Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
November-2016 Volume 49 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2016 Volume 49 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Antiangiogenic cancer treatment: The great discovery and greater complexity (Review)

  • Authors:
    • Ewa Maj
    • Diana Papiernik
    • Joanna Wietrzyk
  • View Affiliations / Copyright

    Affiliations: Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
    Copyright: © Maj et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1773-1784
    |
    Published online on: September 26, 2016
       https://doi.org/10.3892/ijo.2016.3709
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The discovery of tumor angiogenesis opened a new path in fighting cancer. The approval of different antiangiogenic agents, most targeting vascular endothelial growth factor (VEGF) signaling, has either increased the effectiveness of standard chemotherapy or even replaced it by offering better patient outcomes. However, an increasing number of preclinical and clinical observations have shown that the process of angiogenesis is far from clearly understood. Apart from targeting the VEGF pathway, novel strategies aim to influence other molecular factors that are involved in tumor angiogenesis. In addition, naturally occurring compounds seem to offer additional agents for influencing angiogenesis. The first concept of antiangiogenic therapy aimed to destroy tumor vessels, while it turned out that, paradoxically, antiangiogenic drugs normalized vasculature and as a result offered an improvement in chemotherapeutic delivery. In order to design an effective treatment schedule, methods for detecting the time window of normalization and biomarkers predicting patient response are needed. The initial idea that antiangiogenic therapy would be resistance-free failed to materialize and currently we still face the obstacle of resistance to antiangiogenic therapy.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Folkman J, Bach M, Rowe JW, Davidoff F, Lambert P, Hirsch C, Goldberg A, Hiatt HH, Glass J and Henshaw E: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI

2 

Ribatti D: History of research on tumor angiogenesis. Springer; New York, NY: 2009

3 

Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS and Dvorak HF: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 219:983–985. 1983. View Article : Google Scholar : PubMed/NCBI

4 

Ferrara N: Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 29:789–791. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Gupta K, Kshirsagar S, Li W, Gui L, Ramakrishnan S, Gupta P, Law PY and Hebbel RP: VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res. 247:495–504. 1999. View Article : Google Scholar : PubMed/NCBI

6 

Cross MJ and Claesson-Welsh L: FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 22:201–207. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Sennino B, Kuhnert F, Tabruyn SP, Mancuso MR, Hu-Lowe DD, Kuo CJ and McDonald DM: Cellular source and amount of vascular endothelial growth factor and platelet-derived growth factor in tumors determine response to angiogenesis inhibitors. Cancer Res. 69:4527–4536. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D and Jain RK: Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 91:1071–1121. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Carmeliet P and Jain RK: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 10:417–427. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Vasudev NS and Reynolds AR: Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions. Angiogenesis. 17:471–494. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Jain RK: Antiangiogenesis strategies revisited: From starving tumors to alleviating hypoxia. Cancer Cell. 26:605–622. 2014. View Article : Google Scholar : PubMed/NCBI

13 

McIntyre A and Harris AL: Metabolic and hypoxic adaptation to anti-angiogenic therapy: A target for induced essentiality. EMBO Mol Med. 7:368–379. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, et al: Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol. 35(Suppl): S224–S243. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R and Johnson DH: Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 355:2542–2550. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, et al: Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiL. J Clin Oncol. 27:1227–1234. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, et al; BO17704 Study Group. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: Results from a randomised phase III trial (AVAiL). Ann Oncol. 21:1804–1809. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Al-Husein B, Abdalla M, Trepte M, Deremer DL and Somanath PR: Antiangiogenic therapy for cancer: An update. Pharmacotherapy. 32:1095–1111. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Poveda AM, Selle F, Hilpert F, Reuss A, Savarese A, Vergote I, Witteveen P, Bamias A, Scotto N, Mitchell L, et al: Bevacizumab combined with weekly paclitaxel, pegylated liposomal doxorubicin, or topotecan in platinum-resistant recurrent ovarian cancer: Analysis by chemotherapy cohort of the randomized phase III AURELIA trial. J Clin Oncol. 33:3836–3838. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Liu JF and Matulonis UA: Bevacizumab in newly diagnosed ovarian cancer. Lancet Oncol. 16:876–878. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Krill LS and Tewari KS: Integration of bevacizumab with chemotherapy doublets for advanced cervical cancer. Expert Opin Pharmacother. 16:675–683. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Crafton SM and Salani R: Beyond chemotherapy: An overview and review of targeted therapy in cervical cancer. Clin Ther. 38:449–458. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Wu P, Nielsen TE and Clausen MH: FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 36:422–439. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Wu P, Nielsen TE and Clausen MH: Small-molecule kinase inhibitors: An analysis of FDA-approved drugs. Drug Discov Today. 21:5–10. 2016. View Article : Google Scholar

26 

Ciombor KK and Berlin J: Aflibercept - a decoy VEGF receptor. Curr Oncol Rep. 16:3682014. View Article : Google Scholar

27 

Aprile G, Rijavec E, Fontanella C, Rihawi K and Grossi F: Ramucirumab: Preclinical research and clinical development. Onco Targets Ther. 7:1997–2006. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Tiwari P: Ramucirumab: Boon or bane. J Egypt Natl Canc Inst. 28:133–140. 2016. View Article : Google Scholar : PubMed/NCBI

29 

(http://www.fda.gov/). Accessed 22 Apr 2016

30 

Calero R, Morchon E, Johnsen JI and Serrano R: Sunitinib suppress neuroblastoma growth through degradation of MYCN and inhibition of angiogenesis. PLoS One. 9:e956282014. View Article : Google Scholar : PubMed/NCBI

31 

Maj E, Filip-Psurska B, Świtalska M, Kutner A, Wietrzyk J and Vitamin D: Vitamin D analogs potentiate the antitumor effect of imatinib mesylate in a human A549 lung tumor model. Int J Mol Sci. 16:27191–27207. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Legros L, Bourcier C, Jacquel A, Mahon FX, Cassuto JP, Auberger P and Pagès G: Imatinib mesylate (STI571) decreases the vascular endothelial growth factor plasma concentration in patients with chronic myeloid leukemia. Blood. 104:495–501. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Kerbel RS, Viloria-Petit A, Klement G and Rak J: ‘Accidental’ anti-angiogenic drugs: anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer. 36:1248–1257. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P and Kerbel RS: Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest. 105:R15–R24. 2000. View Article : Google Scholar : PubMed/NCBI

35 

Man S, Bocci G, Francia G, Green SK, Jothy S, Hanahan D, Bohlen P, Hicklin DJ, Bergers G and Kerbel RS: Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res. 62:2731–2735. 2002.PubMed/NCBI

36 

Wu H, Xin Y, Zhao J, Sun D, Li W, Hu Y and Wang S: Metronomic docetaxel chemotherapy inhibits angiogenesis and tumor growth in a gastric cancer model. Cancer Chemother Pharmacol. 68:879–887. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Guo XL, Lin GJ, Zhao H, Gao Y, Qian LP, Xu SR, Fu LN, Xu Q and Wang JJ: Inhibitory effects of docetaxel on expression of VEGF, bFGF and MMPs of LS174T cell. World J Gastroenterol. 9:1995–1998. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Blazejczyk A, Papiernik D, Porshneva K, Sadowska J and Wietrzyk J: Endothelium and cancer metastasis: Perspectives for antimetastatic therapy. Pharmacol Rep. 67:711–718. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Sagar SM, Yance D and Wong RK: Natural health products that inhibit angiogenesis: A potential source for investigational new agents to treat cancer-Part 1. Curr Oncol. 13:14–26. 2006.

40 

Sagar SM, Yance D and Wong RK: Natural health products that inhibit angiogenesis: A potential source for investigational new agents to treat cancer-Part 2. Curr Oncol. 13:99–107. 2006.

41 

Sulaiman RS, Basavarajappa HD and Corson TW: Natural product inhibitors of ocular angiogenesis. Exp Eye Res. 129:161–171. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Singh M, Singh P and Shukla Y: New strategies in cancer chemoprevention by phytochemicals. Front Biosci (Elite Ed). 4:426–452. 2012. View Article : Google Scholar

43 

Kang X, Jin S and Zhang Q: Antitumor and antiangiogenic activity of soy phytoestrogen on 7,12-dimethylbenz[alpha] anthracene-induced mammary tumors following ovariectomy in Sprague-Dawley rats. J Food Sci. 74:H237–H242. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Uifălean A, Schneider S, Ionescu C, Lalk M and Iuga CA: Soy isoflavones and breast cancer cell lines: molecular mechanisms and future perspectives. Molecules. 21:E132015. View Article : Google Scholar

45 

Wietrzyk J, Opolski A, Madej J and Radzikowski C: Antitumour and antimetastatic effect of genistein alone or combined with cyclophosphamide in mice transplanted with various tumours depends on the route of tumour transplantation. In Vivo. 14:357–362. 2000.PubMed/NCBI

46 

Wietrzyk J, Opolski A, Madej J and Radzikowski C: The antitumor effect of postoperative treatment with genistein alone or combined with cyclophosphamide in mice bearing transplantable tumors. Acta Pol Pharm. 57(Suppl): 5–8. 2000.

47 

Wietrzyk J, Boratynski J, Grynkiewicz G, Ryczynski A, Radzikowski C and Opolski A: Antiangiogenic and antitumour effects in vivo of genistein applied alone or combined with cyclophosphamide. Anticancer Res. 21:3893–3896. 2001.

48 

Park SY, Jeong KJ, Lee J, Yoon DS, Choi WS, Kim YK, Han JW, Kim YM, Kim BK and Lee HY: Hypoxia enhances LPA-induced HIF-1alpha and VEGF expression: Their inhibition by resveratrol. Cancer Lett. 258:63–69. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Yu H, Pan C, Zhao S, Wang Z, Zhang H and Wu W: Resveratrol inhibits tumor necrosis factor-alpha-mediated matrix metal-loproteinase-9 expression and invasion of human hepatocellular carcinoma cells. Biomed Pharmacother. 62:366–372. 2008. View Article : Google Scholar

50 

Ma Y, Johnson CS and Trump DL: Mechanistic insights of Vitamin D anticancer effects. Vitam Horm. 100:395–431. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Jäpelt RB and Jakobsen J: Vitamin D in plants: A review of occurrence, analysis, and biosynthesis. Front Plant Sci. 4:1362013. View Article : Google Scholar : PubMed/NCBI

52 

Haussler MR, Jurutka PW, Mizwicki M and Norman AW: Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2vitamin D3: Genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab. 25:543–559. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Feldman D, Krishnan AV, Swami S, Giovannucci E and Feldman BJ: The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 14:342–357. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Oikawa T, Hirotani K, Ogasawara H, Katayama T, Nakamura O, Iwaguchi T and Hiragun A: Inhibition of angiogenesis by vitamin D3 analogues. Eur J Pharmacol. 178:247–250. 1990. View Article : Google Scholar : PubMed/NCBI

55 

Bao BY, Yao J and Lee YF: 1alpha, 25-dihydroxyvitamin D3 suppresses interleukin-8-mediated prostate cancer cell angiogenesis. Carcinogenesis. 27:1883–1893. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Ben-Shoshan M, Amir S, Dang DT, Dang LH, Weisman Y and Mabjeesh NJ: 1alpha,25-dihydroxyvitamin D3 (Calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells. Mol Cancer Ther. 6:1433–1439. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Chung I, Han G, Seshadri M, Gillard BM, Yu WD, Foster BA, Trump DL and Johnson CS: Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo. Cancer Res. 69:967–975. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Iseki K, Tatsuta M, Uehara H, Iishi H, Yano H, Sakai N and Ishiguro S: Inhibition of angiogenesis as a mechanism for inhibition by 1alpha-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 of colon carcinogenesis induced by azoxymethane in Wistar rats. Int J Cancer. 81:730–733. 1999. View Article : Google Scholar : PubMed/NCBI

59 

Nakagawa K, Sasaki Y, Kato S, Kubodera N and Okano T: 22-Oxa-1alpha,25-dihydroxyvitamin D3 inhibits metastasis and angiogenesis in lung cancer. Carcinogenesis. 26:1044–1054. 2005. View Article : Google Scholar : PubMed/NCBI

60 

Wietrzyk J, Filip B, Milczarek M, Klopotowska D, Maciejewska M, Dabrowska K, Kurzepa A, Dzimira S, Madej J and Kutner A: The influence of 1,25-dihydroxyvitamin D3 and 1,24-dihydroxyvitamin D3 on αvβ3 integrin expression in cancer cell lines. Oncol Rep. 20:941–952. 2008.PubMed/NCBI

61 

Jones G, Strugnell SA and DeLuca HF: Current understanding of the molecular actions of vitamin D. Physiol Rev. 78:1193–1231. 1998.PubMed/NCBI

62 

Ma Y, Trump DL and Johnson CS: Vitamin D in combination cancer treatment. J Cancer. 1:101–107. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Leyssens C, Verlinden L and Verstuyf A: The future of vitamin D analogs. Front Physiol. 5:1222014. View Article : Google Scholar : PubMed/NCBI

64 

Milczarek M, Psurski M, Kutner A and Wietrzyk J: Vitamin D analogs enhance the anticancer activity of 5-fluorouracil in an in vivo mouse colon cancer model. BMC Cancer. 13:2942013. View Article : Google Scholar : PubMed/NCBI

65 

Milczarek M, Filip-Psurska B, Swiętnicki W, Kutner A and Wietrzyk J: Vitamin D analogs combined with 5-fluorouracil in human HT-29 colon cancer treatment. Oncol Rep. 32:491–504. 2014.PubMed/NCBI

66 

Okamoto R, Delansorne R, Wakimoto N, Doan NB, Akagi T, Shen M, Ho QH, Said JW and Koeffler HP: Inecalcitol, an analog of 1α,25(OH)2D3, induces growth arrest of androgen-dependent prostate cancer cells. Int J Cancer. 130:2464–2473. 2012. View Article : Google Scholar

67 

Protiva P, Pendyala S, Nelson C, Augenlicht LH, Lipkin M and Holt PR: Calcium and 1,25-dihydroxyvitamin D3 modulate genes of immune and inflammatory pathways in the human colon: A human crossover trial. Am J Clin Nutr. 103:1224–1231. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Lappe JM, Travers-Gustafson D, Davies KM, Recker RR and Heaney RP: Vitamin D and calcium supplementation reduces cancer risk: Results of a randomized trial. Am J Clin Nutr. 85:1586–1591. 2007.PubMed/NCBI

69 

Jacot W, Firmin N, Roca L, Topart D, Gallet S, Durigova A, Mirr S, Abach L, Pouderoux S, D'Hondt V, et al: Impact of a tailored oral vitamin D supplementation regimen on serum 25-hydroxyvitamin D levels in early breast cancer patients: A randomized phase III study. Ann Oncol. 27:1235–1241. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Bjelakovic G, Gluud LL, Nikolova D, Whitfield K, Krstic G, Wetterslev J and Gluud C: Vitamin D supplementation for prevention of cancer in adults. Cochrane Database Syst Rev. (6): CD0074692014.PubMed/NCBI

71 

Crew KD: Vitamin D: Are we ready to supplement for breast cancer prevention and treatment? ISRN Oncology. 2013:2013.Article ID 483687. View Article : Google Scholar : PubMed/NCBI

72 

Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS and Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 362:841–844. 1993. View Article : Google Scholar : PubMed/NCBI

73 

Jain RK, Duda DG, Clark JW and Loeffler JS: Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 3:24–40. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Jayson GC, Hicklin DJ and Ellis LM: Antiangiogenic therapy-evolving view based on clinical trial results. Nat Rev Clin Oncol. 9:297–303. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Jain RK: Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat Med. 7:987–989. 2001. View Article : Google Scholar : PubMed/NCBI

76 

Jain RK: Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science. 307:58–62. 2005. View Article : Google Scholar : PubMed/NCBI

77 

Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N and Jain RK: Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA. 93:14765–14770. 1996. View Article : Google Scholar : PubMed/NCBI

78 

Dickson PV, Hamner JB, Sims TL, Fraga CH, Ng CYC, Rajasekeran S, Hagedorn NL, McCarville MB, Stewart CF and Davidoff AM: Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res. 13:3942–3950. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Myers AL, Williams RF, Ng CY, Hartwich JE and Davidoff AM: Bevacizumab-induced tumor vessel remodeling in rhabdomyosarcoma xenografts increases the effectiveness of adjuvant ionizing radiation. J Pediatr Surg. 45:1080–1085. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, et al: Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol. 165:35–52. 2004. View Article : Google Scholar : PubMed/NCBI

81 

Zhou Q, Guo P and Gallo JM: Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide. Clin Cancer Res. 14:1540–1549. 2008. View Article : Google Scholar : PubMed/NCBI

82 

Zhou Q and Gallo JM: Differential effect of sunitinib on the distribution of temozolomide in an orthotopic glioma model. Neuro Oncol. 11:301–310. 2009. View Article : Google Scholar :

83 

Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, et al: Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 10:145–147. 2004. View Article : Google Scholar : PubMed/NCBI

84 

Shi S, Chen L and Huang G: Antiangiogenic therapy improves the antitumor effect of adoptive cell immunotherapy by normalizing tumor vasculature. Med Oncol. 30:6982013. View Article : Google Scholar : PubMed/NCBI

85 

Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR, Vianello F, et al: Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA. 109:17561–17566. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Mancuso MR, Davis R, Norberg SM, O'Brien S, Sennino B, Nakahara T, Yao VJ, Inai T, Brooks P, Freimark B, et al: Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest. 116:2610–2621. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Griffioen AW, Mans LA, de Graaf AMA, Nowak-Sliwinska P, de Hoog CL, de Jong TAM, Vyth-Dreese FA, van Beijnum JR, Bex A and Jonasch E: Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients. Clin Cancer Res. 18:3961–3971. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Wolter P, Beuselinck B, Pans S and Schöffski P: Flare-up: An often unreported phenomenon nevertheless familiar to oncologists prescribing tyrosine kinase inhibitors. Acta Oncol. 48:621–624. 2009. View Article : Google Scholar

89 

Chen DR, Lin C and Wang YF: Window of opportunity: A new insight into sequential bevacizumab and paclitaxel in two cases of metastatic triple-negative breast cancer. Exp Ther Med. 10:885–888. 2015.PubMed/NCBI

90 

Lee CG, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M, Koike C, Park KR, Ferrara N, Jain RK, Suit HD, et al: Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 60:5565–5570. 2000.PubMed/NCBI

91 

Zhang L, Takara K, Yamakawa D, Kidoya H and Takakura N: Apelin as a marker for monitoring the tumor vessel normalization window during antiangiogenic therapy. Cancer Sci. 107:36–44. 2016. View Article : Google Scholar :

92 

McGee MC, Hamner JB, Williams RF, Rosati SF, Sims TL, Ng CY, Gaber MW, Calabrese C, Wu J, Nathwani AC, et al: Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys. 76:1537–1545. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Dings RPM, Loren M, Heun H, McNiel E, Griffioen AW, Mayo KH and Griffin RJ: Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res. 13:3395–3402. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Vangestel C, Van de Wiele C, Van Damme N, Staelens S, Pauwels P, Reutelingsperger CPM and Peeters M: 99mTc-(CO)3 His-annexin A5 micro-SPECT demonstrates increased cell death by irinotecan during the vascular normalization window caused by bevacizumab. J Nucl Med. 52:1786–1794. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Hernandez-Agudo E, Mondejar T, Soto-Montenegro ML, Megias D, Mouron S, Sanchez J, Hidalgo M, Lopez-Casas PP, Mulero F, Desco M, et al: Monitoring vascular normalization induced by antiangiogenic treatment with F-fluoromisonidazole-PET. Mol Oncol. 10:704–718. 2015. View Article : Google Scholar

96 

Cao Y: Off-tumor target--beneficial site for antiangiogenic cancer therapy? Nat Rev Clin Oncol. 7:604–608. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Yang Y, Zhang Y, Cao Z, Ji H, Yang X, Iwamoto H, Wahlberg E, Länne T, Sun B and Cao Y: Anti-VEGF- and anti-VEGF receptor-induced vascular alteration in mouse healthy tissues. Proc Natl Acad Sci USA. 110:12018–12023. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Wong AK, Alfert M, Castrillon DH, Shen Q, Holash J, Yancopoulos GD and Chin L: Excessive tumor-elaborated VEGF and its neutralization define a lethal paraneoplastic syndrome. Proc Natl Acad Sci USA. 98:7481–7486. 2001. View Article : Google Scholar : PubMed/NCBI

99 

Pelosof LC and Gerber DE: Paraneoplastic syndromes: An approach to diagnosis and treatment. Mayo Clin Proc. 85:838–854. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Xue Y, Religa P, Cao R, Hansen AJ, Lucchini F, Jones B, Wu Y, Zhu Z, Pytowski B, Liang Y, et al: Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome. Proc Natl Acad Sci USA. 105:18513–18518. 2008. View Article : Google Scholar : PubMed/NCBI

101 

Cao Y: Future options of anti-angiogenic cancer therapy. Chin J Cancer. 35:212016. View Article : Google Scholar : PubMed/NCBI

102 

Jain RK: Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J Clin Oncol. 31:2205–2218. 2013. View Article : Google Scholar : PubMed/NCBI

103 

Loges S, Schmidt T and Carmeliet P: Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer. 1:12–25. 2010. View Article : Google Scholar : PubMed/NCBI

104 

Bergers G and Hanahan D: Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 8:592–603. 2008. View Article : Google Scholar : PubMed/NCBI

105 

van Beijnum JR, Nowak-Sliwinska P, Huijbers EJM, Thijssen VL and Griffioen AW: The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev. 67:441–461. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Willett CG, Boucher Y, Duda DG, di Tomaso E, Munn LL, Tong RT, Kozin SV, Petit L, Jain RK, Chung DC, et al: Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: Continued experience of a phase I trial in rectal cancer patients. J Clin Oncol. 23:8136–8139. 2005. View Article : Google Scholar : PubMed/NCBI

107 

Kopetz S, Hoff PM, Morris JS, Wolff RA, Eng C, Glover KY, Adinin R, Overman MJ, Valero V, Wen S, et al: Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: Efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J Clin Oncol. 28:453–459. 2010. View Article : Google Scholar :

108 

Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian CN, Kahnoski R, Futreal PA, Furge KA and Teh BT: Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res. 70:1063–1071. 2010. View Article : Google Scholar : PubMed/NCBI

109 

Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, et al: AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 11:83–95. 2007. View Article : Google Scholar : PubMed/NCBI

110 

Lindholm EM, Krohn M, Iadevaia S, Kristian A, Mills GB, Mælandsmo GM and Engebraaten O: Proteomic characterization of breast cancer xenografts identifies early and late bevacizumab-induced responses and predicts effective drug combinations. Clin Cancer Res. 20:404–412. 2014. View Article : Google Scholar

111 

Ebos JML, Lee CR, Christensen JG, Mutsaers AJ and Kerbel RS: Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci USA. 104:17069–17074. 2007. View Article : Google Scholar : PubMed/NCBI

112 

Finke J, Ko J, Rini B, Rayman P, Ireland J and Cohen P: MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol. 11:856–861. 2011. View Article : Google Scholar : PubMed/NCBI

113 

Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP and Ferrara N: Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol. 25:911–920. 2007. View Article : Google Scholar : PubMed/NCBI

114 

Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, et al: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 450:825–831. 2007. View Article : Google Scholar : PubMed/NCBI

115 

Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, et al: Angiogenesis and immunity: A bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev. 30:83–95. 2011. View Article : Google Scholar : PubMed/NCBI

116 

Mantovani A, Biswas SK, Galdiero MR, Sica A and Locati M: Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 229:176–185. 2013. View Article : Google Scholar

117 

Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay 0T, Naeem R, Carey VJ, Richardson AL and Weinberg RA: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 121:335–348. 2005. View Article : Google Scholar : PubMed/NCBI

118 

Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z, Kaminker J and Ferrara N: PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell. 15:21–34. 2009. View Article : Google Scholar

119 

Gerhardt H and Betsholtz C: Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 314:15–23. 2003. View Article : Google Scholar : PubMed/NCBI

120 

Welti J, Loges S, Dimmeler S and Carmeliet P: Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest. 123:3190–3200. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Soda Y, Myskiw C, Rommel A and Verma IM: Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med (Berl). 91:439–448. 2013. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Maj E, Papiernik D and Wietrzyk J: Antiangiogenic cancer treatment: The great discovery and greater complexity (Review). Int J Oncol 49: 1773-1784, 2016.
APA
Maj, E., Papiernik, D., & Wietrzyk, J. (2016). Antiangiogenic cancer treatment: The great discovery and greater complexity (Review). International Journal of Oncology, 49, 1773-1784. https://doi.org/10.3892/ijo.2016.3709
MLA
Maj, E., Papiernik, D., Wietrzyk, J."Antiangiogenic cancer treatment: The great discovery and greater complexity (Review)". International Journal of Oncology 49.5 (2016): 1773-1784.
Chicago
Maj, E., Papiernik, D., Wietrzyk, J."Antiangiogenic cancer treatment: The great discovery and greater complexity (Review)". International Journal of Oncology 49, no. 5 (2016): 1773-1784. https://doi.org/10.3892/ijo.2016.3709
Copy and paste a formatted citation
x
Spandidos Publications style
Maj E, Papiernik D and Wietrzyk J: Antiangiogenic cancer treatment: The great discovery and greater complexity (Review). Int J Oncol 49: 1773-1784, 2016.
APA
Maj, E., Papiernik, D., & Wietrzyk, J. (2016). Antiangiogenic cancer treatment: The great discovery and greater complexity (Review). International Journal of Oncology, 49, 1773-1784. https://doi.org/10.3892/ijo.2016.3709
MLA
Maj, E., Papiernik, D., Wietrzyk, J."Antiangiogenic cancer treatment: The great discovery and greater complexity (Review)". International Journal of Oncology 49.5 (2016): 1773-1784.
Chicago
Maj, E., Papiernik, D., Wietrzyk, J."Antiangiogenic cancer treatment: The great discovery and greater complexity (Review)". International Journal of Oncology 49, no. 5 (2016): 1773-1784. https://doi.org/10.3892/ijo.2016.3709
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team