ub) ligase, are the important components of Ub proteasome system (UPS). FBPs are involved in multiple cellular processes through ubiquitylation and subsequent degradation of their target proteins. Many studies have described the roles of FBPs in human cancers. Digestive system tumors account for a large proportion of all the tumors, and their mortality is very high. This review summarizes for the first time the roles of FBPs in digestive system tumorige­nesis and tumor progression, aiming at finding new routes for the rational design of targeted anticancer therapies in digestive system tumors.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Genschik P, Sumara I and Lechner E: The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. 32:2307–2320. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Ciechanover A, Orian A and Schwartz AL: Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays. 22:442–451. 2000. View Article : Google Scholar : PubMed/NCBI

3 

Smalle J and Vierstra RD: The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol. 55:555–590. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Crusio KM, King B, Reavie LB and Aifantis I: The ubiquitous nature of cancer: the role of the SCF(Fbw7) complex in development and transformation. Oncogene. 29:4865–4873. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Hershko A: The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ. 12:1191–1197. 2005. View Article : Google Scholar

6 

Pickart CM and Rose IA: Functional heterogeneity of ubiquitin carrier proteins. J Biol Chem. 260:1573–1581. 1985.PubMed/NCBI

7 

Jadhav T and Wooten MW: Defining an embedded code for protein ubiquitination. J Proteomics Bioinform. 2:3162009. View Article : Google Scholar : PubMed/NCBI

8 

Nakayama KI and Nakayama K: Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 6:369–381. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Jackson S and Xiong Y: CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci. 34:562–570. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Wang Z, Liu P, Inuzuka H and Wei W: Roles of F-box proteins in cancer. Nat Rev Cancer. 14:233–247. 2014. View Article : Google Scholar

11 

Hicke L, Schubert HL and Hill CP: Ubiquitin-binding domains. Nat Rev Mol Cell Biol. 6:610–621. 2005. View Article : Google Scholar

12 

Cardozo T and Pagano M: The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol. 5:739–751. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Nandi D, Tahiliani P, Kumar A and Chandu D: The ubiquitin-proteasome system. J Biosci. 31:137–155. 2006. View Article : Google Scholar

14 

Zheng N, Schulman BA, Song L, et al: Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 416:703–709. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Cenciarelli C, Chiaur DS, Guardavaccaro D, et al: Identification of a family of human F-box proteins. Curr Biol. 9:1177–1179. 1999. View Article : Google Scholar : PubMed/NCBI

16 

Winston JT, Koepp DM, Zhu C, et al: A family of mammalian F-box proteins. Curr Biol. 9:1180–1182. 1999. View Article : Google Scholar : PubMed/NCBI

17 

Jin J, Cardozo T, Lovering RC, et al: Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18:2573–2580. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Liu J, Han L, Li B, et al: F-box only protein 31 (FBXO31) negatively regulates p38 mitogen-activated protein (MAPK) signaling by mediating lysine 48-linked ubiquitination and degradation of MAP kinase kinase 6 (MKK6). J Biol Chem. 289:21508–21518. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Santra MK, Wajapeyee N and Green MR: F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature. 459:722–725. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Koepp DM, Schaefer LK, Ye X, et al: Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 294:173–177. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Minella AC, Welcker M and Clurman BE: Ras activity regulates cyclin E degradation by the Fbw7 pathway. Proc Natl Acad Sci USA. 102:9649–9654. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Yada M, Hatakeyama S, Kamura T, et al: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23:2116–2125. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Welcker M, Orian A, Jin J, et al: The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA. 101:9085–9090. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Wei W, Jin J, Schlisio S, et al: The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell. 8:25–33. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Hoeck JD, Jandke A, Blake SM, et al: Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci. 13:1365–1372. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Tetzlaff MT, Yu W, Li M, et al: Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc Natl Acad Sci USA. 101:3338–3345. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Tan M, Zhao Y, Kim SJ, et al: SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and neural development by targeting NF1 for degradation. Dev Cell. 21:1062–1076. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Akhoondi S, Sun D, von der Lehr N, et al: FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67:9006–9012. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Miyaki M, Yamaguchi T, Iijima T, et al: Somatic mutations of the CDC4 (FBXW7) gene in hereditary colorectal tumors. Oncology. 76:430–434. 2009.

30 

Iwatsuki M, Mimori K, Ishii H, et al: Loss of FBXW7, a cell cycle regulating gene, in colorectal cancer: clinical significance. Int J Cancer. 126:1828–1837. 2010.PubMed/NCBI

31 

Kemp Z, Rowan A, Chambers W, et al: CDC4 mutations occur in a subset of colorectal cancers but are not predicted to cause loss of function and are not associated with chromosomal instability. Cancer Res. 65:11361–11366. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Enkhbold C, Utsunomiya T, Morine Y, et al: Loss of FBXW7 expression is associated with poor prognosis in intrahepatic cholangiocarcinoma. Hepatol Res. Feb 19–2014.(Epub ahead of print).

33 

Lee JW, Soung YH, Kim HJ, et al: Mutational analysis of the hCDC4 gene in gastric carcinomas. Eur J Cancer. 42:2369–2373. 2006.

34 

Sterian A, Kan T, Berki AT, et al: Mutational and LOH analyses of the chromosome 4q region in esophageal adenocarcinoma. Oncology. 70:168–172. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Calhoun ES, Jones JB, Ashfaq R, et al: BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol. 163:1255–1260. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Cassia R, Moreno-Bueno G, Rodríguez-Perales S, et al: Cyclin E gene (CCNE) amplification and hCDC4 mutations in endometrial carcinoma. J Pathol. 201:589–595. 2003.

37 

Woo LJ, Hwa SY, Young KS, et al: Somatic mutation of hCDC4 gene is rare in lung adenocarcinomas. Acta Oncol. 45:487–488. 2006.

38 

Yan T, Wunder JS, Gokgoz N, et al: hCDC4 variation in osteo-sarcoma. Cancer Genet Cytogenet. 169:138–142. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Kwak EL, Moberg KH, Wahrer DC, et al: Infrequent mutations of Archipelago (hAGO, hCDC4, Fbw7) in primary ovarian cancer. Gynecol Oncol. 98:124–128. 2005.

40 

Inuzuka H, Fukushima H, Shaik S, et al: Mcl-1 ubiquitination and destruction. Oncotarget. 2:239–244. 2011.

41 

Inuzuka H, Shaik S, Onoyama I, et al: SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature. 471:104–109. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Wertz IE, Kusam S, Lam C, et al: Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature. 471:110–114. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Tsunematsu R, Nakayama K, Oike Y, et al: Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem. 279:9417–9423. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Gstaiger M, Jordan R, Lim M, et al: Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA. 98:5043–5048. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Zhang H, Kobayashi R, Galaktionov K and Beach D: p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell. 82:915–925. 1995. View Article : Google Scholar

46 

Bai C, Sen P, Hofmann K, et al: Skp1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 86:263–274. 1996. View Article : Google Scholar

47 

Carrano AC, Eytan E, Hershko A and Pagano M: Skp2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1:193–199. 1999. View Article : Google Scholar : PubMed/NCBI

48 

Kudo Y, Kitajima S, Sato S, et al: High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res. 61:7044–7047. 2001.PubMed/NCBI

49 

Hershko D, Bornstein G, Ben-Izhak O, et al: Inverse relation between levels of p27(Kip1) and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer. 91:1745–1751. 2001. View Article : Google Scholar : PubMed/NCBI

50 

Mori M, Mimori K, Shiraishi T, et al: p27 expression and gastric carcinoma. Nat Med. 3:5931997. View Article : Google Scholar

51 

Fukuchi M, Masuda N, Nakajima M, et al: Inverse correlation between expression levels of p27 and the ubiquitin ligase subunit Skp2 in early esophageal squamous cell carcinoma. Anticancer Res. 24:777–783. 2004.

52 

Masuda TA, Inoue H, Sonoda H, et al: Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res. 62:3819–3825. 2002.

53 

Yang G, Ayala G, De Marzo A, et al: Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res. 8:3419–3426. 2002.

54 

Timmerbeul I, Garrett-Engele CM, Kossatz U, et al: Testing the importance of p27 degradation by the SCFSkp2 pathway in murine models of lung and colon cancer. Proc Natl Acad Sci USA. 103:14009–14014. 2006. View Article : Google Scholar : PubMed/NCBI

55 

Frescas D and Pagano M: Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer. 8:438–449. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Kim CJ, Song JH, Cho YG, et al: Somatic mutations of the beta-TrCP gene in gastric cancer. APMIS. 115:127–133. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Pisani P, Parkin DM and Ferlay J: Estimates of the worldwide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden. Int J Cancer. 55:891–903. 1993. View Article : Google Scholar : PubMed/NCBI

58 

Sarbia M, Verreet P, Bittinger F, et al: Basaloid squamous cell carcinoma of the esophagus: diagnosis and prognosis. Cancer. 79:1871–1878. 1997. View Article : Google Scholar : PubMed/NCBI

59 

Berger B and Belka C: Evidence-based radiation oncology: oesophagus. Radiother Oncol. 92:276–290. 2009. View Article : Google Scholar

60 

Jemal A, Siegel R, Ward E, et al: Cancer statistics, 2008. CA Cancer J Clin. 58:71–96. 2008. View Article : Google Scholar

61 

Bai P, Xiao X, Zou J, et al: Expression of p14 (ARF), p15 (INK4b), p16 (INK4a) and Skp2 increases during esophageal squamous cell cancer progression. Exp Ther Med. 3:1026–1032. 2012.PubMed/NCBI

62 

Wang XC, Tian LL, Tian J and Jiang XY: Overexpression of SKP2 promotes the radiation resistance of esophageal squamous cell carcinoma. Radiat Res. 177:52–58. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Dong S, Zhao J, Wei J, et al: F-box protein complex FBXL19 regulates TGFβ1-induced E-cadherin down-regulation by mediating Rac3 ubiquitination and degradation. Mol Cancer. 13:762014.PubMed/NCBI

64 

Engers R, Ziegler S, Mueller M, et al: Prognostic relevance of increased Rac GTPase expression in prostate carcinomas. Endocr Relat Cancer. 14:245–256. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Walker MP, Zhang M, Le TP, et al: RAC3 is a pro-migratory co-activator of ERα. Oncogene. 30:1984–1994. 2011.PubMed/NCBI

66 

van Roy F and Berx G: The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 65:3756–3788. 2008.

67 

Rodriguez FJ, Lewis-Tuffin LJ and Anastasiadis PZ: E-cadherin’s dark side: possible role in tumor progression. Biochim Biophys Acta. 1826:23–31. 2012.

68 

Barbash O, Zamfirova P, Lin DI, et al: Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell. 14:68–78. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Buckley MF, Sweeney KJ, Hamilton JA, et al: Expression and amplification of cyclin genes in human breast cancer. Oncogene. 8:2127–2133. 1993.PubMed/NCBI

70 

Shinozaki H, Ozawa S, Ando N, et al: Cyclin D1 amplification as a new predictive classification for squamous cell carcinoma of the esophagus, adding gene information. Clin Cancer Res. 2:1155–1161. 1996.PubMed/NCBI

71 

Ikeguchi M, Sakatani T, Ueta T and Kaibara N: Cyclin D1 expression and retinoblastoma gene protein (pRB) expression in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 127:531–536. 2001. View Article : Google Scholar : PubMed/NCBI

72 

Okabe H, Lee SH, Phuchareon J, et al: A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation. PLoS One. 1:e1282006. View Article : Google Scholar : PubMed/NCBI

73 

Yu ZK, Gervais JL and Zhang H: Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA. 95:11324–11329. 1998. View Article : Google Scholar : PubMed/NCBI

74 

Kanie T, Onoyama I, Matsumoto A, et al: Genetic reevaluation of the role of F-box proteins in cyclin D1 degradation. Mol Cell Biol. 32:590–605. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Naganawa Y, Ishiguro H, Kuwabara Y, et al: Decreased expression of FBXW7 is correlated with poor prognosis in patients with esophageal squamous cell carcinoma. Exp Ther Med. 1:841–846. 2010.PubMed/NCBI

76 

Kogo R, Mimori K, Tanaka F, et al: FBXO31 determines poor prognosis in esophageal squamous cell carcinoma. Int J Oncol. 39:155–159. 2011.PubMed/NCBI

77 

Huang HL, Zheng WL, Zhao R, et al: FBXO31 is down-regulated and may function as a tumor suppressor in hepatocellular carcinoma. Oncol Rep. 24:715–720. 2010.PubMed/NCBI

78 

Johansson P, Jeffery J, Al-Ejeh F, et al: SCF-FBXO31 E3 ligase targets DNA replication factor Cdt1 for proteolysis in the G2 phase of cell cycle to prevent re-replication. J Biol Chem. 289:18514–18525. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Kumar R, Neilsen PM, Crawford J, et al: FBXO31 is the chromosome 16q24.3 senescence gene, a candidate breast tumor suppressor, and a component of an SCF complex. Cancer Res. 65:11304–11313. 2005. View Article : Google Scholar

80 

Dreissigacker U, Mueller MS, Unger M, Siegert P, et al: Oncogenic K-Ras down-regulates Rac1 and RhoA activity and enhances migration and invasion of pancreatic carcinoma cells through activation of p38. Cell Signal. 18:1156–1168. 2006. View Article : Google Scholar : PubMed/NCBI

81 

Tan J, Yang X, Zhuang L, et al: Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21:1050–1063. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Guo W, Zhang M, Shen S, et al: Aberrant methylation and decreased expression of the TGF-β/Smad target gene FBXO32 in esophageal squamous cell carcinoma. Cancer. 120:2412–2413. 2014.

83 

Jemal A, Bray F, Center MM, et al: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar

84 

Ma XM, Liu Y, Guo JW, Liu JH and Zuo LF: Relation of over-expression of S phase kinase-associated protein 2 with reduced expression of p27 and PTEN in human gastric carcinoma. World J Gastroenterol. 11:6716–6721. 2005.PubMed/NCBI

85 

Ma XM, Liu JH, Guo JW, et al: Correlation of Skp2 expression in gastric carcinoma to expression of P27 and PTEN. Ai Zheng. 25:56–61. 2006.(In Chinese).

86 

Yang L, Kuang LG, Zheng HC, et al: PTEN encoding product: a marker for tumorigenesis and progression of gastric carcinoma. World J Gastroenterol. 9:35–39. 2003.PubMed/NCBI

87 

Wei Z, Jiang X, Liu F, et al: Downregulation of Skp2 inhibits the growth and metastasis of gastric cancer cells in vitro and in vivo. Tumour Biol. 34:181–192. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Cen G, Ding HH, Liu B and Wu WD: FBXL5 targets cortactin for ubiquitination-mediated destruction to regulate gastric cancer cell migration. Tumour Biol. May 28–2014.(Epub ahead of print).

89 

Saitoh T and Katoh M: Expression profiles of βTRCP1 and βTRCP2, and mutation analysis of βTRCP2 in gastric cancer. Int J Oncol. 18:959–964. 2001.

90 

Milne AN, Leguit R, Corver WE, et al: Loss of CDC4/FBXW7 in gastric carcinoma. Cell Oncol. 32:347–359. 2010.PubMed/NCBI

91 

Yokobori T, Mimori K, Iwatsuki M, et al: p53-altered FBXW7 expression determines poor prognosis in gastric cancer cases. Cancer Res. 69:3788–3794. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Martins CP, Brown-Swigart L and Evan GI: Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 127:1323–1334. 2006. View Article : Google Scholar : PubMed/NCBI

93 

Ventura A, Kirsch DG, McLaughlin ME, et al: Restoration of p53 function leads to tumour regression in vivo. Nature. 445:661–665. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Xue W, Zender L, Miething C, et al: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 445:656–660. 2007. View Article : Google Scholar : PubMed/NCBI

95 

Zhang YW, Brognard J, Coughlin C, et al: The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress. Mol Cell. 35:442–453. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Merry C, Fu K, Wang J, et al: Targeting the checkpoint kinase Chk1 in cancer therapy. Cell Cycle. 9:279–283. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Verlinden L, Vanden BI, Eelen G, et al: The E2F-regulated gene Chk1 is highly expressed in triple-negative estrogen receptor/progesterone receptor/HER-2 breast carcinomas. Cancer Res. 67:6574–6581. 2007.PubMed/NCBI

98 

Zhang L, Hou Y, Wang M, et al: A study on the functions of ubiquitin metabolic system related gene FBG2 in gastric cancer cell line. J Exp Clin Cancer Res. 28:782009. View Article : Google Scholar : PubMed/NCBI

99 

Lei KF, Liu BY, Wang YF, et al: SerpinB5 interacts with KHDRBS3 and FBXO32 in gastric cancer cells. Oncol Rep. 26:1115–1120. 2011.PubMed/NCBI

100 

Chen WQ, Zeng HM, Zheng RS, et al: Cancer incidence and mortality in china, 2007. Chin J Cancer Res. 24:1–8. 2012. View Article : Google Scholar

101 

Koga H, Harada M, Ohtsubo M, et al: Troglitazone induces p27Kip1-associated cell-cycle arrest through down-regulating Skp2 in human hepatoma cells. Hepatology. 37:1086–1096. 2003. View Article : Google Scholar : PubMed/NCBI

102 

Liao YJ, Bai HY, Li ZH, et al: Longikaurin A, a natural ent-kaurane, induces G2/M phase arrest via downregulation of Skp2 and apoptosis induction through ROS/JNK/c-Jun pathway in hepatocellular carcinoma cells. Cell Death Dis. 5:e11372014. View Article : Google Scholar : PubMed/NCBI

103 

Yan S, Yang X, Chen T, et al: The PPARγ agonist Troglitazone induces autophagy, apoptosis and necroptosis in bladder cancer cells. Cancer Gene Ther. 21:188–193. 2014.

104 

Zou QF, Du JK, Zhang H, et al: Anti-tumour activity of longikaurin A (LK-A), a novel natural diterpenoid, in nasopharyngeal carcinoma. J Transl Med. 11:2002013. View Article : Google Scholar : PubMed/NCBI

105 

Xu H, Choe C, Shin SH, et al: Silencing of KIF14 interferes with cell cycle progression and cytokinesis by blocking the p27 (Kip1) ubiquitination pathway in hepatocellular carcinoma. Exp Mol Med. 46:e972014. View Article : Google Scholar : PubMed/NCBI

106 

Thériault BL, Basavarajappa HD, Lim H, et al: Transcriptional and epigenetic regulation of KIF14 overexpression in ovarian cancer. PLoS One. 9:e915402014.PubMed/NCBI

107 

Hsiang CY, Wu SL, Chen JC, et al: Acetaldehyde induces matrix metalloproteinase-9 gene expression via nuclear factor-kappaB and activator protein 1 signaling pathways in human hepato-cellular carcinoma cells: association with the invasive potential. Toxicol Lett. 171:78–86. 2007. View Article : Google Scholar

108 

Imura S, Tovuu LO, Utsunomiya T, et al: The role of Fbxw7 expression in hepatocellular carcinoma and adjacent non-tumor liver tissue. J Gastroenterol Hepatol. Apr 14–2014.(Epub ahead of print).

109 

Tu K, Yang W, Li C, et al: Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma. Mol Cancer. 13:1102014. View Article : Google Scholar : PubMed/NCBI

110 

Steinhardt AA, Gayyed MF, Klein AP, et al: Expression of Yes-associated protein in common solid tumors. Hum Pathol. 39:1582–1589. 2008. View Article : Google Scholar : PubMed/NCBI

111 

Tu K, Zheng X, Zan X, et al: Evaluation of Fbxw7 expression and its correlation with the expression of c-Myc, cyclin E and p53 in human hepatocellular carcinoma. Hepatol Res. 42:904–910. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Tu K, Zheng X, Zhou Z, et al: Recombinant human adenovirus-p53 injection induced apoptosis in hepatocellular carcinoma cell lines mediated by p53-Fbxw7 pathway, which controls c-Myc and Cyclin E. PLoS One. 8:e685742013. View Article : Google Scholar

113 

Fu J, Qiu H, Cai M, et al: Low cyclin F expression in hepatocellular carcinoma associates with poor differentiation and unfavorable prognosis. Cancer Sci. 104:508–515. 2013. View Article : Google Scholar : PubMed/NCBI

114 

Zhao Y, Tang Q, Ni R, et al: Early mitotic inhibitor-1, an anaphase-promoting complex/cyclosome inhibitor, can control tumor cell proliferation in hepatocellular carcinoma: correlation with Skp2 stability and degradation of p27 (Kip1). Hum Pathol. 44:365–373. 2013. View Article : Google Scholar

115 

Sanada T, Yokoi S, Arii S, et al: Skp2 overexpression is a p27Kip1-independent predictor of poor prognosis in patients with biliary tract cancers. Cancer Sci. 95:969–976. 2004. View Article : Google Scholar : PubMed/NCBI

116 

Hashimoto N, Yachida S, Okano K, et al: Immunohistochemically detected expression of p27(Kip1) and Skp2 predicts survival in patients with intrahepatic cholangiocarcinomas. Ann Surg Oncol. 16:395–403. 2009. View Article : Google Scholar

117 

Zhang B, Ji LH, Liu W, et al: Skp2-RNAi suppresses proliferation and migration of gallbladder carcinoma cells by enhancing p27 expression. World J Gastroenterol. 19:4917–4924. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Ferlay J, Shin HR, Bray F, et al: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI

119 

Greenlee RT, Hill-Harmon MB, Murray T and Thun M: Cancer statistics, 2001. CA Cancer J Clin. 51:15–36. 2001. View Article : Google Scholar

120 

Li D, Xie K, Wolff R and Abbruzzese JL: Pancreatic cancer. Lancet. 363:1049–1057. 2004. View Article : Google Scholar

121 

Hidalgo M: Pancreatic cancer. N Engl J Med. 362:1605–1617. 2010. View Article : Google Scholar

122 

Einama T, Kagata Y, Tsuda H, et al: High-level Skp2 expression in pancreatic ductal adenocarcinoma: correlation with the extent of lymph node metastasis, higher histological grade, and poorer patient outcome. Pancreas. 32:376–381. 2006. View Article : Google Scholar

123 

Schüler S, Diersch S, Hamacher R, et al: Skp2 confers resistance of pancreatic cancer cells towards TRAIL-induced apoptosis. Int J Oncol. 38:219–225. 2011.PubMed/NCBI

124 

Müerköster S, Arlt A, Sipos B, et al: Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemo-resistance in pancreatic carcinoma cells. Cancer Res. 65:1316–1324. 2005.

125 

Ma J, Cheng L, Liu H, et al: Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr Drug Targets. 14:1150–1156. 2013. View Article : Google Scholar : PubMed/NCBI

126 

Wang H, Chen Y, Lin P, et al: The CUL7/F-box and WD repeat domain containing 8 (CUL7/Fbxw8) ubiquitin ligase promotes degradation of hematopoietic progenitor kinase 1. J Biol Chem. 289:4009–4017. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Frescas D, Guardavaccaro D, Bassermann F, et al: JHDM1B/ FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature. 450:309–313. 2007. View Article : Google Scholar : PubMed/NCBI

128 

He J, Nguyen AT and Zhang Y: KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood. 117:3869–3880. 2011. View Article : Google Scholar : PubMed/NCBI

129 

Tzatsos A, Paskaleva P, Ferrari F, et al: KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. J Clin Invest. 123:727–739. 2013.PubMed/NCBI

130 

Center MM, Jemal A and Ward E: International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev. 18:1688–1694. 2009. View Article : Google Scholar : PubMed/NCBI

131 

Center MM, Jemal A, Smith RA and Ward E: Worldwide variations in colorectal cancer. CA Cancer J Clin. 59:366–378. 2009. View Article : Google Scholar : PubMed/NCBI

132 

Li JQ, Wu F, Mai T, et al: Correlation of Skp2 with carcinogenesis, invasion, metastasis, and prognosis in colorectal tumors. Int J Oncol. 25:87–95. 2004.PubMed/NCBI

133 

Woenckhaus C, Maile S, Uffmann S, et al: Expression of Skp2 and p27KIP1 in naevi and malignant melanoma of the skin and its relation to clinical outcome. Histol Histopathol. 20:501–508. 2005.PubMed/NCBI

134 

Shapira M, Ben-Izhak O, Linn S, et al: The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer. 103:1336–1346. 2005. View Article : Google Scholar : PubMed/NCBI

135 

Xu SY, Wang F, Wei G, et al: S-phase kinase-associated protein 2 knockdown blocks colorectal cancer growth via regulation of both p27 and p16 expression. Cancer Gene Ther. 20:690–694. 2013. View Article : Google Scholar : PubMed/NCBI

136 

Chen H, Mo X, Yu J, et al: Interference of Skp2 effectively inhibits the development and metastasis of colon carcinoma. Mol Med Rep. 10:1129–1135. 2014.PubMed/NCBI

137 

Zhu J, Li K, Dong L and Chen Y: Role of FBXL20 in human colorectal adenocarcinoma. Oncol Rep. 28:2290–2298. 2012.PubMed/NCBI

138 

Zhu J, Deng S, Duan J, et al: FBXL20 acts as an invasion inducer and mediates E-cadherin in colorectal adenocarcinoma. Oncol Lett. 7:2185–2191. 2014.PubMed/NCBI

139 

Babaei-Jadidi R, Li N, Saadeddin A, et al: FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. J Exp Med. 208:295–312. 2011. View Article : Google Scholar : PubMed/NCBI

140 

Rajagopalan H, Jallepalli PV, Rago C, et al: Inactivation of hCDC4 can cause chromosomal instability. Nature. 428:77–81. 2004. View Article : Google Scholar : PubMed/NCBI

141 

Sancho R, Jandke A, Davis H, et al: F-box and WD repeat domain-containing 7 regulates intestinal cell lineage commitment and is a haploinsufficient tumor suppressor. Gastroenterology. 139:929–941. 2010. View Article : Google Scholar : PubMed/NCBI

142 

Jahid S, Sun J, Edwards RA, et al: miR-23a promotes the transition from indolent to invasive colorectal cancer. Cancer Discov. 2:540–553. 2012. View Article : Google Scholar : PubMed/NCBI

143 

Wang Y, Liu Y, Lu J, et al: Rapamycin inhibits FBXW7 loss-induced epithelial-mesenchymal transition and cancer stem cell-like characteristics in colorectal cancer cells. Biochem Biophys Res Commun. 434:352–356. 2013. View Article : Google Scholar : PubMed/NCBI

144 

Aberle H, Bauer A, Stappert J, et al: Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16:3797–3804. 1997. View Article : Google Scholar : PubMed/NCBI

145 

Zhang N, Wei P, Gong A, et al: FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 20:427–442. 2011.

146 

Mokkapati S, Niopek K, Huang L, et al: β-catenin activation in a novel liver progenitor cell type is sufficient to cause hepatocellular carcinoma and hepatoblastoma. Cancer Res. 74:4515–4525. 2014.

147 

Shirane M, Hatakeyama S, Hattori K, et al: Common pathway for the ubiquitination of IkappaBalpha, IkappaBbeta, and IkappaBepsilon mediated by the F-box protein FWD1. J Biol Chem. 274:28169–28174. 1999. View Article : Google Scholar : PubMed/NCBI

148 

Spiegelman VS, Slaga TJ, Pagano M, et al: Wnt/beta-catenin signaling induces the expression and activity of beta-TrCP ubiquitin ligase receptor. Mol Cell. 5:877–882. 2000. View Article : Google Scholar : PubMed/NCBI

149 

Ougolkov A, Zhang B, Yamashita K, et al: Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-kappaB in colorectal cancer. J Natl Cancer Inst. 96:1161–1170. 2004. View Article : Google Scholar : PubMed/NCBI

150 

Alinari L, White VL, Earl CT, et al: Combination bortezomib and rituximab treatment affects multiple survival and death pathways to promote apoptosis in mantle cell lymphoma. MAbs. 1:31–40. 2009. View Article : Google Scholar : PubMed/NCBI

151 

Kane RC, Bross PF, Farrell AT and Pazdur R: Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist. 8:508–513. 2003. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gong J, Lv L and Huo J: Roles of F‑box proteins in human digestive system tumors (Review). Int J Oncol 45: 2199-2207, 2014.
APA
Gong, J., Lv, L., & Huo, J. (2014). Roles of F‑box proteins in human digestive system tumors (Review). International Journal of Oncology, 45, 2199-2207. https://doi.org/10.3892/ijo.2014.2684
MLA
Gong, J., Lv, L., Huo, J."Roles of F‑box proteins in human digestive system tumors (Review)". International Journal of Oncology 45.6 (2014): 2199-2207.
Chicago
Gong, J., Lv, L., Huo, J."Roles of F‑box proteins in human digestive system tumors (Review)". International Journal of Oncology 45, no. 6 (2014): 2199-2207. https://doi.org/10.3892/ijo.2014.2684
Copy and paste a formatted citation
x
Spandidos Publications style
Gong J, Lv L and Huo J: Roles of F‑box proteins in human digestive system tumors (Review). Int J Oncol 45: 2199-2207, 2014.
APA
Gong, J., Lv, L., & Huo, J. (2014). Roles of F‑box proteins in human digestive system tumors (Review). International Journal of Oncology, 45, 2199-2207. https://doi.org/10.3892/ijo.2014.2684
MLA
Gong, J., Lv, L., Huo, J."Roles of F‑box proteins in human digestive system tumors (Review)". International Journal of Oncology 45.6 (2014): 2199-2207.
Chicago
Gong, J., Lv, L., Huo, J."Roles of F‑box proteins in human digestive system tumors (Review)". International Journal of Oncology 45, no. 6 (2014): 2199-2207. https://doi.org/10.3892/ijo.2014.2684
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team