|
1
|
Weyers W: The ‘epidemic’ of melanoma
between under- and overdiagnosis. J Cutan Pathol. 39:9–16.
2012.
|
|
2
|
Lomas J, Martin-Duque P, Pons M and
Quintanilla M: The genetics of malignant melanoma. Front Biosci.
13:5071–5093. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hill VK, Gartner JJ, Samuels Y and
Goldstein AM: The genetics of melanoma: recent advances. Annu Rev
Genomics Hum Genet. 14:257–279. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bougnoux AC and Solassol J: The
contribution of proteomics to the identification of biomarkers for
cutaneous malignant melanoma. Clin Biochem. 46:518–523. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
ENCODE Project Consortium. An integrated
encyclopedia of DNA elements in the human genome. Nature.
489:57–74. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Clark MB, Amaral PP, Schlesinger FJ, et
al: The reality of pervasive transcription. PLoS Biol.
9:e1000625discussion e1001102. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Crick F: Central dogma of molecular
biology. Nature. 227:561–563. 1970. View
Article : Google Scholar
|
|
8
|
Graur D, Zheng Y, Price N, Azevedo RB,
Zufall RA and Elhaik E: On the immortality of television sets:
‘function’ in the human genome according to the evolution-free
gospel of ENCODE. Genome Biol Evol. 5:578–590. 2013.PubMed/NCBI
|
|
9
|
Doolittle WF: Is junk DNA bunk? A critique
of ENCODE. Proc Natl Acad Sci USA. 110:5294–5300. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tessitore A, Cicciarelli G, Del Vecchio F,
et al: microRNAs in the DNA damage/repair network and cancer. Int J
Genomics. 2014:8202482014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Condorelli G, Latronico MV and Cavarretta
E: microRNAs in cardiovascular diseases: current knowledge and the
road ahead. J Am Coll Cardiol. 63:2177–2187. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yin KJ, Hamblin M and Chen YE: Non-coding
RNAs in cerebral endothelial pathophysiology: emerging roles in
stroke. Neurochem Int. April 3–2014.(Epub ahead of print).
|
|
13
|
Lukiw WJ and Alexandrov PN: Regulation of
complement factor H (CFH) by multiple miRNAs in Alzheimer’s disease
(AD) brain. Mol Neurobiol. 46:11–19. 2012.PubMed/NCBI
|
|
14
|
Filatova EV, Alieva AKh, Shadrina MI and
Slominsky PA: MicroRNAs: possible role in pathogenesis of
Parkinson’s disease. Biochemistry (Mosc). 77:813–819.
2012.PubMed/NCBI
|
|
15
|
Völler D, Ott C and Bosserhoff A:
MicroRNAs in malignant melanoma. Clin Biochem. 46:909–917.
2013.
|
|
16
|
Dar AA, Majid S, de Semir D, Nosrati M,
Bezrookove V and Kashani-Sabet M: miRNA-205 suppresses melanoma
cell proliferation and induces senescence via regulation of E2F1
protein. J Biol Chem. 286:16606–16614. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Braig S, Mueller DW, Rothhammer T and
Bosserhoff AK: MicroRNA miR-196a is a central regulator of HOX-B7
and BMP4 expression in malignant melanoma. Cell Mol Life Sci.
67:3535–3548. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mueller DW and Bosserhoff AK: MicroRNA
miR-196a controls melanoma-associated genes by regulating HOX-C8
expression. Int J Cancer. 129:1064–1074. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Levati L, Pagani E, Romani S, et al:
MicroRNA-155 targets the SKI gene in human melanoma cell lines.
Pigment Cell Melanoma Res. 24:538–550. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Deng Y, Deng H, Bi F, et al: MicroRNA-137
targets carboxyl-terminal binding protein 1 in melanoma cell lines.
Int J Biol Sci. 7:133–137. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bemis LT, Chen R, Amato CM, et al:
MicroRNA-137 targets microphthalmia-associated transcription factor
in melanoma cell lines. Cancer Res. 68:1362–1368. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Segura MF, Hanniford D, Menendez S, et al:
Aberrant miR-182 expression promotes melanoma metastasis by
repressing FOXO3 and microphthalmia-associated transcription
factor. Proc Natl Acad Sci USA. 106:1814–1819. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Haflidadóttir BS, Bergsteinsdóttir K,
Praetorius C and Steingrímsson E: miR-148 regulates Mitf in
melanoma cells. PLoS One. 5:e115742010.PubMed/NCBI
|
|
24
|
Karreth FA, Tay Y, Perna D, et al: In vivo
identification of tumor-suppressive PTEN ceRNAs in an oncogenic
BRAF-induced mouse model of melanoma. Cell. 147:382–395. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Volders PJ, Helsens K, Wang X, et al:
LNCipedia: a database for annotated human lncRNA transcript
sequences and structures. Nucleic Acids Res. 41:D246–D251. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Brockdorff N, Ashworth A, Kay GF, et al:
The product of the mouse Xist gene is a 15 kb inactive X-specific
transcript containing no conserved ORF and located in the nucleus.
Cell. 71:515–526. 1992. View Article : Google Scholar
|
|
27
|
Rinn JL, Kertesz M, Wang JK, et al:
Functional demarcation of active and silent chromatin domains in
human HOX loci by noncoding RNAs. Cell. 129:1311–1323. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Balch CM, Gershenwald JE, Soong SJ, et al:
Final version of 2009 AJCC melanoma staging and classification. J
Clin Oncol. 27:6199–6206. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Dickson PV and Gershenwald JE: Staging and
prognosis of cutaneous melanoma. Surg Oncol Clin N Am. 20:1–17.
2011. View Article : Google Scholar
|
|
30
|
Zhang H, Chen Z, Wang X, Huang Z, He Z and
Chen Y: Long non-coding RNA: a new player in cancer. J Hematol
Oncol. 6:372013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cheetham SW, Gruhl F, Mattick JS and
Dinger ME: Long noncoding RNAs and the genetics of cancer. Br J
Cancer. 108:2419–2425. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tsai MC, Manor O, Wan Y, et al: Long
noncoding RNA as modular scaffold of histone modification
complexes. Science. 329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wu ZH, Wang XL, Tang HM, et al: Long
non-coding RNA HOTAIR is a powerful predictor of metastasis and
poor prognosis and is associated with epithelial-mesenchymal
transition in colon cancer. Oncol Rep. 32:395–402. 2014.PubMed/NCBI
|
|
34
|
Sørensen KP, Thomassen M, Tan Q, et al:
Long non-coding RNA HOTAIR is an independent prognostic marker of
metastasis in estrogen receptor-positive primary breast cancer.
Breast Cancer Res Treat. 142:529–536. 2013.PubMed/NCBI
|
|
35
|
Qiu JJ, Lin YY, Ye LC, et al:
Overexpression of long non-coding RNA HOTAIR predicts poor patient
prognosis and promotes tumor metastasis in epithelial ovarian
cancer. Gynecol Oncol. 134:121–128. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Niinuma T, Suzuki H, Nojima M, et al:
Upregulation of miR-196a and HOTAIR drive malignant character in
gastrointestinal stromal tumors. Cancer Res. 72:1126–1136. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Liu XH, Liu ZL, Sun M, Liu J, Wang ZX and
De W: The long non-coding RNA HOTAIR indicates a poor prognosis and
promotes metastasis in non-small cell lung cancer. BMC Cancer.
13:4642013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kogo R, Shimamura T, Mimori K, et al: Long
noncoding RNA HOTAIR regulates polycomb-dependent chromatin
modification and is associated with poor prognosis in colorectal
cancers. Cancer Res. 71:6320–6326. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kim K, Jutooru I, Chadalapaka G, et al:
HOTAIR is a negative prognostic factor and exhibits pro-oncogenic
activity in pancreatic cancer. Oncogene. 32:1616–1625. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Geng YJ, Xie SL, Li Q, Ma J and Wang GY:
Large intervening non-coding RNA HOTAIR is associated with
hepatocellular carcinoma progression. J Int Med Res. 39:2119–2128.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ding C, Cheng S, Yang Z, et al: Long
non-coding RNA HOTAIR promotes cell migration and invasion via
down-regulation of RNA binding motif protein 38 in hepatocellular
carcinoma cells. Int J Mol Sci. 15:4060–4076. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cui L, Xie XY, Wang H, Chen XL, Liu SL and
Hu LN: Expression of long non-coding RNA HOTAIR mRNA in ovarian
cancer. Sichuan Da Xue Xue Bao Yi Xue Ban. 44:57–59. 2013.(In
Chinese).
|
|
43
|
Gupta RA, Shah N, Wang KC, et al: Long
non-coding RNA HOTAIR reprograms chromatin state to promote cancer
metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tang L, Zhang W, Su B and Yu B: Long
noncoding RNA HOTAIR is associated with motility, invasion, and
metastatic potential of metastatic melanoma. Biomed Res Int.
2013:2510982013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Watanabe H: Extracellular matrix -
regulation of cancer invasion and metastasis. Gan To Kagaku Ryoho.
37:2058–2061. 2010.(In Japanese).
|
|
46
|
Labrie M and St-Pierre Y: Epigenetic
regulation of mmp-9 gene expression. Cell Mol Life Sci.
70:3109–3124. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Frank A, David V, Aurelie TR, Florent G,
William H and Philippe B: Regulation of MMPs during melanoma
progression: from genetic to epigenetic. Anticancer Agents Med
Chem. 12:773–782. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Khaitan D, Dinger ME, Mazar J, et al:
Themelanoma-upregulated long noncoding RNA SPRY4-IT1 modulates
apoptosis and invasion. Cancer Res. 71:3852–3862. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Reuter JS and Mathews DH: RNAstructure:
software for RNA secondary structure prediction and analysis. BMC
Bioinformatics. 11:1292010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hofacker IL: RNA secondary structure
analysis using the Vienna RNA package. Curr Protoc Bioinformatics.
Chapter 12(Unit 12): 22004.
|
|
51
|
Rigoutsos I, Huynh T, Miranda K, Tsirigos
A, McHardy A and Platt D: Short blocks from the noncoding parts of
the human genome have instances within nearly all known genes and
relate to biological processes. Proc Natl Acad Sci USA.
103:6605–6610. 2006. View Article : Google Scholar
|
|
52
|
Zou Y, Jiang Z, Yu X, et al: Upregulation
of long noncoding RNA SPRY4-IT1 modulates proliferation, migration,
apoptosis, and network formation in trophoblast cells HTR-8SV/neo.
PLoS One. 8:e795982013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Xie HW, Wu QQ, Zhu B, et al: Long
noncoding RNA SPRY4-IT1 is upregulated in esophageal squamous cell
carcinoma and associated with poor prognosis. Tumour Biol. May
9–2014.(Epub ahead of print).
|
|
54
|
Guil S and Esteller M: Cis-acting
noncoding RNAs: friends and foes. Nat Struct Mol Biol.
19:1068–1075. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tennis MA, Van Scoyk MM, Freeman SV,
Vandervest KM, Nemenoff RA and Winn RA: Sprouty-4 inhibits
transformed cell growth, migration and invasion, and
epithelial-mesenchymal transition, and is regulated by Wnt7A
through PPARgamma in non-small cell lung cancer. Mol Cancer Res.
8:833–843. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Leeksma OC, Van Achterberg TA, Tsumura Y,
et al: Human sprouty 4, a new ras antagonist on 5q31, interacts
with the dual specificity kinase TESK1. Eur J Biochem.
269:2546–2556. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Russo A, Ficili B, Candido S, et al:
Emerging targeted therapies for melanoma treatment (review). Int J
Oncol. 45:516–524. 2014.PubMed/NCBI
|
|
58
|
Wu CF, Tan GH, Ma CC and Li L: The
non-coding RNA llme23 drives the malignant property of human
melanoma cells. J Genet Genomics. 40:179–188. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Patton JG, Porro EB, Galceran J, Tempst P
and Nadal-Ginard B: Cloning and characterization of PSF, a novel
pre-mRNA splicing factor. Genes Dev. 7:393–406. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Song X, Sun Y and Garen A: Roles of PSF
protein and VL30 RNA in reversible gene regulation. Proc Natl Acad
Sci USA. 102:12189–12193. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang G, Cui Y, Zhang G, Garen A and Song
X: Regulation of proto-oncogene transcription, cell proliferation,
and tumori-genesis in mice by PSF protein and a VL30 noncoding RNA.
Proc Natl Acad Sci USA. 106:16794–16798. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Song X, Wang B, Bromberg M, Hu Z,
Konigsberg W and Garen A: Retroviral-mediated transmission of a
mouse VL30 RNA to human melanoma cells promotes metastasis in an
immunodeficient mouse model. Proc Natl Acad Sci USA. 99:6269–6273.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tsukahara T, Matsuda Y and Haniu H: PSF
knockdown enhances apoptosis via downregulation of LC3B in human
colon cancer cells. Biomed Res Int. 2013:2049732013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ren S, She M, Li M, et al: The
RNA/DNA-binding protein PSF relocates to cell membrane and
contributes cells’ sensitivity to antitumor drug, doxorubicin.
Cytometry A. 85:231–241. 2014.PubMed/NCBI
|
|
65
|
Davies H, Bignell GR, Cox C, et al:
Mutations of the BRAF gene in human cancer. Nature. 417:949–954.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Flaherty KT and McArthur G: BRAF, a target
in melanoma: implications for solid tumor drug development. Cancer.
116:4902–4913. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bamford S, Dawson E, Forbes S, et al: The
COSMIC (Catalogue of Somatic Mutations in Cancer) database and
website. Br J Cancer. 91:355–358. 2004.PubMed/NCBI
|
|
68
|
Jarkowski A 3rd and Khushalani NI: BRAF
and beyond: tailoring strategies for the individual melanoma
patient. J Carcinog. 13:12014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Flockhart RJ, Webster DE, Qu K, et al:
BRAFV600E remodels the melanocyte transcriptome and induces BANCR
to regulate melanoma cell migration. Genome Res. 22:1006–1014.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Berger MF, Levin JZ, Vijayendran K, et al:
Integrative analysis of the melanoma transcriptome. Genome Res.
20:413–427. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kong L, Zhang Y, Ye ZQ, et al: CPC: assess
the protein-coding potential of transcripts using sequence features
and support vector machine. Nucleic Acids Res. 35:W345–W349. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kawada K, Sonoshita M, Sakashita H, et al:
Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes.
Cancer Res. 64:4010–4017. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Fu Y, Dominissini D, Rechavi G and He C:
Gene expression regulation mediated through reversible
m6A RNA methylation. Nat Rev Genet. 15:293–306. 2014.
View Article : Google Scholar : PubMed/NCBI
|