|
1
|
Ruddle NH and Akirav EM: Secondary
lymphoid organs: Responding to genetic and environmental cues in
ontogeny and the immune response. J Immunol. 183:2205–2212. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Feuerer M, Beckhove P, Garbi N, Mahnke Y,
Limmer A, Hommel M, Hämmerling GJ, Kyewski B, Hamann A, Umansky V,
et al: Bone marrow as a priming site for T-cell responses to
blood-borne antigen. Nat Med. 9:1151–1157. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Milo I, Sapoznikov A, Kalchenko V, Tal O,
Krauthgamer R, van Rooijen N, Dudziak D, Jung S and Shakhar G:
Dynamic imaging reveals promiscuous crosspresentation of
blood-borne antigens to naive CD8+ T cells in the bone
marrow. Blood. 122:193–208. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tokoyoda K, Hauser AE, Nakayama T and
Radbruch A: Organization of immunological memory by bone marrow
stroma. Nat Rev Immunol. 10:193–200. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Feuerer M, Rocha M, Bai L, Umansky V,
Solomayer EF, Bastert G, Diel IJ and Schirrmacher V: Enrichment of
memory T cells and other profound immunological changes in the bone
marrow from untreated breast cancer patients. Int J Cancer.
92:96–105. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Feuerer M, Beckhove P, Mahnke Y, Hommel M,
Kyewski B, Hamann A, Umansky V and Schirrmacher V: Bone marrow
microenvironment facilitating dendritic cell: CD4 T cell
interactions and maintenance of CD4 memory. Int J Oncol.
25:867–876. 2004.PubMed/NCBI
|
|
7
|
Steinman RM and Banchereau J: Taking
dendritic cells into medicine. Nature. 449:419–426. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kyewski B and Haskins K: The classical
dichotomy between presentation of endogenous antigens via the MHC
class I pathway and exogenous antigens via the MHC class-II
pathway. Curr Opin Immunol. 24:67–70. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Khazaie K, Prifti S, Beckhove P, Griesbach
A, Russell S, Collins M and Schirrmacher V: Persistence of dormant
tumor cells in the bone marrow of tumor cell-vaccinated mice
correlates with long-term immunological protection. Proc Natl Acad
Sci USA. 91:7430–7434. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Förg P, von Hoegen P, Dalemans W and
Schirrmacher V: Superiority of the ear pinna over muscle tissue as
site for DNA vaccination. Gene Ther. 5:789–797. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Müller M, Gounari F, Prifti S, Hacker HJ,
Schirrmacher V and Khazaie K: EblacZ tumor dormancy in bone marrow
and lymph nodes: Active control of proliferating tumor cells by
CD8+ immune T cells. Cancer Res. 58:5439–5446. 1998.
|
|
12
|
Karrison TG, Ferguson DJ and Meier P:
Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst.
91:80–85. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Pantel K and Otte M: Occult
micrometastasis: Enrichment, identification and characterization of
single disseminated tumour cells. Semin Cancer Biol. 11:327–337.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Schirrmacher V, Feuerer M, Beckhove P,
Ahlert T and Umansky V: T cell memory, anergy and immunotherapy in
breast cancer. J Mammary Gland Biol Neoplasia. 7:201–208. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Schirrmacher V: T-cell immunity in the
induction and maintenance of a tumour dormant state. Semin Cancer
Biol. 11:285–295. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Krüger A, Umansky V, Rocha M, Hacker HJ,
Schirrmacher V and von Hoegen P: Pattern and load of spontaneous
liver metastasis dependent on host immune status studied with a
lacZ transduced lymphoma. Blood. 84:3166–3174. 1994.PubMed/NCBI
|
|
17
|
Lanzavecchia A and Sallusto F: From
synapses to immunological memory: The role of sustained T cell
stimulation. Curr Opin Immunol. 12:92–98. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bai L, Beckhove P, Feuerer M, Umansky V,
Choi C, Solomayer FS, Diel IJ and Schirrmacher V: Cognate
interactions between memory T cells and tumor antigen-presenting
dendritic cells from bone marrow of breast cancer patients:
Bidirectional cell stimulation, survival and antitumor activity in
vivo. Int J Cancer. 103:73–83. 2003. View Article : Google Scholar
|
|
19
|
Di Rosa F and Pabst R: The bone marrow: A
nest for migratory memory T cells. Trends Immunol. 26:360–366.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mazo IB, Honczarenko M, Leung H, Cavanagh
LL, Bonasio R, Weninger W, Engelke K, Xia L, McEver RP, Koni PA, et
al: Bone marrow is a major reservoir and site of recruitment for
central memory CD8+ T cells. Immunity. 22:259–270. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cavanagh LL, Bonasio R, Mazo IB, Halin C,
Cheng G, van der Velden AW, Cariappa A, Chase C, Russell P,
Starnbach MN, et al: Activation of bone marrow-resident memory T
cells by circulating, antigen-bearing dendritic cells. Nat Immunol.
6:1029–1037. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu
Y, Wang G and Zou W: Bone marrow and the control of immunity. Cell
Mol Immunol. 9:11–19. 2012. View Article : Google Scholar :
|
|
23
|
Mercier FE, Ragu C and Scadden DT: The
bone marrow at the crossroads of blood and immunity. Nat Rev
Immunol. 12:49–60. 2012. View Article : Google Scholar
|
|
24
|
Murao A, Oka Y, Tsuboi A, Elisseeva OA,
Tanaka-Harada Y, Fujiki F, Nakajima H, Nishida S, Hosen N,
Shirakata T, et al: High frequencies of less differentiated and
more proliferative WT1-specific CD8+ T cells in bone
marrow in tumor-bearing patients: An important role of bone marrow
as a secondary lymphoid organ. Cancer Sci. 101:848–854. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang X, Dong H, Lin W, Voss S, Hinkley L,
Westergren M, Tian G, Berry D, Lewellen D, Vile RG, et al: Human
bone marrow: A reservoir for ‘enhanced effector memory’
CD8+ T cells with potent recall function. J Immunol.
177:6730–6737. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Becker TC, Coley SM, Wherry EJ and Ahmed
R: Bone marrow is a preferred site for homeostatic proliferation of
memory CD8 T cells. J Immunol. 174:1269–1273. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Na IK, Letsch A, Guerreiro M, Bauer S,
Noack I, Geginat J, Reinke P, Loesch M, Kienapfel H, Thiel E, et
al: Human bone marrow as a source to generate CMV-specific
CD4+ T cells with multifunctional capacity. J
Immunother. 32:907–913. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Castiglioni P, Hall S, Jacovetty EL,
Ingulli E and Zanetti M: Protection against influenza A virus by
memory CD8 T cells requires reactivation by bone marrow-derived
dendritic cells. J Immunol. 180:4956–4964. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Fresnay S, Zhang X, Strome SE and Sewell
DA: Bone marrow vaccination: A novel approach to enhance antigen
specific antitumor immunity. Vaccine. 29:8599–8605. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Schirrmacher V, Feuerer M, Fournier P,
Ahlert T, Umansky V and Beckhove P: T-cell priming in bone marrow:
The potential for long-lasting protective anti-tumor immunity.
Trends Mol Med. 9:526–534. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
van der Merwe PA and Dushek O: Mechanisms
for T cell receptor triggering. Nat Rev Immunol. 11:47–55. 2011.
View Article : Google Scholar
|
|
32
|
Bannard O, Kraman M and Fearon D: Pathways
of memory CD8+ T-cell development. Eur J Immunol.
39:2083–2087. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
van Leeuwen EM, Sprent J and Surh CD:
Generation and maintenance of memory CD4+ T cells. Curr
Opin Immunol. 21:167–172. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Fournier P, Aigner M and Schirrmacher V:
Transcriptome analysis and cytokine profiling of naive T cells
stimulated by a tumor vaccine via CD3 and CD25. Int J Oncol.
37:1439–1452. 2010.PubMed/NCBI
|
|
35
|
Schiavoni G, Mattei F and Gabriele L: Type
I interferons as stimulators of DC-mediated cross-priming: impact
on anti-tumor response. Front Immunol. 4:4832013. View Article : Google Scholar
|
|
36
|
Sallusto F, Geginat J and Lanzavecchia A:
Central memory and effector memory T cell subsets: Function,
generation, and maintenance. Annu Rev Immunol. 22:745–763. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Aigner M, Janke M, Lulei M, Beckhove P,
Fournier P and Schirrmacher V: An effective tumor vaccine optimized
for costimulation via bispecific and trispecific fusion proteins.
Int J Oncol. 32:777–789. 2008.PubMed/NCBI
|
|
38
|
Beckhove P, Feuerer M, Dolenc M, Schuetz
F, Choi C, Sommerfeldt N, Schwendemann J, Ehlert K, Altevogt P,
Bastert G, et al: Specifically activated memory T cell subsets from
cancer patients recognize and reject xenotransplanted autologous
tumors. J Clin Invest. 114:67–76. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Herndler-Brandstetter D, Landgraf K,
Jenewein B, Tzankov A, Brunauer R, Brunner S, Parson W, Kloss F,
Gassner R, Lepperdinger G, et al: Human bone marrow hosts
polyfunctional memory CD4+ and CD8+ T cells
with close contact to IL-15-producing cells. J Immunol.
186:6965–6971. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cui G, Hara T, Simmons S, Wagatsuma K, Abe
A, Miyachi H, Kitano S, Ishii M, Tani-ichi S and Ikuta K:
Characterization of the IL-15 niche in primary and secondary
lymphoid organs in vivo. Proc Natl Acad Sci USA. 111:1915–1920.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sercan Alp Ö, Durlanik S, Schulz D,
McGrath M, Grün JR, Bardua M, Ikuta K, Sgouroudis E, Riedel R,
Zehentmeier S, et al: Memory CD8+ T cells colocalize
with IL-7+ stromal cells in bone marrow and rest in
terms of proliferation and transcription. Eur J Immunol.
45:975–987. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Nemoto Y, Kanai T, Takahara M, Oshima S,
Nakamura T, Okamoto R, Tsuchiya K and Watanabe M: Bone
marrow-mesenchymal stem cells are a major source of interleukin-7
and sustain colitis by forming the niche for colitogenic CD4 memory
T cells. Gut. 62:1142–1152. 2013. View Article : Google Scholar :
|
|
43
|
Tokoyoda K, Zehentmeier S, Hegazy AN,
Albrecht I, Grün JR, Löhning M and Radbruch A: Professional memory
CD4+ T lymphocytes preferentially reside and rest in the
bone marrow. Immunity. 30:721–730. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mahnke YD, Schwendemann J, Beckhove P and
Schirrmacher V: Maintenance of long-term tumour-specific T-cell
memory by residual dormant tumour cells. Immunology. 115:325–336.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Parretta E, Cassese G, Santoni A,
Guardiola J, Vecchio A and Di Rosa F: Kinetics of in vivo
proliferation and death of memory and naive CD8 T cells: Parameter
estimation based on 5-bromo-2′-deoxyuridine incorporation in
spleen, lymph nodes, and bone marrow. J Immunol. 180:7230–7239.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sapoznikov A, Pewzner-Jung Y, Kalchenko V,
Krauthgamer R, Shachar I and Jung S: Perivascular clusters of
dendritic cells provide critical survival signals to B cells in
bone marrow niches. Nat Immunol. 9:388–395. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pillai S and Cariappa A: The bone marrow
perisinusoidal niche for recirculating B cells and the positive
selection of bone marrow-derived B lymphocytes. Immunol Cell Biol.
87:16–19. 2009. View Article : Google Scholar
|
|
48
|
Hsu SC, Wang LT, Yao CL, Lai HY, Chan KY,
Liu BS, Chong P, Lee OK and Chen HW: Mesenchymal stem cells promote
neutrophil activation by inducing IL-17 production in
CD4+ CD45RO+ T cells. Immunobiology.
218:90–95. 2013. View Article : Google Scholar
|
|
49
|
Duffy D, Perrin H, Abadie V, Benhabiles N,
Boissonnas A, Liard C, Descours B, Reboulleau D, Bonduelle O,
Verrier B, et al: Neutrophils transport antigen from the dermis to
the bone marrow, initiating a source of memory CD8+ T
cells. Immunity. 37:917–929. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Di Rosa F and Santoni A: Memory T-cell
competition for bone marrow seeding. Immunology. 108:296–304. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Palendira U, Chinn R, Raza W, Piper K,
Pratt G, Machado L, Bell A, Khan N, Hislop AD, Steyn R, et al:
Selective accumulation of virus-specific CD8+ T cells
with unique homing phenotype within the human bone marrow. Blood.
112:3293–3302. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Dudda JC, Lembo A, Bachtanian E, Huehn J,
Siewert C, Hamann A, Kremmer E, Förster R and Martin SF: Dendritic
cells govern induction and reprogramming of polarized
tissue-selective homing receptor patterns of T cells: Important
roles for soluble factors and tissue microenvironments. Eur J
Immunol. 35:1056–1065. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Mahnke YD and Schirrmacher V:
Characteristics of a potent tumor vaccine-induced secondary
anti-tumor T cell response. Int J Oncol. 24:1427–1434.
2004.PubMed/NCBI
|
|
54
|
Schwendemann J, Choi C, Schirrmacher V and
Beckhove P: Dynamic differentiation of activated human peripheral
blood CD8+ and CD4+ effector memory T cells.
J Immunol. 175:1433–1439. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Harley CB and Villeponteau B: Telomeres
and telomerase in aging and cancer. Curr Opin Genet Dev. 5:249–255.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Akbar AN, Beverley PC and Salmon M: Will
telomere erosion lead to a loss of T-cell memory? Nat Rev Immunol.
4:737–743. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Schirrmacher V, Beutner U, Bucur M,
Umansky V, Rocha M and von Hoegen P: Loss of endogenous mouse
mammary tumor virus superantigen increases tumor resistance. J
Immunol. 161:563–570. 1998.PubMed/NCBI
|
|
58
|
Müerköster S, Weigand MA, Choi C, Walczak
H, Schirrmacher V and Umansky V: Superantigen reactive
Vbeta6+ T cells induce perforin/granzyme B mediated
caspase-independent apoptosis in tumour cells. Br J Cancer.
86:828–836. 2002. View Article : Google Scholar
|
|
59
|
Schirrmacher V, Müerköster S, Bucur M,
Umansky V and Rocha M: Breaking tolerance to a tumor-associated
viral superantigen as a basis for graft-versus-leukemia reactivity.
Int J Cancer. 87:695–706. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Schirrmacher V, Beckhove P, Krüger A,
Rocha M, Umansky V, Fichtner K, Hull W, Zangemeisterwittke U,
Griesbach A, Jurianz K, et al: Effective immune rejection of
advanced metastasized cancer. Int J Oncol. 6:505–521.
1995.PubMed/NCBI
|
|
61
|
Schirrmacher V: Complete remission of
cancer in late-stage disease by radiation and transfer of
allogeneic MHC-matched immune T cells: Lessons from GvL studies in
animals. Cancer Immunol Immunother. 63:535–543. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Schirrmacher V, Beckhove P, Choi C,
Griesbach A and Mahnke Y: Tumor-immune memory T cells from the bone
marrow exert GvL without GvH reactivity in advanced metastasized
cancer. Int J Oncol. 27:1141–1149. 2005.PubMed/NCBI
|
|
63
|
Rocha M, Umansky V, Lee KH, Hacker HJ,
Benner A and Schirrmacher V: Differences between
graft-versus-leukemia and graft-versus-host reactivity. I
Interaction of donor immune T cells with tumor and/or host cells.
Blood. 89:2189–2202. 1997.PubMed/NCBI
|
|
64
|
Müerköster S, Wachowski O, Zerban H,
Schirrmacher V, Umansky V and Rocha M: Graft-versus-leukemia
reactivity involves cluster formation between superantigen-reactive
donor T lymphocytes and host macrophages. Clin Cancer Res.
4:3095–3106. 1998.PubMed/NCBI
|
|
65
|
Müerköster S, Laman JD, Rocha M, Umansky V
and Schirrmacher V: Functional and in situ evidence for nitric
oxide production driven by CD40-CD40L interactions in
graft-versus-leukemia reactivity. Clin Cancer Res. 6:1988–1996.
2000.PubMed/NCBI
|
|
66
|
Müerköster S, Rocha M, Crocker PR,
Schirrmacher V and Umansky V: Sialoadhesin-positive host
macrophages play an essential role in graft-versus-leukemia
reactivity in mice. Blood. 93:4375–4386. 1999.PubMed/NCBI
|
|
67
|
Klug F, Prakash H, Huber PE, Seibel T,
Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et
al: Low-dose irradiation programs macrophage differentiation to an
iNOS+/ M1 phenotype that orchestrates effective T cell
immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Umansky V and Schirrmacher V: Nitric
oxide-induced apoptosis in tumor cells. Adv Cancer Res. 82:107–131.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Rocha M, Krüger A, Van Rooijen N,
Schirrmacher V and Umansky V: Liver endothelial cells participate
in T-cell-dependent host resistance to lymphoma metastasis by
production of nitric oxide in vivo. Int J Cancer. 63:405–411. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Park HS, Cho SG, Park MJ, Min SY, Chang
HS, Kim HJ, Lee S, Min CK, Lee JW, Min WS, et al: Bone marrow T
cells are superior to splenic T cells to induce chimeric conversion
after non-myeloablative bone marrow transplantation. Korean J
Intern Med. 24:252–262. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Dutt S, Baker J, Kohrt HE, Kambham N,
Sanyal M, Negrin RS and Strober S: CD8+CD44hi
but not CD4+CD44hi memory T cells mediate
potent graft antilymphoma activity without GVHD. Blood.
117:3230–3239. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Casucci M, Perna SK, Falcone L, Camisa B,
Magnani Z, Bernardi M, Crotta A, Tresoldi C, Fleischhauer K,
Ponzoni M, et al: Graft-versus-leukemia effect of
HLA-haploidentical central-memory T-cells expanded with leukemic
APCs and modified with a suicide gene. Mol Ther. 21:466–475. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ueda R, Low KL, Zhu X, Fujita M, Sasaki K,
Whiteside TL, Butterfield LH and Okada H: Spontaneous immune
responses against glioma-associated antigens in a long term
survivor with malignant glioma. J Transl Med. 5:682007. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang XF, Kerzerho J, Adotevi O, Nuyttens
H, Badoual C, Munier G, Oudard S, Tu S, Tartour E and Maillère B:
Comprehensive analysis of HLA-DR- and HLA-DP4-restricted
CD4+ T cell response specific for the tumor-shared
antigen survivin in healthy donors and cancer patients. J Immunol.
181:431–439. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Knights AJ, Nuber N, Thomson CW, de la
Rosa O, Jäger E, Tiercy JM, van den Broek M, Pascolo S, Knuth A and
Zippelius A: Modified tumour antigen-encoding mRNA facilitates the
analysis of naturally occurring and vaccine-induced CD4 and CD8 T
cells in cancer patients. Cancer Immunol Immunother. 58:325–338.
2009. View Article : Google Scholar
|
|
76
|
Domschke C, Schuetz F, Ge Y, Seibel T,
Falk C, Brors B, Vlodavsky I, Sommerfeldt N, Sinn HP, Kühnle MC, et
al: Intratumoral cytokines and tumor cell biology determine
spontaneous breast cancer-specific immune responses and their
correlation to prognosis. Cancer Res. 69:8420–8428. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ohue Y, Eikawa S, Okazaki N, Mizote Y,
Isobe M, Uenaka A, Fukuda M, Old LJ, Oka M and Nakayama E:
Spontaneous antibody, and CD4 and CD8 T-cell responses against
XAGE-1b (GAGED2a) in non-small cell lung cancer patients. Int J
Cancer. 131:E649–E658. 2012. View Article : Google Scholar
|
|
78
|
Feuerer M, Beckhove P, Bai L, Solomayer
EF, Bastert G, Diel IJ, Pedain C, Oberniedermayr M, Schirrmacher V
and Umansky V: Therapy of human tumors in NOD/SCID mice with
patient-derived reactivated memory T cells from bone marrow. Nat
Med. 7:452–458. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
79
|
Koch M, Beckhove P, Op den Winkel J,
Autenrieth D, Wagner P, Nummer D, Specht S, Antolovic D, Galindo L,
Schmitz-Winnenthal FH, et al: Tumor infiltrating T lymphocytes in
colorectal cancer: Tumor-selective activation and cytotoxic
activity in situ. Ann Surg. 244:986–992; discussion 992–993. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Schmitz-Winnenthal FH, Volk C, Z'graggen
K, Galindo L, Nummer D, Ziouta Y, Bucur M, Weitz J, Schirrmacher V,
Büchler MW, et al: High frequencies of functional tumor-reactive T
cells in bone marrow and blood of pancreatic cancer patients.
Cancer Res. 65:10079–10087. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Müller-Berghaus J, Ehlert K, Ugurel S,
Umansky V, Bucur M, Schirrmacher V, Beckhove P and Schadendorf D:
Melanoma-reactive T cells in the bone marrow of melanoma patients:
Association with disease stage and disease duration. Cancer Res.
66:5997–6001. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Choi C, Witzens M, Bucur M, Feuerer M,
Sommerfeldt N, Trojan A, Ho A, Schirrmacher V, Goldschmidt H and
Beckhove P: Enrichment of functional CD8 memory T cells specific
for MUC1 in bone marrow of multiple myeloma patients. Blood.
105:2132–2134. 2005. View Article : Google Scholar
|
|
83
|
Sommerfeldt N, Schütz F, Sohn C, Förster
J, Schirrmacher V and Beckhove P: The shaping of a polyvalent and
highly individual T-cell repertoire in the bone marrow of breast
cancer patients. Cancer Res. 66:8258–8265. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Beckhove P and Schirrmacher V: Local tumor
growth and spontaneous systemic T cell responses in cancer
patients: A paradox and puzzle. Innate and Adaptive Immunity in The
Tumor Microenvironment. Yefenof E: Springer Science; pp. 53–76.
2008, View Article : Google Scholar
|
|
85
|
Alvarez D, Vollmann EH and von Andrian UH:
Mechanisms and consequences of dendritic cell migration. Immunity.
29:325–342. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Veiga-Fernandes H, Walter U, Bourgeois C,
McLean A and Rocha B: Response of naïve and memory CD8+
T cells to antigen stimulation in vivo. Nat Immunol. 1:47–53. 2000.
View Article : Google Scholar
|
|
87
|
Schuetz F, Ehlert K, Ge Y, Schneeweiss A,
Rom J, Inzkirweli N, Sohn C, Schirrmacher V and Beckhove P:
Treatment of advanced metastasized breast cancer with bone
marrow-derived tumour-reactive memory T cells: A pilot clinical
study. Cancer Immunol Immunother. 58:887–900. 2009. View Article : Google Scholar
|
|
88
|
Domschke C, Ge Y, Bernhardt I, Schott S,
Keim S, Juenger S, Bucur M, Mayer L, Blumenstein M, Rom J, et al:
Long-term survival after adoptive bone marrow T cell therapy of
advanced metastasized breast cancer: Follow-up analysis of a
clinical pilot trial. Cancer Immunol Immunother. 62:1053–1060.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Flynn JK and Gorry PR: Stem memory T cells
(TSCM)-their role in cancer and HIV immunotherapies. Clin Transl
Immunology. 3:e202014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Okhrimenko A, Grün JR, Westendorf K, Fang
Z, Reinke S, von Roth P, Wassilew G, Kühl AA, Kudernatsch R, Demski
S, et al: Human memory T cells from the bone marrow are resting and
maintain long-lasting systemic memory. Proc Natl Acad Sci USA.
111:9229–9234. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Aiello FB, Graciotti L, Procopio AD,
Keller JR and Durum SK: Stemness of T cells and the hematopoietic
stem cells: Fate, memory, niche, cytokines. Cytokine Growth Factor
Rev. 24:485–501. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kudernatsch RF, Letsch A, Guerreiro M,
Löbel M, Bauer S, Volk HD and Scheibenbogen C: Human bone marrow
contains a subset of quiescent early memory CD8+ T cells
characterized by high CD127 expression and efflux capacity. Eur J
Immunol. 44:3532–3542. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Roberto A, Castagna L, Zanon V, Bramanti
S, Crocchiolo R, McLaren JE, Gandolfi S, Tentorio P, Sarina B,
Timofeeva I, et al: Role of naive-derived T memory stem cells in
T-cell reconstitution following allogeneic transplantation. Blood.
125:2855–2864. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Biasco L, Scala S, Basso Ricci L, Dionisio
F, Baricordi C, Calabria A, Giannelli S, Cieri N, Barzaghi F, Pajno
R, et al: In vivo tracking of T cells in humans unveils decade-long
survival and activity of genetically modified T memory stem cells.
Sci Transl Med. 7:273ra132015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Schmueck-Henneresse M, Sharaf R, Vogt K,
Weist BJ, Landwehr-Kenzel S, Fuehrer H, Jurisch A, Babel N, Rooney
CM, Reinke P, et al: Peripheral blood-derived virus-specific memory
stem T cells mature to functional effector memory subsets with
self-renewal potency. J Immunol. 194:5559–5567. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Fuertes Marraco SA, Soneson C, Cagnon L,
Gannon PO, Allard M, Abed Maillard S, Montandon N, Rufer N,
Waldvogel S, Delorenzi M, et al: Long-lasting stem cell-like memory
CD8+ T cells with a naïve-like profile upon yellow fever
vaccination. Sci Transl Med. 7:282ra482015. View Article : Google Scholar
|
|
97
|
Cieri N, Camisa B, Cocchiarella F, Forcato
M, Oliveira G, Provasi E, Bondanza A, Bordignon C, Peccatori J,
Ciceri F, et al: IL-7 and IL-15 instruct the generation of human
memory stem T cells from naive precursors. Blood. 121:573–584.
2013. View Article : Google Scholar
|
|
98
|
Coffmann RL, Sher A and Seder RA: Vaccine
adjuvants: Putting innate immunity at work. Immunity. 33:492–503.
2010. View Article : Google Scholar
|
|
99
|
Woodland DL and Blackman MA: Immunity:
It's in our bones. Immunity. 22:143–144. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Fournier P and Schirrmacher V: Oncolytic
Newcastle disease virus as cutting edge between tumor and host.
Biology (Basel). 2:936–975. 2013.
|
|
101
|
Schirrmacher V, Fournier P and Schlag P:
Autologous tumor cell vaccines for post-operative active-specific
immunotherapy of colorectal carcinoma: Long-term patient survival
and mechanism of function. Expert Rev Vaccines. 13:117–130. 2014.
View Article : Google Scholar
|
|
102
|
Schirrmacher V, Schlude C, Weitz J and
Beckhove P: Strong T-cell costimulation can reactivate tumor
antigen-specific T cells in late-stage metastasized colorectal
carcinoma patients: Results from a phase I clinical study. Int J
Oncol. 46:71–77. 2015.
|
|
103
|
Zamarin D, Holmgaard RB, Subudhi SK, Park
JS, Mansour M, Palese P, Merghoub T, Wolchok JD and Allison JP:
Localized oncolytic virotherapy overcomes systemic tumor resistance
to immune checkpoint blockade immunotherapy. Sci Transl Med.
6:226ra322014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Schirrmacher V, Bihari AS, Stücker W and
Sprenger T: Long-term remission of prostate cancer with extensive
bone metastases upon immuno- and virotherapy: A case report. Oncol
Lett. 8:2403–2406. 2014.PubMed/NCBI
|
|
105
|
Schirrmacher V, Stücker W, Lulei M, Bihari
AS and Sprenger T: Long-term survival of a breast cancer patient
with extensive liver metastases upon immune and virotherapy: a case
report. Immunotherapy. 7:855–860. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Rosenberg SA and Restifo NP: Adoptive cell
transfer as personalized immunotherapy for human cancer. Science.
348:62–68. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Stevanović S, Draper LM, Langhan MM,
Campbell TE, Kwong ML, Wunderlich JR, Dudley ME, Yang JC, Sherry
RM, Kammula US, et al: Complete regression of metastatic cervical
cancer after treatment with human papillomavirus-targeted
tumor-infiltrating T cells. J Clin Oncol. 33:1543–1550. 2015.
View Article : Google Scholar
|
|
108
|
Sung JH, Zhang H, Moseman EA, Alvarez D,
Iannacone M, Henrickson SE, de la Torre JC, Groom JR, Luster AD and
von Andrian UH: Chemokine guidance of central memory T cells is
critical for antiviral recall responses in lymph nodes. Cell.
150:1249–1263. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Sugiyama T, Kohara H, Noda M and Nagasawa
T: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4
chemokine signaling in bone marrow stromal cell niches. Immunity.
25:977–988. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Hanazawa A, Hayashizaki K, Shinoda K,
Yagita H, Okumura K, Löhning M, Hara T, Tani-ichi S, Ikuta K, Eckes
B, et al: CD49b-dependent establishment of T helper cell memory.
Immunol Cell Biol. 91:524–531. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Henrickson SE, Perro M, Loughhead SM,
Senman B, Stutte S, Quigley M, Alexe G, Iannacone M, Flynn MP, Omid
S, et al: Antigen availability determines CD8+ T
cell-dendritic cell interaction kinetics and memory fate decisions.
Immunity. 39:496–507. 2013. View Article : Google Scholar : PubMed/NCBI
|