Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December-2015 Volume 47 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2015 Volume 47 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review)

  • Authors:
    • Volker Schirrmacher
  • View Affiliations / Copyright

    Affiliations: Immunological and Oncological Center (IOZK), D-50674 Cologne, Germany
  • Pages: 2005-2016
    |
    Published online on: October 12, 2015
       https://doi.org/10.3892/ijo.2015.3197
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cognate interactions between naïve tumor antigen (TA)-specific T cells and TA-presenting dendritic cells (DCs) are facilitated by secondary lymphoid organs such as lymph nodes or the spleen. These can result either in TA-specific tolerance or, depending on environmental costimulatory signals, in TA-specific immune responses. In the present review, we describe such events for the bone marrow (BM) when blood-borne TA, released from the primary tumor or expressed by blood circulating tumor cells or DCs enters the BM stroma and parenchyma. We argue that cognate T-DC interactions in the BM result in immune responses and generation of memory T cells (MTCs) rather than tolerance because T cells in the BM show an increased level of pre-activation. The review starts with the spontaneous induction of cancer-reactive MTCs in the BM and the involvement of such MTCs in the control of tumor dormancy. The main part deals with the therapeutic potency of BM MTCs. This is a new area of research in which the authors research group has performed pioneering studies which are summarized. These include studies in animal tumor models, studies with human cells in tumor xenotransplant models and clinical studies. Based on observations of an enormous expansion capacity, longevity and therapeutic capacity of BM MTCs, a hypothesis is presented which suggests the involvement of stem-like MTCs.
View Figures
View References

1 

Ruddle NH and Akirav EM: Secondary lymphoid organs: Responding to genetic and environmental cues in ontogeny and the immune response. J Immunol. 183:2205–2212. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Feuerer M, Beckhove P, Garbi N, Mahnke Y, Limmer A, Hommel M, Hämmerling GJ, Kyewski B, Hamann A, Umansky V, et al: Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med. 9:1151–1157. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Milo I, Sapoznikov A, Kalchenko V, Tal O, Krauthgamer R, van Rooijen N, Dudziak D, Jung S and Shakhar G: Dynamic imaging reveals promiscuous crosspresentation of blood-borne antigens to naive CD8+ T cells in the bone marrow. Blood. 122:193–208. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Tokoyoda K, Hauser AE, Nakayama T and Radbruch A: Organization of immunological memory by bone marrow stroma. Nat Rev Immunol. 10:193–200. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Feuerer M, Rocha M, Bai L, Umansky V, Solomayer EF, Bastert G, Diel IJ and Schirrmacher V: Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int J Cancer. 92:96–105. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Feuerer M, Beckhove P, Mahnke Y, Hommel M, Kyewski B, Hamann A, Umansky V and Schirrmacher V: Bone marrow microenvironment facilitating dendritic cell: CD4 T cell interactions and maintenance of CD4 memory. Int J Oncol. 25:867–876. 2004.PubMed/NCBI

7 

Steinman RM and Banchereau J: Taking dendritic cells into medicine. Nature. 449:419–426. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Kyewski B and Haskins K: The classical dichotomy between presentation of endogenous antigens via the MHC class I pathway and exogenous antigens via the MHC class-II pathway. Curr Opin Immunol. 24:67–70. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Khazaie K, Prifti S, Beckhove P, Griesbach A, Russell S, Collins M and Schirrmacher V: Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proc Natl Acad Sci USA. 91:7430–7434. 1994. View Article : Google Scholar : PubMed/NCBI

10 

Förg P, von Hoegen P, Dalemans W and Schirrmacher V: Superiority of the ear pinna over muscle tissue as site for DNA vaccination. Gene Ther. 5:789–797. 1998. View Article : Google Scholar : PubMed/NCBI

11 

Müller M, Gounari F, Prifti S, Hacker HJ, Schirrmacher V and Khazaie K: EblacZ tumor dormancy in bone marrow and lymph nodes: Active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res. 58:5439–5446. 1998.

12 

Karrison TG, Ferguson DJ and Meier P: Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst. 91:80–85. 1999. View Article : Google Scholar : PubMed/NCBI

13 

Pantel K and Otte M: Occult micrometastasis: Enrichment, identification and characterization of single disseminated tumour cells. Semin Cancer Biol. 11:327–337. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Schirrmacher V, Feuerer M, Beckhove P, Ahlert T and Umansky V: T cell memory, anergy and immunotherapy in breast cancer. J Mammary Gland Biol Neoplasia. 7:201–208. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Schirrmacher V: T-cell immunity in the induction and maintenance of a tumour dormant state. Semin Cancer Biol. 11:285–295. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Krüger A, Umansky V, Rocha M, Hacker HJ, Schirrmacher V and von Hoegen P: Pattern and load of spontaneous liver metastasis dependent on host immune status studied with a lacZ transduced lymphoma. Blood. 84:3166–3174. 1994.PubMed/NCBI

17 

Lanzavecchia A and Sallusto F: From synapses to immunological memory: The role of sustained T cell stimulation. Curr Opin Immunol. 12:92–98. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Bai L, Beckhove P, Feuerer M, Umansky V, Choi C, Solomayer FS, Diel IJ and Schirrmacher V: Cognate interactions between memory T cells and tumor antigen-presenting dendritic cells from bone marrow of breast cancer patients: Bidirectional cell stimulation, survival and antitumor activity in vivo. Int J Cancer. 103:73–83. 2003. View Article : Google Scholar

19 

Di Rosa F and Pabst R: The bone marrow: A nest for migratory memory T cells. Trends Immunol. 26:360–366. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Mazo IB, Honczarenko M, Leung H, Cavanagh LL, Bonasio R, Weninger W, Engelke K, Xia L, McEver RP, Koni PA, et al: Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity. 22:259–270. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Cavanagh LL, Bonasio R, Mazo IB, Halin C, Cheng G, van der Velden AW, Cariappa A, Chase C, Russell P, Starnbach MN, et al: Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nat Immunol. 6:1029–1037. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, Wang G and Zou W: Bone marrow and the control of immunity. Cell Mol Immunol. 9:11–19. 2012. View Article : Google Scholar :

23 

Mercier FE, Ragu C and Scadden DT: The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol. 12:49–60. 2012. View Article : Google Scholar

24 

Murao A, Oka Y, Tsuboi A, Elisseeva OA, Tanaka-Harada Y, Fujiki F, Nakajima H, Nishida S, Hosen N, Shirakata T, et al: High frequencies of less differentiated and more proliferative WT1-specific CD8+ T cells in bone marrow in tumor-bearing patients: An important role of bone marrow as a secondary lymphoid organ. Cancer Sci. 101:848–854. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Zhang X, Dong H, Lin W, Voss S, Hinkley L, Westergren M, Tian G, Berry D, Lewellen D, Vile RG, et al: Human bone marrow: A reservoir for ‘enhanced effector memory’ CD8+ T cells with potent recall function. J Immunol. 177:6730–6737. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Becker TC, Coley SM, Wherry EJ and Ahmed R: Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. J Immunol. 174:1269–1273. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Na IK, Letsch A, Guerreiro M, Bauer S, Noack I, Geginat J, Reinke P, Loesch M, Kienapfel H, Thiel E, et al: Human bone marrow as a source to generate CMV-specific CD4+ T cells with multifunctional capacity. J Immunother. 32:907–913. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Castiglioni P, Hall S, Jacovetty EL, Ingulli E and Zanetti M: Protection against influenza A virus by memory CD8 T cells requires reactivation by bone marrow-derived dendritic cells. J Immunol. 180:4956–4964. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Fresnay S, Zhang X, Strome SE and Sewell DA: Bone marrow vaccination: A novel approach to enhance antigen specific antitumor immunity. Vaccine. 29:8599–8605. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Schirrmacher V, Feuerer M, Fournier P, Ahlert T, Umansky V and Beckhove P: T-cell priming in bone marrow: The potential for long-lasting protective anti-tumor immunity. Trends Mol Med. 9:526–534. 2003. View Article : Google Scholar : PubMed/NCBI

31 

van der Merwe PA and Dushek O: Mechanisms for T cell receptor triggering. Nat Rev Immunol. 11:47–55. 2011. View Article : Google Scholar

32 

Bannard O, Kraman M and Fearon D: Pathways of memory CD8+ T-cell development. Eur J Immunol. 39:2083–2087. 2009. View Article : Google Scholar : PubMed/NCBI

33 

van Leeuwen EM, Sprent J and Surh CD: Generation and maintenance of memory CD4+ T cells. Curr Opin Immunol. 21:167–172. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Fournier P, Aigner M and Schirrmacher V: Transcriptome analysis and cytokine profiling of naive T cells stimulated by a tumor vaccine via CD3 and CD25. Int J Oncol. 37:1439–1452. 2010.PubMed/NCBI

35 

Schiavoni G, Mattei F and Gabriele L: Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response. Front Immunol. 4:4832013. View Article : Google Scholar

36 

Sallusto F, Geginat J and Lanzavecchia A: Central memory and effector memory T cell subsets: Function, generation, and maintenance. Annu Rev Immunol. 22:745–763. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Aigner M, Janke M, Lulei M, Beckhove P, Fournier P and Schirrmacher V: An effective tumor vaccine optimized for costimulation via bispecific and trispecific fusion proteins. Int J Oncol. 32:777–789. 2008.PubMed/NCBI

38 

Beckhove P, Feuerer M, Dolenc M, Schuetz F, Choi C, Sommerfeldt N, Schwendemann J, Ehlert K, Altevogt P, Bastert G, et al: Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest. 114:67–76. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Herndler-Brandstetter D, Landgraf K, Jenewein B, Tzankov A, Brunauer R, Brunner S, Parson W, Kloss F, Gassner R, Lepperdinger G, et al: Human bone marrow hosts polyfunctional memory CD4+ and CD8+ T cells with close contact to IL-15-producing cells. J Immunol. 186:6965–6971. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Cui G, Hara T, Simmons S, Wagatsuma K, Abe A, Miyachi H, Kitano S, Ishii M, Tani-ichi S and Ikuta K: Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci USA. 111:1915–1920. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Sercan Alp Ö, Durlanik S, Schulz D, McGrath M, Grün JR, Bardua M, Ikuta K, Sgouroudis E, Riedel R, Zehentmeier S, et al: Memory CD8+ T cells colocalize with IL-7+ stromal cells in bone marrow and rest in terms of proliferation and transcription. Eur J Immunol. 45:975–987. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Nemoto Y, Kanai T, Takahara M, Oshima S, Nakamura T, Okamoto R, Tsuchiya K and Watanabe M: Bone marrow-mesenchymal stem cells are a major source of interleukin-7 and sustain colitis by forming the niche for colitogenic CD4 memory T cells. Gut. 62:1142–1152. 2013. View Article : Google Scholar :

43 

Tokoyoda K, Zehentmeier S, Hegazy AN, Albrecht I, Grün JR, Löhning M and Radbruch A: Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity. 30:721–730. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Mahnke YD, Schwendemann J, Beckhove P and Schirrmacher V: Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology. 115:325–336. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Parretta E, Cassese G, Santoni A, Guardiola J, Vecchio A and Di Rosa F: Kinetics of in vivo proliferation and death of memory and naive CD8 T cells: Parameter estimation based on 5-bromo-2′-deoxyuridine incorporation in spleen, lymph nodes, and bone marrow. J Immunol. 180:7230–7239. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Sapoznikov A, Pewzner-Jung Y, Kalchenko V, Krauthgamer R, Shachar I and Jung S: Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat Immunol. 9:388–395. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Pillai S and Cariappa A: The bone marrow perisinusoidal niche for recirculating B cells and the positive selection of bone marrow-derived B lymphocytes. Immunol Cell Biol. 87:16–19. 2009. View Article : Google Scholar

48 

Hsu SC, Wang LT, Yao CL, Lai HY, Chan KY, Liu BS, Chong P, Lee OK and Chen HW: Mesenchymal stem cells promote neutrophil activation by inducing IL-17 production in CD4+ CD45RO+ T cells. Immunobiology. 218:90–95. 2013. View Article : Google Scholar

49 

Duffy D, Perrin H, Abadie V, Benhabiles N, Boissonnas A, Liard C, Descours B, Reboulleau D, Bonduelle O, Verrier B, et al: Neutrophils transport antigen from the dermis to the bone marrow, initiating a source of memory CD8+ T cells. Immunity. 37:917–929. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Di Rosa F and Santoni A: Memory T-cell competition for bone marrow seeding. Immunology. 108:296–304. 2003. View Article : Google Scholar : PubMed/NCBI

51 

Palendira U, Chinn R, Raza W, Piper K, Pratt G, Machado L, Bell A, Khan N, Hislop AD, Steyn R, et al: Selective accumulation of virus-specific CD8+ T cells with unique homing phenotype within the human bone marrow. Blood. 112:3293–3302. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Dudda JC, Lembo A, Bachtanian E, Huehn J, Siewert C, Hamann A, Kremmer E, Förster R and Martin SF: Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: Important roles for soluble factors and tissue microenvironments. Eur J Immunol. 35:1056–1065. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Mahnke YD and Schirrmacher V: Characteristics of a potent tumor vaccine-induced secondary anti-tumor T cell response. Int J Oncol. 24:1427–1434. 2004.PubMed/NCBI

54 

Schwendemann J, Choi C, Schirrmacher V and Beckhove P: Dynamic differentiation of activated human peripheral blood CD8+ and CD4+ effector memory T cells. J Immunol. 175:1433–1439. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Harley CB and Villeponteau B: Telomeres and telomerase in aging and cancer. Curr Opin Genet Dev. 5:249–255. 1995. View Article : Google Scholar : PubMed/NCBI

56 

Akbar AN, Beverley PC and Salmon M: Will telomere erosion lead to a loss of T-cell memory? Nat Rev Immunol. 4:737–743. 2004. View Article : Google Scholar : PubMed/NCBI

57 

Schirrmacher V, Beutner U, Bucur M, Umansky V, Rocha M and von Hoegen P: Loss of endogenous mouse mammary tumor virus superantigen increases tumor resistance. J Immunol. 161:563–570. 1998.PubMed/NCBI

58 

Müerköster S, Weigand MA, Choi C, Walczak H, Schirrmacher V and Umansky V: Superantigen reactive Vbeta6+ T cells induce perforin/granzyme B mediated caspase-independent apoptosis in tumour cells. Br J Cancer. 86:828–836. 2002. View Article : Google Scholar

59 

Schirrmacher V, Müerköster S, Bucur M, Umansky V and Rocha M: Breaking tolerance to a tumor-associated viral superantigen as a basis for graft-versus-leukemia reactivity. Int J Cancer. 87:695–706. 2000. View Article : Google Scholar : PubMed/NCBI

60 

Schirrmacher V, Beckhove P, Krüger A, Rocha M, Umansky V, Fichtner K, Hull W, Zangemeisterwittke U, Griesbach A, Jurianz K, et al: Effective immune rejection of advanced metastasized cancer. Int J Oncol. 6:505–521. 1995.PubMed/NCBI

61 

Schirrmacher V: Complete remission of cancer in late-stage disease by radiation and transfer of allogeneic MHC-matched immune T cells: Lessons from GvL studies in animals. Cancer Immunol Immunother. 63:535–543. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Schirrmacher V, Beckhove P, Choi C, Griesbach A and Mahnke Y: Tumor-immune memory T cells from the bone marrow exert GvL without GvH reactivity in advanced metastasized cancer. Int J Oncol. 27:1141–1149. 2005.PubMed/NCBI

63 

Rocha M, Umansky V, Lee KH, Hacker HJ, Benner A and Schirrmacher V: Differences between graft-versus-leukemia and graft-versus-host reactivity. I Interaction of donor immune T cells with tumor and/or host cells. Blood. 89:2189–2202. 1997.PubMed/NCBI

64 

Müerköster S, Wachowski O, Zerban H, Schirrmacher V, Umansky V and Rocha M: Graft-versus-leukemia reactivity involves cluster formation between superantigen-reactive donor T lymphocytes and host macrophages. Clin Cancer Res. 4:3095–3106. 1998.PubMed/NCBI

65 

Müerköster S, Laman JD, Rocha M, Umansky V and Schirrmacher V: Functional and in situ evidence for nitric oxide production driven by CD40-CD40L interactions in graft-versus-leukemia reactivity. Clin Cancer Res. 6:1988–1996. 2000.PubMed/NCBI

66 

Müerköster S, Rocha M, Crocker PR, Schirrmacher V and Umansky V: Sialoadhesin-positive host macrophages play an essential role in graft-versus-leukemia reactivity in mice. Blood. 93:4375–4386. 1999.PubMed/NCBI

67 

Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al: Low-dose irradiation programs macrophage differentiation to an iNOS+/ M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Umansky V and Schirrmacher V: Nitric oxide-induced apoptosis in tumor cells. Adv Cancer Res. 82:107–131. 2001. View Article : Google Scholar : PubMed/NCBI

69 

Rocha M, Krüger A, Van Rooijen N, Schirrmacher V and Umansky V: Liver endothelial cells participate in T-cell-dependent host resistance to lymphoma metastasis by production of nitric oxide in vivo. Int J Cancer. 63:405–411. 1995. View Article : Google Scholar : PubMed/NCBI

70 

Park HS, Cho SG, Park MJ, Min SY, Chang HS, Kim HJ, Lee S, Min CK, Lee JW, Min WS, et al: Bone marrow T cells are superior to splenic T cells to induce chimeric conversion after non-myeloablative bone marrow transplantation. Korean J Intern Med. 24:252–262. 2009. View Article : Google Scholar : PubMed/NCBI

71 

Dutt S, Baker J, Kohrt HE, Kambham N, Sanyal M, Negrin RS and Strober S: CD8+CD44hi but not CD4+CD44hi memory T cells mediate potent graft antilymphoma activity without GVHD. Blood. 117:3230–3239. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Casucci M, Perna SK, Falcone L, Camisa B, Magnani Z, Bernardi M, Crotta A, Tresoldi C, Fleischhauer K, Ponzoni M, et al: Graft-versus-leukemia effect of HLA-haploidentical central-memory T-cells expanded with leukemic APCs and modified with a suicide gene. Mol Ther. 21:466–475. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Ueda R, Low KL, Zhu X, Fujita M, Sasaki K, Whiteside TL, Butterfield LH and Okada H: Spontaneous immune responses against glioma-associated antigens in a long term survivor with malignant glioma. J Transl Med. 5:682007. View Article : Google Scholar : PubMed/NCBI

74 

Wang XF, Kerzerho J, Adotevi O, Nuyttens H, Badoual C, Munier G, Oudard S, Tu S, Tartour E and Maillère B: Comprehensive analysis of HLA-DR- and HLA-DP4-restricted CD4+ T cell response specific for the tumor-shared antigen survivin in healthy donors and cancer patients. J Immunol. 181:431–439. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Knights AJ, Nuber N, Thomson CW, de la Rosa O, Jäger E, Tiercy JM, van den Broek M, Pascolo S, Knuth A and Zippelius A: Modified tumour antigen-encoding mRNA facilitates the analysis of naturally occurring and vaccine-induced CD4 and CD8 T cells in cancer patients. Cancer Immunol Immunother. 58:325–338. 2009. View Article : Google Scholar

76 

Domschke C, Schuetz F, Ge Y, Seibel T, Falk C, Brors B, Vlodavsky I, Sommerfeldt N, Sinn HP, Kühnle MC, et al: Intratumoral cytokines and tumor cell biology determine spontaneous breast cancer-specific immune responses and their correlation to prognosis. Cancer Res. 69:8420–8428. 2009. View Article : Google Scholar : PubMed/NCBI

77 

Ohue Y, Eikawa S, Okazaki N, Mizote Y, Isobe M, Uenaka A, Fukuda M, Old LJ, Oka M and Nakayama E: Spontaneous antibody, and CD4 and CD8 T-cell responses against XAGE-1b (GAGED2a) in non-small cell lung cancer patients. Int J Cancer. 131:E649–E658. 2012. View Article : Google Scholar

78 

Feuerer M, Beckhove P, Bai L, Solomayer EF, Bastert G, Diel IJ, Pedain C, Oberniedermayr M, Schirrmacher V and Umansky V: Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med. 7:452–458. 2001. View Article : Google Scholar : PubMed/NCBI

79 

Koch M, Beckhove P, Op den Winkel J, Autenrieth D, Wagner P, Nummer D, Specht S, Antolovic D, Galindo L, Schmitz-Winnenthal FH, et al: Tumor infiltrating T lymphocytes in colorectal cancer: Tumor-selective activation and cytotoxic activity in situ. Ann Surg. 244:986–992; discussion 992–993. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Schmitz-Winnenthal FH, Volk C, Z'graggen K, Galindo L, Nummer D, Ziouta Y, Bucur M, Weitz J, Schirrmacher V, Büchler MW, et al: High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res. 65:10079–10087. 2005. View Article : Google Scholar : PubMed/NCBI

81 

Müller-Berghaus J, Ehlert K, Ugurel S, Umansky V, Bucur M, Schirrmacher V, Beckhove P and Schadendorf D: Melanoma-reactive T cells in the bone marrow of melanoma patients: Association with disease stage and disease duration. Cancer Res. 66:5997–6001. 2006. View Article : Google Scholar : PubMed/NCBI

82 

Choi C, Witzens M, Bucur M, Feuerer M, Sommerfeldt N, Trojan A, Ho A, Schirrmacher V, Goldschmidt H and Beckhove P: Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of multiple myeloma patients. Blood. 105:2132–2134. 2005. View Article : Google Scholar

83 

Sommerfeldt N, Schütz F, Sohn C, Förster J, Schirrmacher V and Beckhove P: The shaping of a polyvalent and highly individual T-cell repertoire in the bone marrow of breast cancer patients. Cancer Res. 66:8258–8265. 2006. View Article : Google Scholar : PubMed/NCBI

84 

Beckhove P and Schirrmacher V: Local tumor growth and spontaneous systemic T cell responses in cancer patients: A paradox and puzzle. Innate and Adaptive Immunity in The Tumor Microenvironment. Yefenof E: Springer Science; pp. 53–76. 2008, View Article : Google Scholar

85 

Alvarez D, Vollmann EH and von Andrian UH: Mechanisms and consequences of dendritic cell migration. Immunity. 29:325–342. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Veiga-Fernandes H, Walter U, Bourgeois C, McLean A and Rocha B: Response of naïve and memory CD8+ T cells to antigen stimulation in vivo. Nat Immunol. 1:47–53. 2000. View Article : Google Scholar

87 

Schuetz F, Ehlert K, Ge Y, Schneeweiss A, Rom J, Inzkirweli N, Sohn C, Schirrmacher V and Beckhove P: Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: A pilot clinical study. Cancer Immunol Immunother. 58:887–900. 2009. View Article : Google Scholar

88 

Domschke C, Ge Y, Bernhardt I, Schott S, Keim S, Juenger S, Bucur M, Mayer L, Blumenstein M, Rom J, et al: Long-term survival after adoptive bone marrow T cell therapy of advanced metastasized breast cancer: Follow-up analysis of a clinical pilot trial. Cancer Immunol Immunother. 62:1053–1060. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Flynn JK and Gorry PR: Stem memory T cells (TSCM)-their role in cancer and HIV immunotherapies. Clin Transl Immunology. 3:e202014. View Article : Google Scholar : PubMed/NCBI

90 

Okhrimenko A, Grün JR, Westendorf K, Fang Z, Reinke S, von Roth P, Wassilew G, Kühl AA, Kudernatsch R, Demski S, et al: Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. Proc Natl Acad Sci USA. 111:9229–9234. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Aiello FB, Graciotti L, Procopio AD, Keller JR and Durum SK: Stemness of T cells and the hematopoietic stem cells: Fate, memory, niche, cytokines. Cytokine Growth Factor Rev. 24:485–501. 2013. View Article : Google Scholar : PubMed/NCBI

92 

Kudernatsch RF, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk HD and Scheibenbogen C: Human bone marrow contains a subset of quiescent early memory CD8+ T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 44:3532–3542. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Roberto A, Castagna L, Zanon V, Bramanti S, Crocchiolo R, McLaren JE, Gandolfi S, Tentorio P, Sarina B, Timofeeva I, et al: Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation. Blood. 125:2855–2864. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Biasco L, Scala S, Basso Ricci L, Dionisio F, Baricordi C, Calabria A, Giannelli S, Cieri N, Barzaghi F, Pajno R, et al: In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Sci Transl Med. 7:273ra132015. View Article : Google Scholar : PubMed/NCBI

95 

Schmueck-Henneresse M, Sharaf R, Vogt K, Weist BJ, Landwehr-Kenzel S, Fuehrer H, Jurisch A, Babel N, Rooney CM, Reinke P, et al: Peripheral blood-derived virus-specific memory stem T cells mature to functional effector memory subsets with self-renewal potency. J Immunol. 194:5559–5567. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Fuertes Marraco SA, Soneson C, Cagnon L, Gannon PO, Allard M, Abed Maillard S, Montandon N, Rufer N, Waldvogel S, Delorenzi M, et al: Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination. Sci Transl Med. 7:282ra482015. View Article : Google Scholar

97 

Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E, Bondanza A, Bordignon C, Peccatori J, Ciceri F, et al: IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood. 121:573–584. 2013. View Article : Google Scholar

98 

Coffmann RL, Sher A and Seder RA: Vaccine adjuvants: Putting innate immunity at work. Immunity. 33:492–503. 2010. View Article : Google Scholar

99 

Woodland DL and Blackman MA: Immunity: It's in our bones. Immunity. 22:143–144. 2005. View Article : Google Scholar : PubMed/NCBI

100 

Fournier P and Schirrmacher V: Oncolytic Newcastle disease virus as cutting edge between tumor and host. Biology (Basel). 2:936–975. 2013.

101 

Schirrmacher V, Fournier P and Schlag P: Autologous tumor cell vaccines for post-operative active-specific immunotherapy of colorectal carcinoma: Long-term patient survival and mechanism of function. Expert Rev Vaccines. 13:117–130. 2014. View Article : Google Scholar

102 

Schirrmacher V, Schlude C, Weitz J and Beckhove P: Strong T-cell costimulation can reactivate tumor antigen-specific T cells in late-stage metastasized colorectal carcinoma patients: Results from a phase I clinical study. Int J Oncol. 46:71–77. 2015.

103 

Zamarin D, Holmgaard RB, Subudhi SK, Park JS, Mansour M, Palese P, Merghoub T, Wolchok JD and Allison JP: Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med. 6:226ra322014. View Article : Google Scholar : PubMed/NCBI

104 

Schirrmacher V, Bihari AS, Stücker W and Sprenger T: Long-term remission of prostate cancer with extensive bone metastases upon immuno- and virotherapy: A case report. Oncol Lett. 8:2403–2406. 2014.PubMed/NCBI

105 

Schirrmacher V, Stücker W, Lulei M, Bihari AS and Sprenger T: Long-term survival of a breast cancer patient with extensive liver metastases upon immune and virotherapy: a case report. Immunotherapy. 7:855–860. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Rosenberg SA and Restifo NP: Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 348:62–68. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Stevanović S, Draper LM, Langhan MM, Campbell TE, Kwong ML, Wunderlich JR, Dudley ME, Yang JC, Sherry RM, Kammula US, et al: Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol. 33:1543–1550. 2015. View Article : Google Scholar

108 

Sung JH, Zhang H, Moseman EA, Alvarez D, Iannacone M, Henrickson SE, de la Torre JC, Groom JR, Luster AD and von Andrian UH: Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell. 150:1249–1263. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Sugiyama T, Kohara H, Noda M and Nagasawa T: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 25:977–988. 2006. View Article : Google Scholar : PubMed/NCBI

110 

Hanazawa A, Hayashizaki K, Shinoda K, Yagita H, Okumura K, Löhning M, Hara T, Tani-ichi S, Ikuta K, Eckes B, et al: CD49b-dependent establishment of T helper cell memory. Immunol Cell Biol. 91:524–531. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Henrickson SE, Perro M, Loughhead SM, Senman B, Stutte S, Quigley M, Alexe G, Iannacone M, Flynn MP, Omid S, et al: Antigen availability determines CD8+ T cell-dendritic cell interaction kinetics and memory fate decisions. Immunity. 39:496–507. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Schirrmacher V: Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review). Int J Oncol 47: 2005-2016, 2015.
APA
Schirrmacher, V. (2015). Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review). International Journal of Oncology, 47, 2005-2016. https://doi.org/10.3892/ijo.2015.3197
MLA
Schirrmacher, V."Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review)". International Journal of Oncology 47.6 (2015): 2005-2016.
Chicago
Schirrmacher, V."Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review)". International Journal of Oncology 47, no. 6 (2015): 2005-2016. https://doi.org/10.3892/ijo.2015.3197
Copy and paste a formatted citation
x
Spandidos Publications style
Schirrmacher V: Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review). Int J Oncol 47: 2005-2016, 2015.
APA
Schirrmacher, V. (2015). Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review). International Journal of Oncology, 47, 2005-2016. https://doi.org/10.3892/ijo.2015.3197
MLA
Schirrmacher, V."Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review)". International Journal of Oncology 47.6 (2015): 2005-2016.
Chicago
Schirrmacher, V."Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review)". International Journal of Oncology 47, no. 6 (2015): 2005-2016. https://doi.org/10.3892/ijo.2015.3197
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team