|
1
|
Folkman J, Bach M, Rowe JW, Davidoff F,
Lambert P, Hirsch C, Goldberg A, Hiatt HH, Glass J and Henshaw E:
Tumor angiogenesis: Therapeutic implications. N Engl J Med.
285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ribatti D: History of research on tumor
angiogenesis. Springer; New York, NY: 2009
|
|
3
|
Senger DR, Galli SJ, Dvorak AM, Perruzzi
CA, Harvey VS and Dvorak HF: Tumor cells secrete a vascular
permeability factor that promotes accumulation of ascites fluid.
Science. 219:983–985. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ferrara N: Vascular endothelial growth
factor. Arterioscler Thromb Vasc Biol. 29:789–791. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gupta K, Kshirsagar S, Li W, Gui L,
Ramakrishnan S, Gupta P, Law PY and Hebbel RP: VEGF prevents
apoptosis of human microvascular endothelial cells via opposing
effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res.
247:495–504. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Cross MJ and Claesson-Welsh L: FGF and
VEGF function in angiogenesis: Signalling pathways, biological
responses and therapeutic inhibition. Trends Pharmacol Sci.
22:201–207. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sennino B, Kuhnert F, Tabruyn SP, Mancuso
MR, Hu-Lowe DD, Kuo CJ and McDonald DM: Cellular source and amount
of vascular endothelial growth factor and platelet-derived growth
factor in tumors determine response to angiogenesis inhibitors.
Cancer Res. 69:4527–4536. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Goel S, Duda DG, Xu L, Munn LL, Boucher Y,
Fukumura D and Jain RK: Normalization of the vasculature for
treatment of cancer and other diseases. Physiol Rev. 91:1071–1121.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Carmeliet P and Jain RK: Principles and
mechanisms of vessel normalization for cancer and other angiogenic
diseases. Nat Rev Drug Discov. 10:417–427. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Vasudev NS and Reynolds AR:
Anti-angiogenic therapy for cancer: Current progress, unresolved
questions and future directions. Angiogenesis. 17:471–494. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jain RK: Antiangiogenesis strategies
revisited: From starving tumors to alleviating hypoxia. Cancer
Cell. 26:605–622. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
McIntyre A and Harris AL: Metabolic and
hypoxic adaptation to anti-angiogenic therapy: A target for induced
essentiality. EMBO Mol Med. 7:368–379. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang Z, Dabrosin C, Yin X, Fuster MM,
Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B,
Ribatti D, et al: Broad targeting of angiogenesis for cancer
prevention and therapy. Semin Cancer Biol. 35(Suppl): S224–S243.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hurwitz H, Fehrenbacher L, Novotny W,
Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S,
Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and
leucovorin for metastatic colorectal cancer. N Engl J Med.
350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sandler A, Gray R, Perry MC, Brahmer J,
Schiller JH, Dowlati A, Lilenbaum R and Johnson DH:
Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell
lung cancer. N Engl J Med. 355:2542–2550. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Reck M, von Pawel J, Zatloukal P, Ramlau
R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, et
al: Phase III trial of cisplatin plus gemcitabine with either
placebo or bevacizumab as first-line therapy for nonsquamous
non-small-cell lung cancer: AVAiL. J Clin Oncol. 27:1227–1234.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Reck M, von Pawel J, Zatloukal P, Ramlau
R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, et
al; BO17704 Study Group. Overall survival with
cisplatin-gemcitabine and bevacizumab or placebo as first-line
therapy for nonsquamous non-small-cell lung cancer: Results from a
randomised phase III trial (AVAiL). Ann Oncol. 21:1804–1809. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Al-Husein B, Abdalla M, Trepte M, Deremer
DL and Somanath PR: Antiangiogenic therapy for cancer: An update.
Pharmacotherapy. 32:1095–1111. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Poveda AM, Selle F, Hilpert F, Reuss A,
Savarese A, Vergote I, Witteveen P, Bamias A, Scotto N, Mitchell L,
et al: Bevacizumab combined with weekly paclitaxel, pegylated
liposomal doxorubicin, or topotecan in platinum-resistant recurrent
ovarian cancer: Analysis by chemotherapy cohort of the randomized
phase III AURELIA trial. J Clin Oncol. 33:3836–3838. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu JF and Matulonis UA: Bevacizumab in
newly diagnosed ovarian cancer. Lancet Oncol. 16:876–878. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Krill LS and Tewari KS: Integration of
bevacizumab with chemotherapy doublets for advanced cervical
cancer. Expert Opin Pharmacother. 16:675–683. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Crafton SM and Salani R: Beyond
chemotherapy: An overview and review of targeted therapy in
cervical cancer. Clin Ther. 38:449–458. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wu P, Nielsen TE and Clausen MH:
FDA-approved small-molecule kinase inhibitors. Trends Pharmacol
Sci. 36:422–439. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wu P, Nielsen TE and Clausen MH:
Small-molecule kinase inhibitors: An analysis of FDA-approved
drugs. Drug Discov Today. 21:5–10. 2016. View Article : Google Scholar
|
|
26
|
Ciombor KK and Berlin J: Aflibercept - a
decoy VEGF receptor. Curr Oncol Rep. 16:3682014. View Article : Google Scholar
|
|
27
|
Aprile G, Rijavec E, Fontanella C, Rihawi
K and Grossi F: Ramucirumab: Preclinical research and clinical
development. Onco Targets Ther. 7:1997–2006. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tiwari P: Ramucirumab: Boon or bane. J
Egypt Natl Canc Inst. 28:133–140. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
(http://www.fda.gov/).
Accessed 22 Apr 2016
|
|
30
|
Calero R, Morchon E, Johnsen JI and
Serrano R: Sunitinib suppress neuroblastoma growth through
degradation of MYCN and inhibition of angiogenesis. PLoS One.
9:e956282014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Maj E, Filip-Psurska B, Świtalska M,
Kutner A, Wietrzyk J and Vitamin D: Vitamin D analogs potentiate
the antitumor effect of imatinib mesylate in a human A549 lung
tumor model. Int J Mol Sci. 16:27191–27207. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Legros L, Bourcier C, Jacquel A, Mahon FX,
Cassuto JP, Auberger P and Pagès G: Imatinib mesylate (STI571)
decreases the vascular endothelial growth factor plasma
concentration in patients with chronic myeloid leukemia. Blood.
104:495–501. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kerbel RS, Viloria-Petit A, Klement G and
Rak J: ‘Accidental’ anti-angiogenic drugs: anti-oncogene directed
signal transduction inhibitors and conventional chemotherapeutic
agents as examples. Eur J Cancer. 36:1248–1257. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Klement G, Baruchel S, Rak J, Man S, Clark
K, Hicklin DJ, Bohlen P and Kerbel RS: Continuous low-dose therapy
with vinblastine and VEGF receptor-2 antibody induces sustained
tumor regression without overt toxicity. J Clin Invest.
105:R15–R24. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Man S, Bocci G, Francia G, Green SK, Jothy
S, Hanahan D, Bohlen P, Hicklin DJ, Bergers G and Kerbel RS:
Antitumor effects in mice of low-dose (metronomic) cyclophosphamide
administered continuously through the drinking water. Cancer Res.
62:2731–2735. 2002.PubMed/NCBI
|
|
36
|
Wu H, Xin Y, Zhao J, Sun D, Li W, Hu Y and
Wang S: Metronomic docetaxel chemotherapy inhibits angiogenesis and
tumor growth in a gastric cancer model. Cancer Chemother Pharmacol.
68:879–887. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Guo XL, Lin GJ, Zhao H, Gao Y, Qian LP, Xu
SR, Fu LN, Xu Q and Wang JJ: Inhibitory effects of docetaxel on
expression of VEGF, bFGF and MMPs of LS174T cell. World J
Gastroenterol. 9:1995–1998. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Blazejczyk A, Papiernik D, Porshneva K,
Sadowska J and Wietrzyk J: Endothelium and cancer metastasis:
Perspectives for antimetastatic therapy. Pharmacol Rep. 67:711–718.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sagar SM, Yance D and Wong RK: Natural
health products that inhibit angiogenesis: A potential source for
investigational new agents to treat cancer-Part 1. Curr Oncol.
13:14–26. 2006.
|
|
40
|
Sagar SM, Yance D and Wong RK: Natural
health products that inhibit angiogenesis: A potential source for
investigational new agents to treat cancer-Part 2. Curr Oncol.
13:99–107. 2006.
|
|
41
|
Sulaiman RS, Basavarajappa HD and Corson
TW: Natural product inhibitors of ocular angiogenesis. Exp Eye Res.
129:161–171. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Singh M, Singh P and Shukla Y: New
strategies in cancer chemoprevention by phytochemicals. Front
Biosci (Elite Ed). 4:426–452. 2012. View
Article : Google Scholar
|
|
43
|
Kang X, Jin S and Zhang Q: Antitumor and
antiangiogenic activity of soy phytoestrogen on
7,12-dimethylbenz[alpha] anthracene-induced mammary tumors
following ovariectomy in Sprague-Dawley rats. J Food Sci.
74:H237–H242. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Uifălean A, Schneider S, Ionescu C, Lalk M
and Iuga CA: Soy isoflavones and breast cancer cell lines:
molecular mechanisms and future perspectives. Molecules.
21:E132015. View Article : Google Scholar
|
|
45
|
Wietrzyk J, Opolski A, Madej J and
Radzikowski C: Antitumour and antimetastatic effect of genistein
alone or combined with cyclophosphamide in mice transplanted with
various tumours depends on the route of tumour transplantation. In
Vivo. 14:357–362. 2000.PubMed/NCBI
|
|
46
|
Wietrzyk J, Opolski A, Madej J and
Radzikowski C: The antitumor effect of postoperative treatment with
genistein alone or combined with cyclophosphamide in mice bearing
transplantable tumors. Acta Pol Pharm. 57(Suppl): 5–8. 2000.
|
|
47
|
Wietrzyk J, Boratynski J, Grynkiewicz G,
Ryczynski A, Radzikowski C and Opolski A: Antiangiogenic and
antitumour effects in vivo of genistein applied alone or combined
with cyclophosphamide. Anticancer Res. 21:3893–3896. 2001.
|
|
48
|
Park SY, Jeong KJ, Lee J, Yoon DS, Choi
WS, Kim YK, Han JW, Kim YM, Kim BK and Lee HY: Hypoxia enhances
LPA-induced HIF-1alpha and VEGF expression: Their inhibition by
resveratrol. Cancer Lett. 258:63–69. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yu H, Pan C, Zhao S, Wang Z, Zhang H and
Wu W: Resveratrol inhibits tumor necrosis factor-alpha-mediated
matrix metal-loproteinase-9 expression and invasion of human
hepatocellular carcinoma cells. Biomed Pharmacother. 62:366–372.
2008. View Article : Google Scholar
|
|
50
|
Ma Y, Johnson CS and Trump DL: Mechanistic
insights of Vitamin D anticancer effects. Vitam Horm. 100:395–431.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jäpelt RB and Jakobsen J: Vitamin D in
plants: A review of occurrence, analysis, and biosynthesis. Front
Plant Sci. 4:1362013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Haussler MR, Jurutka PW, Mizwicki M and
Norman AW: Vitamin D receptor (VDR)-mediated actions of
1α,25(OH)2vitamin D3: Genomic and non-genomic
mechanisms. Best Pract Res Clin Endocrinol Metab. 25:543–559. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Feldman D, Krishnan AV, Swami S,
Giovannucci E and Feldman BJ: The role of vitamin D in reducing
cancer risk and progression. Nat Rev Cancer. 14:342–357. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Oikawa T, Hirotani K, Ogasawara H,
Katayama T, Nakamura O, Iwaguchi T and Hiragun A: Inhibition of
angiogenesis by vitamin D3 analogues. Eur J Pharmacol. 178:247–250.
1990. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bao BY, Yao J and Lee YF: 1alpha,
25-dihydroxyvitamin D3 suppresses interleukin-8-mediated prostate
cancer cell angiogenesis. Carcinogenesis. 27:1883–1893. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ben-Shoshan M, Amir S, Dang DT, Dang LH,
Weisman Y and Mabjeesh NJ: 1alpha,25-dihydroxyvitamin D3
(Calcitriol) inhibits hypoxia-inducible factor-1/vascular
endothelial growth factor pathway in human cancer cells. Mol Cancer
Ther. 6:1433–1439. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chung I, Han G, Seshadri M, Gillard BM, Yu
WD, Foster BA, Trump DL and Johnson CS: Role of vitamin D receptor
in the antiproliferative effects of calcitriol in tumor-derived
endothelial cells and tumor angiogenesis in vivo. Cancer Res.
69:967–975. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Iseki K, Tatsuta M, Uehara H, Iishi H,
Yano H, Sakai N and Ishiguro S: Inhibition of angiogenesis as a
mechanism for inhibition by 1alpha-hydroxyvitamin D3 and
1,25-dihydroxyvitamin D3 of colon carcinogenesis induced by
azoxymethane in Wistar rats. Int J Cancer. 81:730–733. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Nakagawa K, Sasaki Y, Kato S, Kubodera N
and Okano T: 22-Oxa-1alpha,25-dihydroxyvitamin D3
inhibits metastasis and angiogenesis in lung cancer.
Carcinogenesis. 26:1044–1054. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wietrzyk J, Filip B, Milczarek M,
Klopotowska D, Maciejewska M, Dabrowska K, Kurzepa A, Dzimira S,
Madej J and Kutner A: The influence of 1,25-dihydroxyvitamin
D3 and 1,24-dihydroxyvitamin D3 on
αvβ3 integrin expression in cancer cell lines. Oncol
Rep. 20:941–952. 2008.PubMed/NCBI
|
|
61
|
Jones G, Strugnell SA and DeLuca HF:
Current understanding of the molecular actions of vitamin D.
Physiol Rev. 78:1193–1231. 1998.PubMed/NCBI
|
|
62
|
Ma Y, Trump DL and Johnson CS: Vitamin D
in combination cancer treatment. J Cancer. 1:101–107. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Leyssens C, Verlinden L and Verstuyf A:
The future of vitamin D analogs. Front Physiol. 5:1222014.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Milczarek M, Psurski M, Kutner A and
Wietrzyk J: Vitamin D analogs enhance the anticancer activity of
5-fluorouracil in an in vivo mouse colon cancer model. BMC Cancer.
13:2942013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Milczarek M, Filip-Psurska B, Swiętnicki
W, Kutner A and Wietrzyk J: Vitamin D analogs combined with
5-fluorouracil in human HT-29 colon cancer treatment. Oncol Rep.
32:491–504. 2014.PubMed/NCBI
|
|
66
|
Okamoto R, Delansorne R, Wakimoto N, Doan
NB, Akagi T, Shen M, Ho QH, Said JW and Koeffler HP: Inecalcitol,
an analog of 1α,25(OH)2D3, induces growth
arrest of androgen-dependent prostate cancer cells. Int J Cancer.
130:2464–2473. 2012. View Article : Google Scholar
|
|
67
|
Protiva P, Pendyala S, Nelson C,
Augenlicht LH, Lipkin M and Holt PR: Calcium and
1,25-dihydroxyvitamin D3 modulate genes of immune and inflammatory
pathways in the human colon: A human crossover trial. Am J Clin
Nutr. 103:1224–1231. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lappe JM, Travers-Gustafson D, Davies KM,
Recker RR and Heaney RP: Vitamin D and calcium supplementation
reduces cancer risk: Results of a randomized trial. Am J Clin Nutr.
85:1586–1591. 2007.PubMed/NCBI
|
|
69
|
Jacot W, Firmin N, Roca L, Topart D,
Gallet S, Durigova A, Mirr S, Abach L, Pouderoux S, D'Hondt V, et
al: Impact of a tailored oral vitamin D supplementation regimen on
serum 25-hydroxyvitamin D levels in early breast cancer patients: A
randomized phase III study. Ann Oncol. 27:1235–1241. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Bjelakovic G, Gluud LL, Nikolova D,
Whitfield K, Krstic G, Wetterslev J and Gluud C: Vitamin D
supplementation for prevention of cancer in adults. Cochrane
Database Syst Rev. (6): CD0074692014.PubMed/NCBI
|
|
71
|
Crew KD: Vitamin D: Are we ready to
supplement for breast cancer prevention and treatment? ISRN
Oncology. 2013:2013.Article ID 483687. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kim KJ, Li B, Winer J, Armanini M, Gillett
N, Phillips HS and Ferrara N: Inhibition of vascular endothelial
growth factor-induced angiogenesis suppresses tumour growth in
vivo. Nature. 362:841–844. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Jain RK, Duda DG, Clark JW and Loeffler
JS: Lessons from phase III clinical trials on anti-VEGF therapy for
cancer. Nat Clin Pract Oncol. 3:24–40. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Jayson GC, Hicklin DJ and Ellis LM:
Antiangiogenic therapy-evolving view based on clinical trial
results. Nat Rev Clin Oncol. 9:297–303. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Jain RK: Normalizing tumor vasculature
with anti-angiogenic therapy: A new paradigm for combination
therapy. Nat Med. 7:987–989. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Jain RK: Normalization of tumor
vasculature: An emerging concept in antiangiogenic therapy.
Science. 307:58–62. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yuan F, Chen Y, Dellian M, Safabakhsh N,
Ferrara N and Jain RK: Time-dependent vascular regression and
permeability changes in established human tumor xenografts induced
by an anti-vascular endothelial growth factor/vascular permeability
factor antibody. Proc Natl Acad Sci USA. 93:14765–14770. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Dickson PV, Hamner JB, Sims TL, Fraga CH,
Ng CYC, Rajasekeran S, Hagedorn NL, McCarville MB, Stewart CF and
Davidoff AM: Bevacizumab-induced transient remodeling of the
vasculature in neuroblastoma xenografts results in improved
delivery and efficacy of systemically administered chemotherapy.
Clin Cancer Res. 13:3942–3950. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Myers AL, Williams RF, Ng CY, Hartwich JE
and Davidoff AM: Bevacizumab-induced tumor vessel remodeling in
rhabdomyosarcoma xenografts increases the effectiveness of adjuvant
ionizing radiation. J Pediatr Surg. 45:1080–1085. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Inai T, Mancuso M, Hashizume H, Baffert F,
Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G,
Yancopoulos GD, et al: Inhibition of vascular endothelial growth
factor (VEGF) signaling in cancer causes loss of endothelial
fenestrations, regression of tumor vessels, and appearance of
basement membrane ghosts. Am J Pathol. 165:35–52. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhou Q, Guo P and Gallo JM: Impact of
angiogenesis inhibition by sunitinib on tumor distribution of
temozolomide. Clin Cancer Res. 14:1540–1549. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhou Q and Gallo JM: Differential effect
of sunitinib on the distribution of temozolomide in an orthotopic
glioma model. Neuro Oncol. 11:301–310. 2009. View Article : Google Scholar :
|
|
83
|
Willett CG, Boucher Y, di Tomaso E, Duda
DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, et
al: Direct evidence that the VEGF-specific antibody bevacizumab has
antivascular effects in human rectal cancer. Nat Med. 10:145–147.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Shi S, Chen L and Huang G: Antiangiogenic
therapy improves the antitumor effect of adoptive cell
immunotherapy by normalizing tumor vasculature. Med Oncol.
30:6982013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Huang Y, Yuan J, Righi E, Kamoun WS,
Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR,
Vianello F, et al: Vascular normalizing doses of antiangiogenic
treatment reprogram the immunosuppressive tumor microenvironment
and enhance immunotherapy. Proc Natl Acad Sci USA. 109:17561–17566.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Mancuso MR, Davis R, Norberg SM, O'Brien
S, Sennino B, Nakahara T, Yao VJ, Inai T, Brooks P, Freimark B, et
al: Rapid vascular regrowth in tumors after reversal of VEGF
inhibition. J Clin Invest. 116:2610–2621. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Griffioen AW, Mans LA, de Graaf AMA,
Nowak-Sliwinska P, de Hoog CL, de Jong TAM, Vyth-Dreese FA, van
Beijnum JR, Bex A and Jonasch E: Rapid angiogenesis onset after
discontinuation of sunitinib treatment of renal cell carcinoma
patients. Clin Cancer Res. 18:3961–3971. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wolter P, Beuselinck B, Pans S and
Schöffski P: Flare-up: An often unreported phenomenon nevertheless
familiar to oncologists prescribing tyrosine kinase inhibitors.
Acta Oncol. 48:621–624. 2009. View Article : Google Scholar
|
|
89
|
Chen DR, Lin C and Wang YF: Window of
opportunity: A new insight into sequential bevacizumab and
paclitaxel in two cases of metastatic triple-negative breast
cancer. Exp Ther Med. 10:885–888. 2015.PubMed/NCBI
|
|
90
|
Lee CG, Heijn M, di Tomaso E,
Griffon-Etienne G, Ancukiewicz M, Koike C, Park KR, Ferrara N, Jain
RK, Suit HD, et al: Anti-Vascular endothelial growth factor
treatment augments tumor radiation response under normoxic or
hypoxic conditions. Cancer Res. 60:5565–5570. 2000.PubMed/NCBI
|
|
91
|
Zhang L, Takara K, Yamakawa D, Kidoya H
and Takakura N: Apelin as a marker for monitoring the tumor vessel
normalization window during antiangiogenic therapy. Cancer Sci.
107:36–44. 2016. View Article : Google Scholar :
|
|
92
|
McGee MC, Hamner JB, Williams RF, Rosati
SF, Sims TL, Ng CY, Gaber MW, Calabrese C, Wu J, Nathwani AC, et
al: Improved intratumoral oxygenation through vascular
normalization increases glioma sensitivity to ionizing radiation.
Int J Radiat Oncol Biol Phys. 76:1537–1545. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Dings RPM, Loren M, Heun H, McNiel E,
Griffioen AW, Mayo KH and Griffin RJ: Scheduling of radiation with
angiogenesis inhibitors anginex and Avastin improves therapeutic
outcome via vessel normalization. Clin Cancer Res. 13:3395–3402.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Vangestel C, Van de Wiele C, Van Damme N,
Staelens S, Pauwels P, Reutelingsperger CPM and Peeters M:
99mTc-(CO)3 His-annexin A5 micro-SPECT
demonstrates increased cell death by irinotecan during the vascular
normalization window caused by bevacizumab. J Nucl Med.
52:1786–1794. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hernandez-Agudo E, Mondejar T,
Soto-Montenegro ML, Megias D, Mouron S, Sanchez J, Hidalgo M,
Lopez-Casas PP, Mulero F, Desco M, et al: Monitoring vascular
normalization induced by antiangiogenic treatment with
F-fluoromisonidazole-PET. Mol Oncol. 10:704–718. 2015. View Article : Google Scholar
|
|
96
|
Cao Y: Off-tumor target--beneficial site
for antiangiogenic cancer therapy? Nat Rev Clin Oncol. 7:604–608.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yang Y, Zhang Y, Cao Z, Ji H, Yang X,
Iwamoto H, Wahlberg E, Länne T, Sun B and Cao Y: Anti-VEGF- and
anti-VEGF receptor-induced vascular alteration in mouse healthy
tissues. Proc Natl Acad Sci USA. 110:12018–12023. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wong AK, Alfert M, Castrillon DH, Shen Q,
Holash J, Yancopoulos GD and Chin L: Excessive tumor-elaborated
VEGF and its neutralization define a lethal paraneoplastic
syndrome. Proc Natl Acad Sci USA. 98:7481–7486. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Pelosof LC and Gerber DE: Paraneoplastic
syndromes: An approach to diagnosis and treatment. Mayo Clin Proc.
85:838–854. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Xue Y, Religa P, Cao R, Hansen AJ,
Lucchini F, Jones B, Wu Y, Zhu Z, Pytowski B, Liang Y, et al:
Anti-VEGF agents confer survival advantages to tumor-bearing mice
by improving cancer-associated systemic syndrome. Proc Natl Acad
Sci USA. 105:18513–18518. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Cao Y: Future options of anti-angiogenic
cancer therapy. Chin J Cancer. 35:212016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Jain RK: Normalizing tumor
microenvironment to treat cancer: Bench to bedside to biomarkers. J
Clin Oncol. 31:2205–2218. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Loges S, Schmidt T and Carmeliet P:
Mechanisms of resistance to anti-angiogenic therapy and development
of third-generation anti-angiogenic drug candidates. Genes Cancer.
1:12–25. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Bergers G and Hanahan D: Modes of
resistance to anti-angiogenic therapy. Nat Rev Cancer. 8:592–603.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
van Beijnum JR, Nowak-Sliwinska P,
Huijbers EJM, Thijssen VL and Griffioen AW: The great escape; the
hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev.
67:441–461. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Willett CG, Boucher Y, Duda DG, di Tomaso
E, Munn LL, Tong RT, Kozin SV, Petit L, Jain RK, Chung DC, et al:
Surrogate markers for antiangiogenic therapy and dose-limiting
toxicities for bevacizumab with radiation and chemotherapy:
Continued experience of a phase I trial in rectal cancer patients.
J Clin Oncol. 23:8136–8139. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kopetz S, Hoff PM, Morris JS, Wolff RA,
Eng C, Glover KY, Adinin R, Overman MJ, Valero V, Wen S, et al:
Phase II trial of infusional fluorouracil, irinotecan, and
bevacizumab for metastatic colorectal cancer: Efficacy and
circulating angiogenic biomarkers associated with therapeutic
resistance. J Clin Oncol. 28:453–459. 2010. View Article : Google Scholar :
|
|
108
|
Huang D, Ding Y, Zhou M, Rini BI, Petillo
D, Qian CN, Kahnoski R, Futreal PA, Furge KA and Teh BT:
Interleukin-8 mediates resistance to antiangiogenic agent sunitinib
in renal cell carcinoma. Cancer Res. 70:1063–1071. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Batchelor TT, Sorensen AG, di Tomaso E,
Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M,
et al: AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor,
normalizes tumor vasculature and alleviates edema in glioblastoma
patients. Cancer Cell. 11:83–95. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lindholm EM, Krohn M, Iadevaia S, Kristian
A, Mills GB, Mælandsmo GM and Engebraaten O: Proteomic
characterization of breast cancer xenografts identifies early and
late bevacizumab-induced responses and predicts effective drug
combinations. Clin Cancer Res. 20:404–412. 2014. View Article : Google Scholar
|
|
111
|
Ebos JML, Lee CR, Christensen JG, Mutsaers
AJ and Kerbel RS: Multiple circulating proangiogenic factors
induced by sunitinib malate are tumor-independent and correlate
with antitumor efficacy. Proc Natl Acad Sci USA. 104:17069–17074.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Finke J, Ko J, Rini B, Rayman P, Ireland J
and Cohen P: MDSC as a mechanism of tumor escape from sunitinib
mediated anti-angiogenic therapy. Int Immunopharmacol. 11:856–861.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Shojaei F, Wu X, Malik AK, Zhong C,
Baldwin ME, Schanz S, Fuh G, Gerber HP and Ferrara N: Tumor
refractoriness to anti-VEGF treatment is mediated by
CD11b+Gr1+ myeloid cells. Nat Biotechnol.
25:911–920. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Shojaei F, Wu X, Zhong C, Yu L, Liang XH,
Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, et al: Bv8
regulates myeloid-cell-dependent tumour angiogenesis. Nature.
450:825–831. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Tartour E, Pere H, Maillere B, Terme M,
Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K,
Karadimou A, et al: Angiogenesis and immunity: A bidirectional link
potentially relevant for the monitoring of antiangiogenic therapy
and the development of novel therapeutic combination with
immunotherapy. Cancer Metastasis Rev. 30:83–95. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Mantovani A, Biswas SK, Galdiero MR, Sica
A and Locati M: Macrophage plasticity and polarization in tissue
repair and remodelling. J Pathol. 229:176–185. 2013. View Article : Google Scholar
|
|
117
|
Orimo A, Gupta PB, Sgroi DC,
Arenzana-Seisdedos F, Delaunay 0T, Naeem R, Carey VJ, Richardson AL
and Weinberg RA: Stromal fibroblasts present in invasive human
breast carcinomas promote tumor growth and angiogenesis through
elevated SDF-1/CXCL12 secretion. Cell. 121:335–348. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Crawford Y, Kasman I, Yu L, Zhong C, Wu X,
Modrusan Z, Kaminker J and Ferrara N: PDGF-C mediates the
angiogenic and tumorigenic properties of fibroblasts associated
with tumors refractory to anti-VEGF treatment. Cancer Cell.
15:21–34. 2009. View Article : Google Scholar
|
|
119
|
Gerhardt H and Betsholtz C:
Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res.
314:15–23. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Welti J, Loges S, Dimmeler S and Carmeliet
P: Recent molecular discoveries in angiogenesis and antiangiogenic
therapies in cancer. J Clin Invest. 123:3190–3200. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Soda Y, Myskiw C, Rommel A and Verma IM:
Mechanisms of neovascularization and resistance to anti-angiogenic
therapies in glioblastoma multiforme. J Mol Med (Berl). 91:439–448.
2013. View Article : Google Scholar
|