|
1
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Almendro V, Marusyk A and Polyak K:
Cellular heterogeneity and molecular evolution in cancer. Annu Rev
Pathol. 8:277–302. 2013. View Article : Google Scholar
|
|
3
|
Callebaut I and Mornon JP: The human
EBNA-2 coactivator p100: multidomain organization and relationship
to the staphylococcal nuclease fold and to the tudor protein
involved in Drosophila melanogaster development. Biochem J.
321:125–132. 1997.PubMed/NCBI
|
|
4
|
Yang J, Aittomaki S, Pesu M, et al:
Identification of p100 as a coactivator for STAT6 that bridges
STAT6 with RNA polymerase II. EMBO J. 21:4950–4958. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gao X, Zhao X, Zhu Y, et al: Tudor
staphylococcal nuclease (Tudor-SN) participates in small
ribonucleoprotein (snRNP) assembly via interacting with
symmetrically dimethylated Sm proteins. J Biol Chem.
287:18130–18141. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Caudy AA, Ketting RF, Hammond SM, et al: A
micrococcal nuclease homologue in RNAi effector complexes. Nature.
425:411–414. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Paukku K, Kalkkinen N, Silvennoinen O,
Kontula KK and Lehtonen JY: p100 increases AT1R expression through
interaction with AT1R 3′-UTR. Nucleic Acids Res. 36:4474–4487.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Paukku K, Yang J and Silvennoinen O: Tudor
and nuclease-like domains containing protein p100 function as
coactivators for signal transducer and activator of transcription
5. Mol Endocrinol. 17:1805–1814. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Leverson JD, Koskinen PJ, Orrico FC, et
al: Pim-1 kinase and p100 cooperate to enhance c-Myb activity. Mol
Cell. 2:417–425. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Garcia-Lopez J, de Hourcade JD and Del
Mazo J: Reprogramming of microRNAs by adenosine-to-inosine editing
and the selective elimination of edited microRNA precursors in
mouse oocytes and preimplantation embryos. Nucleic Acids Res.
41:5483–5493. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li CL, Yang WZ, Chen YP and Yuan HS:
Structural and functional insights into human Tudor-SN, a key
component linking RNA interference and editing. Nucleic Acids Res.
36:3579–3589. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yoo BK, Santhekadur PK, Gredler R, et al:
Increased RNA-induced silencing complex (RISC) activity contributes
to hepatocellular carcinoma. Hepatology. 53:1538–1548. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ho J, Kong JW, Choong LY, et al: Novel
breast cancer metastasis-associated proteins. J Proteome Res.
8:583–594. 2009. View Article : Google Scholar
|
|
14
|
Blanco MA, Aleckovic M, Hua Y, et al:
Identification of staphylococcal nuclease domain-containing 1
(SND1) as a Metadherin-interacting protein with
metastasis-promoting functions. J Biol Chem. 286:19982–19992. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wan L, Lu X, Yuan S, et al: MTDH- SND1
interaction is crucial for expansion and activity of
tumor-initiating cells in diverse oncogene- and carcinogen-induced
mammary tumors. Cancer Cell. 26:92–105. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Santhekadur PK, Akiel M, Emdad L, et al:
Staphylococcal nuclease domain containing-1 (SND1) promotes
migration and invasion via angiotensin II type 1 receptor (AT1R)
and TGFbeta signaling. FEBS Open Bio. 4:353–361. 2014. View Article : Google Scholar
|
|
17
|
Santhekadur PK, Das SK, Gredler R, et al:
Multifunction protein staphylococcal nuclease domain containing 1
(SND1) promotes tumor angiogenesis in human hepatocellular
carcinoma through novel pathway that involves nuclear factor kappaB
and miR-221. J Biol Chem. 287:13952–13958. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kuruma H, Kamata Y, Takahashi H, et al:
Staphylococcal nuclease domain-containing protein 1 as a potential
tissue marker for prostate cancer. Am J Pathol. 174:2044–2050.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Tsuchiya N, Ochiai M, Nakashima K, Ubagai
T, Sugimura T and Nakagama H: SND1, a component of RNA-induced
silencing complex, is up-regulated in human colon cancers and
implicated in early stage colon carcinogenesis. Cancer Res.
67:9568–9576. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Emdad L, Janjic A, Al-Zubi M, et al:
Suppression of miR-184 in malignant gliomas upregulates SND1 and
promotes tumor aggressiveness. Neuro Oncol. Sep 12–2014.(Epub ahead
of print). pii: nou220. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lienard P, Riviere M, Van Vooren P,
Szpirer C and Szpirer J: Assignment of SND1, the gene encoding
coactivator p100, to human chromosome 7q31.3 and rat chromosome
4q23 by in situ hybridization. Cytogenet Cell Genet. 90:253–254.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Voeghtly LM, Mamula K, Campbell JL,
Shriver CD and Ellsworth RE: Molecular alterations associated with
breast cancer mortality. PLoS One. 7:e468142012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jenkins RB, Qian J, Lee HK, et al: A
molecular cytogenetic analysis of 7q31 in prostate cancer. Cancer
Res. 58:759–766. 1998.PubMed/NCBI
|
|
24
|
Glukhova L, Lavialle C, Fauvet D, et al:
Mapping of the 7q31 subregion common to the small chromosome 7
derivatives from two sporadic papillary renal cell carcinomas:
increased copy number and overexpression of the MET proto-oncogene.
Oncogene. 19:754–761. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Theobald DL, Mitton-Fry RM and Wuttke DS:
Nucleic acid recognition by OB-fold proteins. Annu Rev Biophys
Biomol Struct. 32:115–133. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ying M and Chen D: Tudor domain-containing
proteins of Drosophila melanogaster. Dev Growth Differ. 54:32–43.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Armengol S, Arretxe E, Rodriguez L, Ochoa
B, Chico Y and Martinez MJ: NF-kappaB, Sp1 and NF-Y as
transcriptional regulators of human SND1 gene. Biochimie.
95:735–742. 2013. View Article : Google Scholar
|
|
28
|
Rodriguez L, Bartolome N, Ochoa B and
Martinez MJ: Isolation and characterization of the rat SND p102
gene promoter: putative role for nuclear factor-Y in regulation of
transcription. Ann NY Acad Sci. 1091:282–295. 2006. View Article : Google Scholar
|
|
29
|
Rodriguez L, Ochoa B and Martinez MJ: NF-Y
and Sp1 are involved in transcriptional regulation of rat SND p102
gene. Biochem Biophys Res Commun. 356:226–232. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Fashe T, Saarikettu J, Isomaki P, Yang J
and Silvennoinen O: Expression analysis of Tudor-SN protein in
mouse tissues. Tissue Cell. 45:21–31. 2013. View Article : Google Scholar
|
|
31
|
Keenan TW, Winter S, Rackwitz HR and Heid
HW: Nuclear coactivator protein p100 is present in endoplasmic
reticulum and lipid droplets of milk secreting cells. Biochim
Biophys Acta. 1523:84–90. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tong X, Drapkin R, Yalamanchili R,
Mosialos G and Kieff E: The Epstein-Barr virus nuclear protein 2
acidic domain forms a complex with a novel cellular coactivator
that can interact with TFIIE. Mol Cell Biol. 15:4735–4744.
1995.PubMed/NCBI
|
|
33
|
Valineva T, Yang J, Palovuori R and
Silvennoinen O: The transcriptional co-activator protein p100
recruits histone acetyl-transferase activity to STAT6 and mediates
interaction between the CREB-binding protein and STAT6. J Biol
Chem. 280:14989–14996. 2005. View Article : Google Scholar
|
|
34
|
Bromberg J: Stat proteins and oncogenesis.
J Clin Invest. 109:1139–1142. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu X, Dong L, Zhang X, et al:
Identification of p100 target promoters by chromatin
immunoprecipitation-guided ligation and selection (ChIP-GLAS). Cell
Mol Immunol. 8:88–91. 2011. View Article : Google Scholar
|
|
36
|
Sarkar D and Fisher PB: AEG-1/MTDH/LYRIC:
clinical significance. Adv Cancer Res. 120:39–74. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yoo BK, Emdad L, Lee SG, et al: Astrocyte
elevated gene-1 (AEG-1): A multifunctional regulator of normal and
abnormal physiology. Pharmacol Ther. 130:1–8. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Milochau A, Lagree V, Benassy MN, et al:
Synaptotagmin 11 interacts with components of the RNA-induced
silencing complex RISC in clonal pancreatic beta-cells. FEBS Lett.
588:2217–2222. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Heinrich EM, Wagner J, Kruger M, et al:
Regulation of miR-17-92a cluster processing by the microRNA binding
protein SND1. FEBS Lett. 587:2405–2411. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gao X, Shi X, Fu X, et al: Human Tudor
staphylococcal nuclease (Tudor-SN) protein modulates the kinetics
of AGTR1–3′UTR granule formation. FEBS Lett. 588:2154–2161. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lei Y, Huang Y, Zhang H, Yu L, Zhang M and
Dayton A: Functional interaction between cellular p100 and the
dengue virus 3′ UTR. J Gen Virol. 92:796–806. 2011. View Article : Google Scholar
|
|
42
|
Wahl MC, Will CL and Luhrmann R: The
spliceosome: design principles of a dynamic RNP machine. Cell.
136:701–718. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
David CJ and Manley JL: Alternative
pre-mRNA splicing regulation in cancer: pathways and programs
unhinged. Genes Dev. 24:2343–2364. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yang J, Valineva T, Hong J, et al:
Transcriptional co-activator protein p100 interacts with snRNP
proteins and facilitates the assembly of the spliceosome. Nucleic
Acids Res. 35:4485–4494. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Cappellari M, Bielli P, Paronetto MP, et
al: The transcriptional co-activator SND1 is a novel regulator of
alternative splicing in prostate cancer cells. Oncogene.
33:3794–3802. 2014. View Article : Google Scholar
|
|
46
|
Nishikura K: Functions and regulation of
RNA editing by ADAR deaminases. Annu Rev Biochem. 79:321–349. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gao X, Ge L, Shao J, et al: Tudor-SN
interacts with and co-localizes with G3BP in stress granules under
stress conditions. FEBS Lett. 584:3525–3532. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Weissbach R and Scadden AD: Tudor-SN and
ADAR1 are components of cytoplasmic stress granules. RNA.
18:462–471. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sundstrom JF, Vaculova A, Smertenko AP, et
al: Tudor staphylococcal nuclease is an evolutionarily conserved
component of the programmed cell death degradome. Nat Cell Biol.
11:1347–1354. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
El-Serag HB: Hepatocellular carcinoma. N
Engl J Med. 365:1118–1127. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Villanueva A, Hernandez-Gea V and Llovet
JM: Medical therapies for hepatocellular carcinoma: a critical view
of the evidence. Nat Rev Gastroenterol Hepatol. 10:34–42. 2013.
View Article : Google Scholar
|
|
52
|
Llovet JM, Ricci S, Mazzaferro V, et al:
Sorafenib in advanced hepatocellular carcinoma. N Engl J Med.
359:378–390. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yin J, Ding J, Huang L, et al: SND1
affects proliferation of hepatocellular carcinoma cell line
SMMC-7721 by regulating IGFBP3 expression. Anat Rec. 296:1568–1575.
2013. View Article : Google Scholar
|
|
54
|
Nguyen DX, Bos PD and Massague J:
Metastasis: from dissemination to organ-specific colonization. Nat
Rev Cancer. 9:274–284. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Brown DM and Ruoslahti E: Metadherin, a
cell surface protein in breast tumors that mediates lung
metastasis. Cancer Cell. 5:365–374. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hu G, Chong RA, Yang Q, et al: MTDH
activation by 8q22 genomic gain promotes chemoresistance and
metastasis of poor-prognosis breast cancer. Cancer Cell. 15:9–20.
2009. View Article : Google Scholar :
|
|
57
|
Yoo BK, Emdad L, Su ZZ, et al: Astrocyte
elevated gene-1 regulates hepatocellular carcinoma development and
progression. J Clin Invest. 119:465–477. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yoo BK, Chen D, Su ZZ, et al: Molecular
mechanism of chemoresistance by astrocyte elevated gene-1. Cancer
Res. 70:3249–3258. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Emdad L, Lee SG, Su ZZ, et al: Astrocyte
elevated gene-1 (AEG-1) functions as an oncogene and regulates
angiogenesis. Proc Natl Acad Sci USA. 106:21300–21305. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu W, Beck BH, Vaidya KS, et al:
Metastasis suppressor KISS1 seems to reverse the Warburg effect by
enhancing mitochondrial biogenesis. Cancer Res. 74:954–963. 2014.
View Article : Google Scholar
|
|
61
|
Quintana AM, Liu F, O’Rourke JP and Ness
SA: Identification and regulation of c-Myb target genes in MCF-7
cells. BMC Cancer. 11:302011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Naumov VA, Generozov EV, Zaharjevskaya NB,
et al: Genome-scale analysis of DNA methylation in colorectal
cancer using Infinium HumanMethylation450 BeadChips. Epigenetics.
8:921–934. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang N, Du X, Zang L, et al: Prognostic
impact of Metadherin-SND1 interaction in colon cancer. Mol Biol
Rep. 39:10497–10504. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ostrom QT, Gittleman H, Farah P, et al:
CBTRUS statistical report: primary brain and central nervous system
tumors diagnosed in the United States in 2006–2010. Neuro Oncol.
15:1–56. 2013. View Article : Google Scholar
|
|
65
|
Wen PY and Kesari S: Malignant gliomas in
adults. N Engl J Med. 359:492–507. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lefranc F, Brotchi J and Kiss R: Possible
future issues in the treatment of glioblastomas: special emphasis
on cell migration and the resistance of migrating glioblastoma
cells to apoptosis. J Clin Oncol. 23:2411–2422. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Stupp R, Mason WP, van den Bent MJ, et al:
Radiotherapy plus concomitant and adjuvant temozolomide for
glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hossain MJ, Korde R, Singh S, et al: Tudor
domain proteins in protozoan parasites and characterization of
Plasmodium falciparum tudor staphylococcal nuclease. Int J
Parasitol. 38:513–526. 2008. View Article : Google Scholar
|