|
1
|
Lee JJ, Loh K and Yap YS: PI3K/Akt/mTOR
inhibitors in breast cancer. Cancer Biol Med. 12:342–354. 2015.
|
|
2
|
Robbins HL and Hague A: The PI3K/Akt
pathway in tumors of endocrine tissues. Front Endocrinol
(Lausanne). 6:1882016.
|
|
3
|
Faes S and Dormond O: PI3K and AKT:
Unfaithful partners in cancer. Int J Mol Sci. 16:21138–21152. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gesmundo I, Villanova T, Gargantini E,
Arvat E, Ghigo E and Granata R: The mineralocorticoid agonist
fludrocortisone promotes survival and proliferation of adult
hippocampal progenitors. Front Endocrinol (Lausanne). 7:662016.
|
|
5
|
Wahane SD, Hellbach N, Prentzell MT, Weise
SC, Vezzali R, Kreutz C, Timmer J, Krieglstein K, Thedieck K and
Vogel T: PI3K-p110-alpha-subtype signalling mediates survival,
proliferation and neurogenesis of cortical progenitor cells via
activation of mTORC2. J Neurochem. 130:255–267. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Simper NB, Jones CL, MacLennan GT,
Montironi R, Williamson SR, Osunkoya AO, Wang M, Zhang S, Grignon
DJ, Eble JN, et al: Basal cell carcinoma of the prostate is an
aggressive tumor with frequent loss of PTEN expression and
overexpression of EGFR. Hum Pathol. 46:805–812. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Fallahabadi ZR, Noori Daloii MR, Mahdian
R, Behjati F, Shokrgozar MA, Abolhasani M, Asgari M and Shahrokh H:
Frequency of PTEN alterations, TMPRSS2-ERG fusion and their
association in prostate cancer. Gene. 575:755–760. 2016. View Article : Google Scholar
|
|
8
|
Collaud S, Tischler V, Atanassoff A, Wiedl
T, Komminoth P, Oehlschlegel C, Weder W and Soltermann A: Lung
neuroendocrine tumors: Correlation of ubiquitinylation and
sumoylation with nucleo-cytosolic partitioning of PTEN. BMC Cancer.
15:742015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chen SY, Zheng XW, Cai JX, Zhang WP, You
HS, Xing JF and Dong YL: Histone deacetylase inhibitor reverses
multidrug resistance by attenuating the nucleophosmin level through
PI3K/Akt pathway in breast cancer. Int J Oncol. 49:294–304.
2016.PubMed/NCBI
|
|
10
|
Sinagra T, Tamburella A, Urso V, Siarkos
I, Drago F, Bucolo C and Salomone S: Reversible inhibition of
vasoconstriction by thiazolidinediones related to PI3K/Akt
inhibition in vascular smooth muscle cells. Biochem Pharmacol.
85:551–559. 2013. View Article : Google Scholar
|
|
11
|
Day J, Gillespie DC, Rooney AG, Bulbeck
HJ, Zienius K, Boele F and Grant R: Neurocognitive deficits and
neurocognitive rehabilitation in adult brain tumors. Curr Treat
Options Neurol. 18:222016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Cheung YT and Krull KR: Neurocognitive
outcomes in long-term survivors of childhood acute lymphoblastic
leukemia treated on contemporary treatment protocols: A systematic
review. Neurosci Biobehav Rev. 53:108–120. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zheng Q, Yang L, Tan LM, Qin LX, Wang CY
and Zhang HN: Stroke-like migraine attacks after radiation therapy
syndrome. Chin Med J (Engl). 128:2097–2101. 2015. View Article : Google Scholar
|
|
14
|
Ricard D, Taillia H and Renard JL: Brain
damage from anticancer treatments in adults. Curr Opin Oncol.
21:559–565. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Goh CP, Putz U, Howitt J, Low LH,
Gunnersen J, Bye N, Morganti-Kossmann C and Tan SS: Nuclear
trafficking of Pten after brain injury leads to neuron survival not
death. Exp Neurol. 252:37–46. 2014. View Article : Google Scholar
|
|
16
|
Qin J, Xie Y, Wang B, Hoshino M, Wolff DW,
Zhao J, Scofield MA, Dowd FJ, Lin MF and Tu Y: Upregulation of
PIP3-dependent Rac exchanger 1 (P-Rex1) promotes prostate cancer
metastasis. Oncogene. 28:1853–1863. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chen F, Chen X, Yang D, Che X, Wang J, Li
X, Zhang Z, Wang Q, Zheng W, Wang L, et al: Isoquercitrin inhibits
bladder cancer progression in vivo and in vitro by regulating the
PI3K/Akt and PKC signaling pathways. Oncol Rep. 36:165–172.
2016.PubMed/NCBI
|
|
18
|
Zhang J, Yu XH, Yan YG, Wang C and Wang
WJ: PI3K/Akt signaling in osteosarcoma. Clin Chim Acta.
444:182–192. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Manfredi GI, Dicitore A, Gaudenzi G,
Caraglia M, Persani L and Vitale G: PI3K/Akt/mTOR signaling in
medullary thyroid cancer: A promising molecular target for cancer
therapy. Endocrine. 48:363–370. 2015. View Article : Google Scholar
|
|
20
|
Goschzik T, Gessi M, Denkhaus D and
Pietsch T: PTEN mutations and activation of the PI3K/Akt/mTOR
signaling pathway in papillary tumors of the pineal region. J
Neuropathol Exp Neurol. 73:747–751. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Han X, Ji Y, Zhao J, Xu X and Lou W:
Expression of PTEN and mTOR in pancreatic neuroendocrine tumors.
Tumour Biol. 34:2871–2879. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lee M, Wiedemann T, Gross C, Leinhäuser I,
Roncaroli F, Braren R and Pellegata NS: Targeting PI3K/mTOR
signaling displays potent antitumor efficacy against nonfunctioning
pituitary adenomas. Clin Cancer Res. 21:3204–3215. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bony C, Roche S, Shuichi U, Sasaki T,
Crackower MA, Penninger J, Mano H and Pucéat M: A specific role of
phosphatidylinositol 3-kinase gamma. A regulation of autonomic
Ca2+ oscillations in cardiac cells. J Cell Biol.
152:717–728. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yanamandra M, Mitra S and Giri A:
Development and application of PI3K assays for novel drug
discovery. Expert Opin Drug Discov. 10:171–186. 2015. View Article : Google Scholar
|
|
25
|
Lassen A, Atefi M, Robert L, Wong DJ,
Cerniglia M, Comin-Anduix B and Ribas A: Effects of AKT inhibitor
therapy in response and resistance to BRAF inhibition in melanoma.
Mol Cancer. 13:832014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Schilling T and Eder C: Stimulus-dependent
requirement of ion channels for microglial NADPH oxidase-mediated
production of reactive oxygen species. J Neuroimmunol. 225:190–194.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Clark LF and Kodadek T: The immune system
and neuroinflammation as potential sources of blood-based
biomarkers for Alzheimer's disease, Parkinson's disease, and
Huntington's disease. ACS Chem Neurosci. 7:520–527. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lam M, Oleinick NL and Nieminen AL:
Photodynamic therapy-induced apoptosis in epidermoid carcinoma
cells. Reactive oxygen species and mitochondrial inner membrane
permeabilization. J Biol Chem. 276:47379–47386. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhu Y, Hoell P, Ahlemeyer B, Sure U,
Bertalanffy H and Krieglstein J: Implication of PTEN in production
of reactive oxygen species and neuronal death in in vitro models of
stroke and Parkinson's disease. Neurochem Int. 50:507–516. 2007.
View Article : Google Scholar
|
|
30
|
Lim HJ, Crowe P and Yang JL: Current
clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment
of human cancer. J Cancer Res Clin Oncol. 141:671–689. 2015.
View Article : Google Scholar
|
|
31
|
Kitagishi Y and Matsuda S: Diets involved
in PPAR and PI3K/AKT/PTEN pathway may contribute to neuroprotection
in a traumatic brain injury. Alzheimers Res Ther. 5:422013.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu NK and Xu XM: Neuroprotection and its
molecular mechanism following spinal cord injury. Neural Regen Res.
7:2051–2062. 2012.PubMed/NCBI
|
|
33
|
Cheng B, Martinez AA, Morado J, Scofield
V, Roberts JL and Maffi SK: Retinoic acid protects against
proteasome inhibition associated cell death in SH-SY5Y cells via
the AKT pathway. Neurochem Int. 62:31–42. 2013. View Article : Google Scholar
|
|
34
|
Ermak G, Hench KJ, Chang KT, Sachdev S and
Davies KJ: Regulator of calcineurin (RCAN1-1L) is deficient in
Huntington disease and protective against mutant huntingtin
toxicity in vitro. J Biol Chem. 284:11845–11853. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Walker CL, Liu NK and Xu XM: PTEN/PI3K and
MAPK signaling in protection and pathology following CNS injuries.
Front Biol (Beijing). 8:421–433. 2013. View Article : Google Scholar
|
|
36
|
Delgado-Esteban M, Martin-Zanca D,
Andres-Martin L, Almeida A and Bolaños JP: Inhibition of PTEN by
peroxynitrite activates the phosphoinositide-3-kinase/Akt
neuroprotective signaling pathway. J Neurochem. 102:194–205. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Takeuchi K, Gertner MJ, Zhou J, Parada LF,
Bennett MV and Zukin RS: Dysregulation of synaptic plasticity
precedes appearance of morphological defects in a Pten conditional
knockout mouse model of autism. Proc Natl Acad Sci USA.
110:4738–4743. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li W, Huang R, Chen Z, Yan LJ, Simpkins JW
and Yang SH: PTEN degradation after ischemic stroke: A double-edged
sword. Neuroscience. 274:153–161. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sun F, Park KK, Belin S, Wang D, Lu T,
Chen G, Zhang K, Yeung C, Feng G, Yankner BA, et al: Sustained axon
regeneration induced by co-deletion of PTEN and SOCS3. Nature.
480:372–375. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Li Y, Low LH, Putz U, Goh CP, Tan SS and
Howitt J: Rab5 and Ndfip1 are involved in Pten ubiquitination and
nuclear trafficking. Traffic. 15:749–761. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mandelblatt JS, Hurria A, McDonald BC,
Saykin AJ, Stern RA, VanMeter JW, McGuckin M, Traina T, Denduluri
N, Turner S, et al; Thinking and Living With Cancer Study.
Cognitive effects of cancer and its treatments at the intersection
of aging: What do we know; what do we need to know? Semin Oncol.
40:709–725. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Evenden J: Cognitive impairments and
cancer chemotherapy: Translational research at a crossroads. Life
Sci. 93:589–595. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Walker CL and Xu XM: PTEN inhibitor
bisperoxovanadium protects oligodendrocytes and myelin and prevents
neuronal atrophy in adult rats following cervical hemicontusive
spinal cord injury. Neurosci Lett. 573:64–68. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Khalil B, El Fissi N, Aouane A,
Cabirol-Pol MJ, Rival T and Liévens JC: PINK1-induced mitophagy
promotes neuroprotection in Huntington's disease. Cell Death Dis.
6:e16172015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ozaita A, Puighermanal E and Maldonado R:
Regulation of PI3K/Akt/GSK-3 pathway by cannabinoids in the brain.
J Neurochem. 102:1105–1114. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Li S, Zhou Y, Wang R, Zhang H, Dong Y and
Ip C: Selenium sensitizes MCF-7 breast cancer cells to
doxorubicin-induced apoptosis through modulation of phospho-Akt and
its downstream substrates. Mol Cancer Ther. 6:1031–1038. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hui J, Zhang J, Kim H, Tong C, Ying Q, Li
Z, Mao X, Shi G, Yan J, Zhang Z, et al: Fluoxetine regulates
neurogenesis in vitro through modulation of GSK-3β/β-catenin
signaling. Int J Neuropsychopharmacol. 18:pyu0992014. View Article : Google Scholar
|
|
48
|
Park SW, Phuong VT, Lee CH, Lee JG, Seo
MK, Cho HY, Fang ZH, Lee BJ and Kim YH: Effects of antipsychotic
drugs on BDNF, GSK-3β, and β-catenin expression in rats subjected
to immobilization stress. Neurosci Res. 71:335–340. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Emamian ES, Hall D, Birnbaum MJ,
Karayiorgou M and Gogos JA: Convergent evidence for impaired
AKT1-GSK3beta signaling in schizophrenia. Nat Genet. 36:131–137.
2004. View
Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kozlovsky N, Amar S, Belmaker RH and Agam
G: Psychotropic drugs affect Ser9-phosphorylated GSK-3 beta protein
levels in rodent frontal cortex. Int J Neuropsychopharmacol.
9:337–342. 2006. View Article : Google Scholar
|
|
51
|
Shin SY, Lee KS, Choi YK, Lim HJ, Lee HG,
Lim Y and Lee YH: The antipsychotic agent chlorpromazine induces
autophagic cell death by inhibiting the Akt/mTOR pathway in human
U-87MG glioma cells. Carcinogenesis. 34:2080–2089. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Liu KJ, Lee YL, Yang YY, Shih NY, Ho CC,
Wu YC, Huang TS, Huang MC, Liu HC, Shen WW, et al: Modulation of
the development of human monocyte-derived dendritic cells by
lithium chloride. J Cell Physiol. 226:424–433. 2011. View Article : Google Scholar
|
|
53
|
Wu J, Li J, Hu H, Liu P, Fang Y and Wu D:
Rho-kinase inhibitor, fasudil, prevents neuronal apoptosis via the
Akt activation and PTEN inactivation in the ischemic penumbra of
rat brain. Cell Mol Neurobiol. 32:1187–1197. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu B, Li L, Zhang Q, Chang N, Wang D,
Shan Y, Li L, Wang H, Feng H, Zhang L, et al: Preservation of GABAA
receptor function by PTEN inhibition protects against neuronal
death in ischemic stroke. Stroke. 41:1018–1026. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Cai J, Yi Z, Lu W, Fang Y and Zhang C:
Crosstalk between 5-HT2cR and PTEN signaling pathway in atypical
antipsychotic-induced metabolic syndrome and cognitive dysfunction.
Med Hypotheses. 80:486–489. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mirones I, Angel Rodríguez-Milla M,
Cubillo I, Mariñas-Pardo L, de la Cueva T, Zapata A, González C,
Ramírez M and García-Castro J: Dopamine mobilizes mesenchymal
progenitor cells through D2-class receptors and their PI3K/AKT
pathway. Stem Cells. 32:2529–2538. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Stavarache MA, Musatov S, McGill M, Vernov
M and Kaplitt MG: The tumor suppressor PTEN regulates motor
responses to striatal dopamine in normal and Parkinsonian animals.
Neurobiol Dis. 82:487–494. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Souza BR, Romano-Silva MA and Tropepe V:
Dopamine D2 receptor activity modulates Akt signaling and alters
GABAergic neuron development and motor behavior in zebrafish
larvae. J Neurosci. 31:5512–5525. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Walker CL, Walker MJ, Liu NK, Risberg EC,
Gao X, Chen J and Xu XM: Systemic bisperoxovanadium activates
Akt/mTOR, reduces autophagy, and enhances recovery following
cervical spinal cord injury. PLoS One. 7:e300122012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mao D and Sun X: Reactivation of the
PI3K/Akt signaling pathway by the bisperoxovanadium compound
bpV(pic) attenuates photoreceptor apoptosis in experimental retinal
detachment. Invest Ophthalmol Vis Sci. 56:5519–5532. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Spinelli L, Lindsay YE and Leslie NR: PTEN
inhibitors: an evaluation of current compounds. Adv Biol Regul.
57:102–111. 2015. View Article : Google Scholar
|
|
62
|
Tian HY, Li ZX, Li HY, Wang HJ, Zhu XW and
Dou ZH: Effects of 14 single herbs on the induction of caspase-3 in
tumor cells: A brief review. Chin J Integr Med. 19:636–640. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Traka MH, Spinks CA, Doleman JF, Melchini
A, Ball RY, Mills RD and Mithen RF: The dietary isothiocyanate
sulforaphane modulates gene expression and alternative gene
splicing in a PTEN null preclinical murine model of prostate
cancer. Mol Cancer. 9:1892010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
de la Parra C, Castillo-Pichardo L,
Cruz-Collazo A, Cubano L, Redis R, Calin GA and Dharmawardhane S:
Soy isoflavone genistein-mediated downregulation of miR-155
contributes to the anticancer effects of genistein. Nutr Cancer.
68:154–164. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kwon OJ, Zhang B, Zhang L and Xin L: High
fat diet promotes prostatic basal-to-luminal differentiation and
accelerates initiation of prostate epithelial hyperplasia
originated from basal cells. Stem Cell Res (Amst). 16:682–691.
2016. View Article : Google Scholar
|
|
66
|
Aronchik I, Kundu A, Quirit JG and
Firestone GL: The antiproliferative response of indole-3-carbinol
in human melanoma cells is triggered by an interaction with NEDD4-1
and disruption of wild-type PTEN degradation. Mol Cancer Res.
12:1621–1634. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Eason RR, Velarde MC, Chatman L Jr, Till
SR, Geng Y, Ferguson M, Badger TM and Simmen RC: Dietary exposure
to whey proteins alters rat mammary gland proliferation, apoptosis,
and gene expression during postnatal development. J Nutr.
134:3370–3377. 2004.PubMed/NCBI
|
|
68
|
Rovito D, Giordano C, Vizza D, Plastina P,
Barone I, Casaburi I, Lanzino M, De Amicis F, Sisci D, Mauro L, et
al: Omega-3 PUFA ethanolamides DHEA and EPEA induce autophagy
through PPARγ activation in MCF-7 breast cancer cells. J Cell
Physiol. 228:1314–1322. 2013. View Article : Google Scholar
|
|
69
|
Ghosh-Choudhury T, Mandal CC, Woodruff K,
St Clair P, Fernandes G, Choudhury GG and Ghosh-Choudhury N: Fish
oil targets PTEN to regulate NFkappaB for downregulation of
anti-apoptotic genes in breast tumor growth. Breast Cancer Res
Treat. 118:213–228. 2009. View Article : Google Scholar
|
|
70
|
Moreira JD, Knorr L, Thomazi AP, Simão F,
Battú C, Oses JP, Gottfried C, Wofchuk S, Salbego C, Souza DO, et
al: Dietary omega-3 fatty acids attenuate cellular damage after a
hippocampal ischemic insult in adult rats. J Nutr Biochem.
21:351–356. 2010. View Article : Google Scholar
|
|
71
|
Yu H, Deng J and Zuo Z: High-fat diet
reduces neuroprotection of isoflurane post-treatment: Role of
carboxyl-terminal modulator protein-Akt signaling. Obesity (Silver
Spring). 22:2396–2405. 2014. View Article : Google Scholar
|
|
72
|
Liu H, Zang C, Emde A, Planas-Silva MD,
Rosche M, Kühnl A, Schulz CO, Elstner E, Possinger K and Eucker J:
Anti-tumor effect of honokiol alone and in combination with other
anticancer agents in breast cancer. Eur J Pharmacol. 591:43–51.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Xian YF, Ip SP, Mao QQ, Su ZR, Chen JN,
Lai XP and Lin ZX: Honokiol improves learning and memory
impairments induced by scopolamine in mice. Eur J Pharmacol.
760:88–95. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wong TF, Takeda T, Li B, Tsuiji K,
Kitamura M, Kondo A and Yaegashi N: Curcumin disrupts uterine
leiomyosarcoma cells through AKT-mTOR pathway inhibition. Gynecol
Oncol. 122:141–148. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Cao F, Liu T, Xu Y, Xu D and Feng S:
Curcumin inhibits cell proliferation and promotes apoptosis in
human osteoclastoma cell through MMP-9, NF-κB and JNK signaling
pathways. Int J Clin Exp Pathol. 8:6037–6045. 2015.
|
|
76
|
Hoppe JB, Coradini K, Frozza RL, Oliveira
CM, Meneghetti AB, Bernardi A, Pires ES, Beck RC and Salbego CG:
Free and nano-encapsulated curcumin suppress β-amyloid-induced
cognitive impairments in rats: Involvement of BDNF and Akt/GSK-3β
signaling pathway. Neurobiol Learn Mem. 106:134–144. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yoshida H, Okumura N, Kitagishi Y,
Nishimura Y and Matsuda S: Ethanol extract of Rosemary repressed
PTEN expression in K562 culture cells. Int J appl Biol Pharm
Technol. 2:316–322. 2011.
|
|
78
|
Choi SY, Kim YO, Son D, Lee J, Kim S, Kim
H, Kim S and Hur J: 3-[2-(3,5-Dimethoxyphenyl)vinyl]furan protects
hippocampal neurons against ischemic damage. Brain Res. 1472:32–37.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Tedeschi PM, Kathari YK, Farooqi IN and
Bertino JR: Leucovorin rescue allows effective high-dose
pralatrexate treatment and an increase in therapeutic index in
mesothelioma xenografts. Cancer Chemother Pharmacol. 74:1029–1032.
2014. View Article : Google Scholar : PubMed/NCBI
|