|
1
|
Flossmann E and Rothwell PM: British
Doctors Aspirin Trial and the UK-TIA Aspirin Trial: Effect of
aspirin on long-term risk of colorectal cancer: consistent evidence
from randomised and observational studies. Lancet. 369:1603–1613.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Din FV, Theodoratou E, Farrington SM,
Tenesa A, Barnetson RA, Cetnarskyj R, Stark L, Porteous ME,
Campbell H and Dunlop MG: Effect of aspirin and NSAIDs on risk and
survival from colorectal cancer. Gut. 59:1670–1679. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bastiaannet E, Sampieri K, Dekkers OM, de
Craen AJ, van Herk-Sukel MP, Lemmens V, van den Broek CB, Coebergh
JW, Herings RM, van de Velde CJ, et al: Use of aspirin
postdiagnosis improves survival for colon cancer patients. Br J
Cancer. 106:1564–1570. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chan AT, Ogino S and Fuchs CS: Aspirin use
and survival after diagnosis of colorectal cancer. JAMA.
302:649–658. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lundholm K, Gelin J, Hyltander A, Lönnroth
C, Sandström R, Svaninger G, et al: Anti-inflammatory treatment may
prolong survival in undernourished patients with metastatic solid
tumors. Cancer Res. 54:5602–5606. 1994.PubMed/NCBI
|
|
6
|
Reimers MS, Bastiaannet E, Langley RE, van
Eijk R, van Vlierberghe RL, Lemmens VE, van Herk-Sukel MP, van
Wezel T, Fodde R, Kuppen PJ, et al: Expression of HLA class I
antigen, aspirin use, and survival after a diagnosis of colon
cancer. JAMA Intern Med. 174:732–739. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lönnroth C, Andersson M, Arvidsson A,
Nordgren S, Brevinge H, Lagerstedt K and Lundholm K: Preoperative
treatment with a non-steroidal anti-inflammatory drug (NSAID)
increases tumor tissue infiltration of seemingly activated immune
cells in colorectal cancer. Cancer Immun. 8:52008.
|
|
8
|
Lönnroth C, Andersson M, Nordgren S and
Lundholm K: Downregulation of Prominin 1/CD133 expression in
colorectal cancer by NSAIDs following short-term preoperative
treatment. Int J Oncol. 41:15–23. 2012.PubMed/NCBI
|
|
9
|
Blanco Calvo M, Bolós Fernández V, Medina
Villaamil V, Aparicio Gallego G, Díaz Prado S and Grande Pulido E:
Biology of BMP signalling and cancer. Clin Transl Oncol.
11:126–137. 2009.PubMed/NCBI
|
|
10
|
Mizrak D, Brittan M and Alison M: CD133:
molecule of the moment. J Pathol. 214:3–9. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Rizzino A: Sox2 and Oct-3/4: a versatile
pair of master regulators that orchestrate the self-renewal and
pluripotency of embryonic stem cells. Wiley Interdiscip Rev Syst
Biol Med. 1:228–236. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hu T, Liu S, Breiter DR, Wang F, Tang Y
and Sun S: Octamer 4 small interfering RNA results in cancer stem
cell-like cell apoptosis. Cancer Res. 68:6533–6540. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Friedman JM and Jones PA: MicroRNAs:
critical mediators of differentiation, development and disease.
Swiss Med Wkly. 139:466–472. 2009.PubMed/NCBI
|
|
14
|
Slaby O, Svoboda M, Michalek J and Vyzula
R: MicroRNAs in colorectal cancer: translation of molecular biology
into clinical application. Mol Cancer. 8:1022009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Gustafsson A, Hansson E, Kressner U,
Nordgren S, Andersson M, Wang W, Lönnroth C and Lundholm K: EP1–4
subtype, COX and PPAR gamma receptor expression in colorectal
cancer in prediction of disease-specific mortality. Int J Cancer.
121:232–240. 2007.
|
|
16
|
Cahlin C, Lönnroth C, Arvidsson A,
Nordgren S and Lundholm K: Growth associated proteins in tumor
cells and stroma related to disease progression of colon cancer
accounting for tumor tissue PGE2 content. Int J Oncol.
32:909–918. 2008.PubMed/NCBI
|
|
17
|
Chen S, Song X, Chen Z, Li X, Li M, Liu H
and Li J: CD133 expression and the prognosis of colorectal cancer:
a systematic review and meta-analysis. PLoS One. 8:e563802013.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
He A, Qi W, Huang Y, Feng T, Chen J, Sun
Y, Shen Z and Yao Y: CD133 expression predicts lung metastasis and
poor prognosis in osteosarcoma patients: A clinical and
experimental study. Exp Ther Med. 4:435–441. 2012.PubMed/NCBI
|
|
19
|
Hashimoto K, Aoyagi K, Isobe T, Kouhuji K
and Shirouzu K: Expression of CD133 in the cytoplasm is associated
with cancer progression and poor prognosis in gastric cancer.
Gastric Cancer. 17:97–106. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kemper K, Sprick MR, de Bree M, Scopelliti
A, Vermeulen L, Hoek M, Zeilstra J, Pals ST, Mehmet H, Stassi G and
Medema JP: The AC133 epitope, but not the CD133 protein, is lost
upon cancer stem cell differentiation. Cancer Res. 70:719–729.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mak AB, Blakely KM, Williams RA, Penttilä
PA, Shukalyuk AI, Osman KT, Kasimer D, Ketela T and Moffat J: CD133
protein N-glycosylation processing contributes to cell surface
recognition of the primitive cell marker AC133 epitope. J Biol
Chem. 286:41046–41056. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Liu A, Yu X and Liu S: Pluripotency
transcription factors and cancer stem cells: small genes make a big
difference. Chin J Cancer. 32:483–487. 2013.PubMed/NCBI
|
|
23
|
Wang X and Dai J: Concise review: isoforms
of OCT4 contribute to the confusing diversity in stem cell biology.
Stem Cells. 28:885–893. 2010.PubMed/NCBI
|
|
24
|
Atlasi Y, Mowla SJ, Ziaee SA, Gokhale PJ
and Andrews PW: OCT4 spliced variants are differentially expressed
in human pluripotent and nonpluripotent cells. Stem Cells.
26:3068–3074. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Gao Y, Wang X, Han J, Xiao Z, Chen B, Su G
and Dai J: The novel OCT4 spliced variant OCT4B1 can generate three
protein isoforms by alternative splicing into OCT4B. J Genet
Genomics. 37:461–465. 2010. View Article : Google Scholar
|
|
26
|
Gazouli M, Roubelakis MG, Theodoropoulos
GE, Papailiou J, Vaiopoulou A, Pappa KI, Nikiteas N and Anagnou NP:
OCT4 spliced variant OCT4B1 is expressed in human colorectal
cancer. Mol Carcinog. 51:165–173. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Fang X, Yu W, Li L, Shao J, Zhao N, Chen
Q, Ye Z, Lin SC, Zheng S and Lin B: ChIP-seq and functional
analysis of the SOX2 gene in colorectal cancers. OMICS. 14:369–384.
2010. View Article : Google Scholar
|
|
28
|
Wang Q, He W, Lu C, Wang Z, Wang J,
Giercksky KE, Nesland JM and Suo Z: Oct3/4 and Sox2 are
significantly associated with an unfavorable clinical outcome in
human esophageal squamous cell carcinoma. Anticancer Res.
29:1233–1241. 2009.PubMed/NCBI
|
|
29
|
Otsubo T, Akiyama Y, Yanagihara K and
Yuasa Y: SOX2 is frequently downregulated in gastric cancers and
inhibits cell growth through cell-cycle arrest and apoptosis. Br J
Cancer. 98:824–831. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wong OG, Huo Z, Siu MK, Zhang H, Jiang L,
Wong ES and Cheung AN: Hypermethylation of SOX2 promoter in
endometrial carcinogenesis. Obstet Gynecol Int.
2010:6825042010.PubMed/NCBI
|
|
31
|
Cox JL, Wilder PJ, Desler M and Rizzino A:
Elevating SOX2 levels deleteriously affects the growth of
medulloblastoma and glioblastoma cells. PLoS One. 7:e440872012.
View Article : Google Scholar
|
|
32
|
Niwa H, Miyazaki J and Smith AG:
Quantitative expression of Oct-3/4 defines differentiation,
dedifferentiation or self-renewal of ES cells. Nat Genet.
24:372–376. 2000. View
Article : Google Scholar : PubMed/NCBI
|
|
33
|
Boer B, Kopp J, Mallanna S, Desler M,
Chakravarthy H, Wilder PJ, Bernadt C and Rizzino A: Elevating the
levels of Sox2 in embryonal carcinoma cells and embryonic stem
cells inhibits the expression of Sox2:Oct-3/4 target genes. Nucleic
Acids Res. 35:1773–1786. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Saunders A, Faiola F and Wang J: Concise
review: pursuing self-renewal and pluripotency with the stem cell
factor Nanog. Stem Cells. 31:1227–1236. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Qiu W, Wang X, Leibowitz B, Liu H, Barker
N, Okada H, Oue N, Yasui W, Clevers H, Schoen RE, et al:
Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates
oncogenic intestinal stem cells via SMAC-dependent apoptosis. Proc
Natl Acad Sci USA. 107:20027–20032. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Motoyama K, Tanaka F, Kosaka Y, Mimori K,
Uetake H, Inoue H, Sugihara K and Mori M: Clinical significance of
BMP7 in human colorectal cancer. Ann Surg Oncol. 15:1530–1537.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen J, Ye L, Xie F, Yang Y, Zhang L and
Jiang WG: Expression of bone morphogenetic protein 7 in lung cancer
and its biological impact on lung cancer cells. Anticancer Res.
30:1113–1120. 2010.PubMed/NCBI
|
|
38
|
Li W, Cai HX, Ge XM, Li K, Xu WD and Shi
WH: Prognostic significance of BMP7 as an oncogene in
hepatocellular carcinoma. Tumour Biol. 34:669–674. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Megumi K, Ishigami S, Uchikado Y, Kita Y,
Okumura H, Matsumoto M, Uenosono Y, Arigami T, Kijima Y, Kitazono
M, et al: Clinicopathological significance of BMP7 expression in
esophageal squamous cell carcinoma. Ann Surg Onco. 19:2066–2071.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yamashita S, Tsujino Y, Moriguchi K,
Tatematsu M and Ushijima T: Chemical genomic screening for
methylation-silenced genes in gastric cancer cell lines using
5-aza-2′-deoxycytidine treatment and oligonucleotide microarray.
Cancer Sci. 97:64–71. 2006.PubMed/NCBI
|
|
41
|
Della Vittoria Scarpati G, Falcetta F,
Carlomagno C, Ubezio P, Marchini S, De Stefano A, Singh VK,
D’Incalci M, De Placido S and Pepe S: A specific miRNA signature
correlates with complete pathological response to neoadjuvant
chemoradiotherapy in locally advanced rectal cancer. Int J Radiat
Oncol Biol Phys. 83:1113–1119. 2012.
|
|
42
|
Farhana L, Dawson MI, Murshed F, Das JK,
Rishi AK and Fontana JA: Upregulation of miR-150* and
miR-630 induces apoptosis in pancreatic cancer cells by targeting
IGF-1R. PLoS One. 8:e610152013.PubMed/NCBI
|
|
43
|
Corcoran C, Rani S, Breslin S, Gogarty M,
Ghobrial IM, Crown J and O’Driscoll L: miR-630 targets IGF1R to
regulate response to HER-targeting drugs and overall cancer cell
progression in HER2 over-expressing breast cancer. Mol Cancer.
13:712014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
John B, Enright AJ, Aravin A, Tuschl T,
Sander C and Marks DS: Human MicroRNA targets. PLoS Biol.
2:e3632004. View Article : Google Scholar
|
|
45
|
Kanaan Z, Rai SN, Eichenberger MR, Roberts
H, Keskey B, Pan J and Galandiuk S: Plasma miR-21: a potential
diagnostic marker of colorectal cancer. Ann Surg. 256:544–551.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Caruso S1, Bazan V, Rolfo C, Insalaco L,
Fanale D, Bronte G, Corsini LR, Rizzo S, Cicero G and Russo A:
MicroRNAs in colorectal cancer stem cells: new regulators of cancer
stemness? Oncogenesis. 1:e322012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chen WS, Leung CM, Pan HW, Hu LY, Li SC,
Ho MR and Tsai KW: Silencing of miR-1–1 and miR-133a-2 cluster
expression by DNA hypermethylation in colorectal cancer. Oncol Rep.
28:1069–1076. 2012.
|
|
48
|
Nasser MW, Datta J, Nuovo G, Kutay H,
Motiwala T, Majumder S, Wang B, Suster S, Jacob ST and Ghoshal K:
Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression
of tumorigenic property of lung cancer cells and their
sensitization to doxorubicin-induced apoptosis by miR-1. J Biol
Chem. 283:33394–33405. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hudson RS, Yi M, Esposito D, Watkins SK,
Hurwitz AA, Yfantis HG, Lee DH, Borin JF, Naslund MJ, Alexander RB,
et al: MicroRNA-1 is a candidate tumor suppressor and prognostic
marker in human prostate cancer. Nucleic Acids Res. 40:3689–3703.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yamasaki T, Yoshino H, Enokida H, Hidaka
H, Chiyomaru T, Nohata N, Kinoshita T, Fuse M, Seki N and Nakagawa
M: Novel molecular targets regulated by tumor suppressors
microRNA-1 and microRNA-133a in bladder cancer. Int J Oncol.
40:1821–1830. 2012.PubMed/NCBI
|
|
51
|
Nohata N, Hanazawa T, Enokida H and Seki
N: microRNA-1/133a and microRNA-206/133b clusters: dysregulation
and functional roles in human cancers. Oncotarget. 3:9–21.
2012.PubMed/NCBI
|
|
52
|
Chen WC, Lin MS, Ye YL, Gao HJ, Song ZY
and Shen XY: microRNA expression pattern and its alteration
following celecoxib intervention in human colorectal cancer. Exp
Ther Med. 3:1039–1048. 2012.PubMed/NCBI
|
|
53
|
Horton R, Wilming L, Rand V, Lovering RC,
Bruford EA, Khodiyar VK, Lush MJ, Povey S, Talbot CC Jr, Wright MW,
et al: Gene map of the extended human MHC. Nat Rev Genet.
5:889–899. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mak AB, Nixon AM, Kittanakom S, Stewart
JM, Chen GI, Curak J, Gingras AC, Mazitschek R, Neel BG, Stagljar I
and Moffat J: Regulation of CD133 by HDAC6 promotes β-catenin
signaling to suppress cancer cell differentiation. Cell Rep.
2:951–963. 2012.PubMed/NCBI
|
|
55
|
Brandão RD, Veeck J, Van de Vijver KK,
Lindsey P, de Vries B, van Elssen CH, Blok MJ, Keymeulen K, Ayoubi
T, Smeets HJ, et al: A randomised controlled phase II trial of
pre-operative celecoxib treatment reveals anti-tumour
transcriptional response in primary breast cancer. Breast Cancer
Res. 15:R292013.
|
|
56
|
Zhou Y, Cho KJ, Plowman SJ and Hancock JF:
Nonsteroidal anti-inflammatory drugs alter the spatiotemporal
organization of Ras proteins on the plasma membrane. J Biol Chem.
287:16586–16595. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kim MS, Lee EJ, Kim HR and Moon A: p38
kinase is a key signaling molecule for H-Ras-induced cell motility
and invasive phenotype in human breast epithelial cells. Cancer
Res. 63:5454–5461. 2003.PubMed/NCBI
|
|
58
|
Fang JY and Richardson BC: The MAPK
signalling pathways and colorectal cancer. Lancet Oncol. 6:322–327.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Alesutan I, Sopjani M, Dërmaku-Sopjani M,
Munoz C, Voelkl J and Lang F: Upregulation of Na-coupled glucose
transporter SGLT1 by Tau tubulin kinase 2. Cell Physiol Biochem.
30:458–465. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sarkar R, Hunter IA, Rajaganeshan R, Perry
SL, Guillou P and Jayne DG: Expression of cyclin D2 is an
independent predictor of the development of hepatic metastasis in
colorectal cancer. Colorectal Dis. 12:316–323. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Van Erk MJ, Teuling E, Staal YC, Huybers
S, Van Bladeren PJ, Aarts JM and Van Ommen B: Time- and
dose-dependent effects of curcumin on gene expression in human
colon cancer cells. J Carcinog. 3:82004.PubMed/NCBI
|
|
62
|
Sato T, Oshima T, Yoshihara K, Yamamoto N,
Yamada R, Nagano Y, Fujii S, Kunisaki C, Shiozawa M, Akaike M, et
al: Overexpression of the fibroblast growth factor receptor-1 gene
correlates with liver metastasis in colorectal cancer. Oncol Rep.
21:211–216. 2009.
|
|
63
|
Lee JH, Kang MJ, Han HY, Lee MG, Jeong SI,
Ryu BK, Ha TK, Her NG, Han J, Park SJ, et al: Epigenetic alteration
of PRKCDBP in colorectal cancers and its implication in tumor cell
resistance to TNFα-induced apoptosis. Clin Cancer Res.
17:7551–7562. 2011.PubMed/NCBI
|
|
64
|
Kim E, Chen F, Wang CC and Harrison LE:
CDK5 is a novel regulatory protein in PPARgamma ligand-induced
antiproliferation. Int J Oncol. 28:191–194. 2006.PubMed/NCBI
|
|
65
|
Eggers JP, Grandgenett PM, Collisson EC,
Lewallen ME, Tremayne J, Singh PK, Swanson BJ, Andersen JM, Caffrey
TC, High RR, et al: Cyclin-dependent kinase 5 is amplified and
over-expressed in pancreatic cancer and activated by mutant K-Ras.
Clin Cancer Res. 17:6140–6150. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Blumenthal RD, Leon E, Hansen HJ and
Goldenberg DM: Expression patterns of CEACAM5 and CEACAM6 in
primary and metastatic cancers. BMC Cancer. 7:22007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Jantscheff P, Terracciano L, Lowy A,
Glatz-Krieger K, Grunert F, Micheel B, Brümmer J, Laffer U, Metzger
U, Herrmann R and Rochlitz C: Expression of CEACAM6 in resectable
colorectal cancer: a factor of independent prognostic significance.
J Clin Oncol. 21:3638–3646. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Beauchemin N and Arabzadeh A:
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs)
in cancer progression and metastasis. Cancer Metastasis Rev.
32:643–671. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hirakawa M, Takimoto R, Tamura F, Yoshida
M, Ono M, Murase K, Sato Y, Osuga T, Sato T, Iyama S, et al:
Fucosylated TGF-β receptors transduces a signal for
epithelial-mesenchymal transition in colorectal cancer cells. Br J
Cancer. 110:156–163. 2014.
|
|
70
|
Zhou F, Mu YD, Liang J, Liu ZX, Chen HS
and Zhang JF: Expression and prognostic value of tumor stem cell
markers ALDH1 and CD133 in colorectal carcinoma. Oncol Lett.
7:507–512. 2014.PubMed/NCBI
|
|
71
|
Aoi J, Endo M, Kadomatsu T, Miyata K,
Ogata A, Horiguchi H, Odagiri H, Masuda T, Fukushima S, Jinnin M,
et al: Angiopoietin-like protein 2 accelerates carcinogenesis by
activating chronic inflammation and oxidative stress. Mol Cancer
Res. 12:239–249. 2014. View Article : Google Scholar
|
|
72
|
Fanali C, Lucchetti D, Farina M, Corbi M,
Cufino V, Cittadini A and Sgambato A: Cancer stem cells in
colorectal cancer from pathogenesis to therapy: controversies and
perspectives. World J Gastroenterol. 20:923–942. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhao J: Coordination of DNA synthesis and
histone gene expression during normal cell cycle progression and
after DNA damage. Cell Cycle. 3:695–697. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhang Y, Chen FQ, Sun YH, Zhou SY, Li TY
and Chen R: Effects of DNMT1 silencing on malignant phenotype and
methylated gene expression in cervical cancer cells. J Exp Clin
Cancer Res. 30:982011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Szyf M: The role of DNA methyltransferase
1 in growth control. Front Biosci. 6:D599–D609. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Robert MF, Morin S, Beaulieu N, Gauthier
F, Chute IC, Barsalou A and MacLeod AR: DNMT1 is required to
maintain CpG methylation and aberrant gene silencing in human
cancer cells. Nat Genet. 33:61–65. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Peng DF, Kanai Y, Sawada M, Ushijima S,
Hiraoka N, Kitazawa S and Hirohashi S: DNA methylation of multiple
tumor-related genes in association with overexpression of DNA
methyltransferase 1 (DNMT1) during multistage carcinogenesis of the
pancreas. Carcinogenesis. 27:1160–1168. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Suzuki M, Sunaga N, Shames DS, Toyooka S,
Gazdar AF and Minna JD: RNA interference-mediated knockdown of DNA
methyltransferase 1 leads to promoter demethylation and gene
re-expression in human lung and breast cancer cells. Cancer Res.
64:3137–3143. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Mitomi H, Fukui N, Tanaka N, Kanazawa H,
Saito T, Matsuoka T and Yao T: Aberrant p16INK4a
methylation is a frequent event in colorectal cancers: prognostic
value and relation to mRNA expression and immunoreactivity. J
Cancer Res Clin Oncol. 136:323–331. 2010.
|
|
80
|
Licciardi PV and Karagiannis TC:
Regulation of immune responses by histone deacetylase inhibitors.
ISRN Hematol. 2012:6909012012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ho AS, Turcan S and Chan TA: Epigenetic
therapy: use of agents targeting deacetylation and methylation in
cancer management. Onco Targets Ther. 6:223–232. 2013.PubMed/NCBI
|
|
82
|
Lee YS, Lim KH, Guo X, Kawaguchi Y, Gao Y,
Barrientos T, Ordentlich P, Wang XF, Counter CM and Yao TP: The
cytoplasmic deacetylase HDAC6 is required for efficient oncogenic
tumorigenesis. Cancer Res. 68:7561–7569. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Fatima N, Yi M, Ajaz S, Stephens RM,
Stauffer S, Greenwald P, Munroe DJ and Ali IU: Altered gene
expression profiles define pathways in colorectal cancer cell lines
affected by celecoxib. Cancer Epidemiol Biomarkers Prev.
17:3051–3061. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
van Erk MJ, Roepman P, van der Lende TR,
Stierum RH, Aarts JM, van Bladeren PJ and van Ommen B: Integrated
assessment by multiple gene expression analysis of quercetin
bioactivity on anticancer-related mechanisms in colon cancer cells
in vitro. Eur J Nutr. 44:143–156. 2005.PubMed/NCBI
|
|
85
|
Li J and Mansmann UR: Modeling of
non-steroidal anti-inflammatory drug effect within signaling
pathways and mirna-regulation pathways. PLoS One. 8:e724772013.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jeck WR, Siebold AP and Sharpless NE:
Review: a meta-analysis of GWAS and age-associated diseases. Aging
Cell. 11:727–731. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Langan RC, Mullinax JE, Raiji MT, Upham T,
Summers T, Stojadinovic A and Avital I: Colorectal cancer
biomarkers and the potential role of cancer stem cells. J Cancer.
4:241–250. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Tabarestani S and Ghafouri-Fard S: Cancer
stem cells and response to therapy. Asian Pac J Cancer Prev.
13:5951–5958. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Park JH, McMillan DC, Horgan PG and
Roxburgh CS: The impact of anti-inflammatory agents on the outcome
of patients with colorectal cancer. Cancer Treat Rev. 40:68–77.
2014. View Article : Google Scholar : PubMed/NCBI
|