Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December-2016 Volume 49 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2016 Volume 49 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Crosstalk between autophagy and intracellular radiation response (Review)

  • Authors:
    • Lelin Hu
    • Hao Wang
    • Li Huang
    • Yong Zhao
    • Junjie Wang
  • View Affiliations / Copyright

    Affiliations: Department of Radiation Oncology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
  • Pages: 2217-2226
    |
    Published online on: October 5, 2016
       https://doi.org/10.3892/ijo.2016.3719
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Autophagy induced by radiation is critical to cell fate decision. Evidence now sheds light on the importance of autophagy induced by cancer radiotherapy. Traditional view considers radiation can directly or indirectly damage DNA which can activate DNA damage the repair signaling pathway, a large number of proteins participating in DNA damage repair signaling pathway such as p53, ATM, PARP1, FOXO3a, mTOR and SIRT1 involved in autophagy regulation. However, emerging recent evidence suggests radiation can also cause injury to extranuclear targets such as plasma membrane, mitochondria and endoplasmic reticulum (ER) and induce accumulation of ceramide, ROS, and Ca2+ concentration which activate many signaling pathways to modulate autophagy. Herein we review the role of autophagy in radiation therapy and the potent intracellular autophagic triggers induced by radiation. We aim to provide a more theoretical basis of radiation-induced autophagy, and provide novel targets for developing cytotoxic drugs to increase radiosensitivity.
View Figures

Figure 1

Figure 2

View References

1 

Jaboin JJ, Shinohara ET, Moretti L, Yang ES, Kaminski JM and Lu B: The role of mTOR inhibition in augmenting radiation induced autophagy. Technol Cancer Res Treat. 6:443–447. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Periyasamy P, Guo ML and Buch S: Cocaine induces astrocytosis through ER stress-mediated activation of autophagy. Autophagy. 12:1310–1329. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Codogno P: Shining light on autophagy. Nat Rev Mol Cell Biol. 15:1532014. View Article : Google Scholar : PubMed/NCBI

4 

Park JM, Jung CH, Seo M, Otto NM, Grunwald D, Kim KH, Moriarity B, Kim YM, Starker C, Nho RS, et al: The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy. 12:547–564. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Yao Z, Delorme-Axford E, Backues SK and Klionsky DJ: Atg41/Icy2 regulates autophagosome formation. Autophagy. 11:2288–2299. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Feng Y, Backues SK, Baba M, Heo JM, Harper JW and Klionsky DJ: Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate of autophagosome formation. Autophagy. 12:648–658. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Molejon MI, Ropolo A and Vaccaro MI: VMP1 is a new player in the regulation of the autophagy-specific phosphatidylinositol 3-kinase complex activation. Autophagy. 9:933–935. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Murrow L, Malhotra R and Debnath J: ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 17:300–310. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Perluigi M, Di Domenico F and Butterfield DA: mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis. 84:39–49. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Yang Z and Klionsky DJ: Mammalian autophagy: Core molecular machinery and signaling regulation. Curr Opin Cell Biol. 22:124–131. 2010. View Article : Google Scholar :

11 

Kroemer G, Mariño G and Levine B: Autophagy and the integrated stress response. Mol Cell. 40:280–293. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Dalby KN, Tekedereli I, Lopez-Berestein G and Ozpolat B: Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy. 6:322–329. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Ito H, Daido S, Kanzawa T, Kondo S and Kondo Y: Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol. 26:1401–1410. 2005.PubMed/NCBI

14 

Li X, Cen Y, Cai Y, Liu T, Liu H, Cao G, Liu D, Li B, Peng W, Zou J, et al: TLR9-ERK-mTOR signaling is critical for autophagic cell death induced by CpG oligodeoxynucleotide 107 combined with irradiation in glioma cells. Sci Rep. 6:271042016. View Article : Google Scholar : PubMed/NCBI

15 

Ko A, Kanehisa A, Martins I, Senovilla L, Chargari C, Dugue D, Mariño G, Kepp O, Michaud M, Perfettini JL, et al: Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ. 21:92–99. 2014. View Article : Google Scholar

16 

Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, et al: Consensus guidelines for the detection of immunogenic cell death. OncoImmunology. 3:e9556912014. View Article : Google Scholar

17 

Mo N, Lu YK, Xie WM, Liu Y, Zhou WX, Wang HX, Nong L, Jia YX, Tan AH, Chen Y, et al: Inhibition of autophagy enhances the radiosensitivity of nasopharyngeal carcinoma by reducing Rad51 expression. Oncol Rep. 32:1905–1912. 2014.PubMed/NCBI

18 

Sun Q, Liu T, Yuan Y, Guo Z, Xie G, Du S, Lin X, Xu Z, Liu M, Wang W, et al: MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer. 136:1003–1012. 2015. View Article : Google Scholar

19 

Yang Y, Yang Y, Yang X, Zhu H, Guo Q, Chen X, Zhang H, Cheng H and Sun X: Autophagy and its function in radiosensitivity. Tumour Biol. 36:4079–4087. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Wu SY, Liu YW, Wang YK, Lin TH, Li YZ, Chen SH and Lee YR: Ionizing radiation induces autophagy in human oral squamous cell carcinoma. J BUON. 19:137–144. 2014.PubMed/NCBI

21 

Saglar E, Unlu S, Babalioglu I, Gokce SC and Mergen H: Assessment of ER stress and autophagy induced by ionizing radiation in both radiotherapy patients and ex vivo irradiated samples. J Biochem Mol Toxicol. 28:413–417. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Bristol ML, Di X, Beckman MJ, Wilson EN, Henderson SC, Maiti A, Fan Z and Gewirtz DA: Dual functions of autophagy in the response of breast tumor cells to radiation: Cytoprotective autophagy with radiation alone and cytotoxic autophagy in radio-sensitization by vitamin D 3. Autophagy. 8:739–753. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Sharma K, Goehe RW, Di X, Hicks MA II, Torti SV, Torti FM, Harada H and Gewirtz DA: A novel cytostatic form of autophagy in sensitization of non-small cell lung cancer cells to radiation by vitamin D and the vitamin D analog, EB 1089. Autophagy. 10:2346–2361. 2014. View Article : Google Scholar

24 

Gewirtz DA, Hilliker ML and Wilson EN: Promotion of autophagy as a mechanism for radiation sensitization of breast tumor cells. Radiother Oncol. 92:323–328. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Sharma K, Le N, Alotaibi M and Gewirtz DA: Cytotoxic autophagy in cancer therapy. Int J Mol Sci. 15:10034–10051. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Huang YH, Yang PM, Chuah QY, Lee YJ, Hsieh YF, Peng CW and Chiu SJ: Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells. Autophagy. 10:1212–1228. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Golden EB, Pellicciotta I, Demaria S, Barcellos-Hoff MH and Formenti SC: The convergence of radiation and immunogenic cell death signaling pathways. Front Oncol. 2:882012. View Article : Google Scholar : PubMed/NCBI

28 

Saitoh T and Akira S: Regulation of innate immune responses by autophagy-related proteins. J Cell Biol. 189:925–935. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Wang Y, Martins I, Ma Y, Kepp O, Galluzzi L and Kroemer G: Autophagy-dependent ATP release from dying cells via lysosomal exocytosis. Autophagy. 9:1624–1625. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, et al: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 334:1573–1577. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Ratikan JA, Sayre JW and Schaue D: Chloroquine engages the immune system to eradicate irradiated breast tumors in mice. Int J Radiat Oncol Biol Phys. 87:761–768. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas A and Gorgoulis VG: The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett. 356:43–51. 2015. View Article : Google Scholar

33 

Sengupta S and Harris CC: p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol. 6:44–55. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Smith J, Tho LM, Xu N and Gillespie DA: The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res. 108:73–112. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Liang N, Jia L, Liu Y, Liang B, Kong D, Yan M, Ma S and Liu X: ATM pathway is essential for ionizing radiation-induced autophagy. Cell Signal. 25:2530–2539. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Jen KY and Cheung VG: Identification of novel p53 target genes in ionizing radiation response. Cancer Res. 65:7666–7673. 2005.PubMed/NCBI

37 

Li M, Brooks CL, Wu-Baer F, Chen D, Baer R and Gu W: Mono-versus polyubiquitination: Differential control of p53 fate by Mdm2. Science. 302:1972–1975. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Fei P and El-Deiry WS: P53 and radiation responses. Oncogene. 22:5774–5783. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Tang J, Di J, Cao H, Bai J and Zheng J: p53-mediated autophagic regulation: A prospective strategy for cancer therapy. Cancer Lett. 363:101–107. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Zheng R, Yao Q, Du S, Ren C, Sun Q, Xu Z, Lin X and Yuan Y: The status of p53 in cancer cells affects the role of autophagy in tumor radiosensitisation. J BUON. 19:336–341. 2014.PubMed/NCBI

41 

Feng Z, Zhang H, Levine AJ and Jin S: The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 102:8204–8209. 2005. View Article : Google Scholar : PubMed/NCBI

42 

Cui L, Song Z, Liang B, Jia L, Ma S and Liu X: Radiation induces autophagic cell death via the p53/DRAM signaling pathway in breast cancer cells. Oncol Rep. 35:3639–3647. 2016.PubMed/NCBI

43 

Xu K, Liu P and Wei W: mTOR signaling in tumorigenesis. Biochim Biophys Acta. 1846:638–654. 2014.PubMed/NCBI

44 

Zheng H, Wang M, Wu J, Wang ZM, Nan HJ and Sun H: Inhibition of mTOR enhances radiosensitivity of lung cancer cells and protects normal lung cells against radiation. Biochem Cell Biol. 94:213–220. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, et al: Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 331:456–461. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Hönscheid P, Datta K and Muders MH: Autophagy: Detection, regulation and its role in cancer and therapy response. Int J Radiat Biol. 90:628–635. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Nagata Y, Takahashi A, Ohnishi K, Ota I, Ohnishi T, Tojo T and Taniguchi S: Effect of rapamycin, an mTOR inhibitor, on radiation sensitivity of lung cancer cells having different p53 gene status. Int J Oncol. 37:1001–1010. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Dai ZJ, Gao J, Kang HF, Ma YG, Ma XB, Lu WF, Lin S, Ma HB, Wang XJ and Wu WY: Targeted inhibition of mammalian target of rapamycin (mTOR) enhances radiosensitivity in pancreatic carcinoma cells. Drug Des Devel Ther. 7:149–159. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Zhang D, Xiang J, Gu Y, Xu W, Xu H, Zu M, Pei D and Zheng J: Inhibition of mammalian target of rapamycin by rapamycin increases the radiosensitivity of esophageal carcinoma Eca109 cells. Oncol Lett. 8:575–581. 2014.PubMed/NCBI

51 

Ushijima H, Suzuki Y, Oike T, Komachi M, Yoshimoto Y, Ando K, Okonogi N, Sato H, Noda SE, Saito J, et al: Radiosensitization effect of an mTOR inhibitor, temsirolimus, on lung adenocarcinoma A549 cells under normoxic and hypoxic conditions. J Radiat Res (Tokyo). 56:663–668. 2015. View Article : Google Scholar

52 

Tsai WB, Chung YM, Takahashi Y, Xu Z and Hu MC: Functional interaction between FOXO3a and ATM regulates DNA damage response. Nat Cell Biol. 10:460–467. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Yang JY, Xia W and Hu MC: Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int J Oncol. 29:643–648. 2006.PubMed/NCBI

54 

Tarrade S, Bhardwaj T, Flegal M, Bertrand L, Velegzhaninov I, Moskalev A and Klokov D: Histone H2AX is involved in FoxO3a-mediated transcriptional responses to ionizing radiation to maintain genome stability. Int J Mol Sci. 16:29996–30014. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr, DiStefano PS, Chiang LW and Greenberg ME: DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science. 296:530–534. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Cho EA, Kim EJ, Kwak SJ and Juhnn YS: cAMP signaling inhibits radiation-induced ATM phosphorylation leading to the augmentation of apoptosis in human lung cancer cells. Mol Cancer. 13:362014. View Article : Google Scholar : PubMed/NCBI

57 

Rodríguez-Vargas JM, Ruiz-Magaña MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodríguez MI, Muñoz-Gámez JA, de Almodóvar MR, Siles E, Rivas AL, et al: ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. 22:1181–1198. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Yang M, Liu L, Xie M, Sun X, Yu Y, Kang R, Yang L, Zhu S, Cao L and Tang D: Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy. Autophagy. 11:214–224. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Bridges KA, Toniatti C, Buser CA, Liu H, Buchholz TA and Meyn RE: Niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase inhibitor, radiosensitizes human lung and breast cancer cells. Oncotarget. 5:5076–5086. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Chen ZT, Zhao W, Qu S, Li L, Lu XD, Su F, Liang ZG, Guo SY and Zhu XD: PARP-1 promotes autophagy via the AMPK/mTOR pathway in CNE-2 human nasopharyngeal carcinoma cells following ionizing radiation, while inhibition of autophagy contributes to the radiation sensitization of CNE-2 cells. Mol Med Rep. 12:1868–1876. 2015.PubMed/NCBI

61 

Xie Y, Zhang J, Ye S, He M, Ren R, Yuan D and Shao C: SirT1 regulates radiosensitivity of hepatoma cells differently under normoxic and hypoxic conditions. Cancer Sci. 103:1238–1244. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Lapierre LR, Kumsta C, Sandri M, Ballabio A and Hansen M: Transcriptional and epigenetic regulation of autophagy in aging. Autophagy. 11:867–880. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Zhang B, Davidson MM, Zhou H, Wang C, Walker WF and Hei TK: Cytoplasmic irradiation results in mitochondrial dysfunction and DRP1-dependent mitochondrial fission. Cancer Res. 73:6700–6710. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Kam WW and Banati RB: Effects of ionizing radiation on mitochondria. Free Radic Biol Med. 65:607–619. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Shadel GS and Horvath TL: Mitochondrial ROS signaling in organismal homeostasis. Cell. 163:560–569. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Lin WJ and Kuang HY: Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells. Autophagy. 10:1692–1701. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Filomeni G, De Zio D and Cecconi F: Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 22:377–388. 2015. View Article : Google Scholar :

68 

Zhang D, Wang W, Sun X, Xu D, Wang C, Zhang Q, Wang H, Luo W, Chen Y, Chen H, et al: AMPK regulates autophagy by phosphorylating BECN1 at Threonine 388. Autophagy. 12:1447–1459. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Shimura T, Kobayashi J, Komatsu K and Kunugita N: Severe mitochondrial damage associated with low-dose radiation sensitivity in ATM- and NBS1-deficient cells. Cell Cycle. 15:1099–1107. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Shimura T, Sasatani M, Kamiya K, Kawai H, Inaba Y and Kunugita N: Mitochondrial reactive oxygen species perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of PP2A in lowdose irradiated human fibroblasts. Oncotarget. 7:3559–3570. 2016.

71 

Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, Mathieu C and Agostinis P: ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy. 9:1292–1307. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Clerkin JS, Naughton R, Quiney C and Cotter TG: Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer Lett. 266:30–36. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Datta K, Suman S and Fornace AJ Jr: Radiation persistently promoted oxidative stress, activated mTOR via PI3K/Akt, and downregulated autophagy pathway in mouse intestine. Int J Biochem Cell Biol. 57:167–176. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR and Youle RJ: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8:e10002982010. View Article : Google Scholar : PubMed/NCBI

75 

Poillet-Perez L, Despouy G, Delage-Mourroux R and Boyer-Guittaut M: Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol. 4:184–192. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Zhang B, Wang Y, Pang X, Su Y, Ai G and Wang T: ER stress induced by ionising radiation in IEC-6 cells. Int J Radiat Biol. 86:429–435. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Li F, Zheng X, Liu Y, Li P, Liu X, Ye F, Zhao T, Wu Q, Jin X and Li Q: Different roles of CHOP and JNK in mediating radiation-induced autophagy and apoptosis in breast cancer cells. Radiat Res. 185:539–548. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Chiu HW, Fang WH, Chen YL, Wu MD, Yuan GF, Ho SY and Wang YJ: Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS One. 7:e404622012. View Article : Google Scholar : PubMed/NCBI

79 

Chiu HW, Yeh YL, Wang YC, Huang WJ, Ho SY, Lin P and Wang YJ: Combination of the novel histone deacetylase inhibitor YCW1 and radiation induces autophagic cell death through the downregulation of BNIP3 in triple-negative breast cancer cells in vitro and in an orthotopic mouse model. Mol Cancer. 15:462016. View Article : Google Scholar : PubMed/NCBI

80 

Yang Z, Xu Y, Xu L, Maccauro G, Rossi B, Chen Y, Li H, Zhang J, Sun H, Yang Y, et al: Regulation of autophagy via PERK-eIF2α effectively relieve the radiation myelitis induced by iodine-125. PLoS One. 8:e768192013. View Article : Google Scholar

81 

Kim KW, Moretti L, Mitchell LR, Jung DK and Lu B: Endoplasmic reticulum stress mediates radiation-induced autophagy by perk-eIF2alpha in caspase-3/7-deficient cells. Oncogene. 29:3241–3251. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Kim EJ, Lee YJ, Kang S and Lim YB: Ionizing radiation activates PERK/eIF2α/ATF4 signaling via ER stress-independent pathway in human vascular endothelial cells. Int J Radiat Biol. 90:306–312. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, et al: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 11:619–633. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Milani M, Rzymski T, Mellor HR, Pike L, Bottini A, Generali D and Harris AL: The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer Res. 69:4415–4423. 2009. View Article : Google Scholar : PubMed/NCBI

85 

Huang Q, Wu YT, Tan HL, Ong CN and Shen HM: A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ. 16:264–277. 2009. View Article : Google Scholar

86 

Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J and Woodgett JR: The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 369:156–160. 1994. View Article : Google Scholar : PubMed/NCBI

87 

Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP and Ron D: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 287:664–666. 2000. View Article : Google Scholar : PubMed/NCBI

88 

Senft D and Ronai ZA: UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci. 40:141–148. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Davalli P, Mitic T, Caporali A, Lauriola A and D’Arca D: ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016:35651272016. View Article : Google Scholar : PubMed/NCBI

90 

Corre I, Niaudet C and Paris F: Plasma membrane signaling induced by ionizing radiation. Mutat Res. 704:61–67. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Liu Y, Cui Y, Shi M, Zhang Q, Wang Q and Chen X: Deferoxamine promotes MDA-MB-231 cell migration and invasion through increased ROS-dependent HIF-1α accumulation. Cell Physiol Biochem. 33:1036–1046. 2014. View Article : Google Scholar

92 

Sridharan S, Jain K and Basu A: Regulation of autophagy by kinases. Cancers (Basel). 3:2630–2654. 2011. View Article : Google Scholar

93 

Bode JG, Ehlting C and Häussinger D: The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cell Signal. 24:1185–1194. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Tang G, Yue Z, Talloczy Z, Hagemann T, Cho W, Messing A, Sulzer DL and Goldman JE: Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways. Hum Mol Genet. 17:1540–1555. 2008. View Article : Google Scholar : PubMed/NCBI

95 

Lien SC, Chang SF, Lee PL, Wei SY, Chang MD, Chang JY and Chiu JJ: Mechanical regulation of cancer cell apoptosis and autophagy: Roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. Biochim Biophys Acta. 1833:3124–3133. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Kim YH, Yoo KC, Cui YH, Uddin N, Lim EJ, Kim MJ, Nam SY, Kim IG, Suh Y and Lee SJ: Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization. Cancer Lett. 354:132–141. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Gu Q, He Y, Ji J, Yao Y, Shen W, Luo J, Zhu W, Cao H, Geng Y, Xu J, et al: Hypoxia-inducible factor 1α (HIF-1α) and reactive oxygen species (ROS) mediates radiation-induced invasiveness through the SDF-1α/CXCR4 pathway in non-small cell lung carcinoma cells. Oncotarget. 6:10893–10907. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Li P, Shi J, He Q, Hu Q, Wang YY, Zhang LJ, Chan WT and Chen WX: Streptococcus pneumoniae induces autophagy through the inhibition of the PI3K-I/Akt/mTOR pathway and ROS hypergeneration in A549 cells. PLoS One. 10:e01227532015. View Article : Google Scholar : PubMed/NCBI

99 

Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxiainducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar

100 

Harada H: Hypoxia-inducible factor 1-mediated characteristic features of cancer cells for tumor radioresistance. J Radiat Res (Tokyo). 57(Suppl 1): i99–i105. 2016. View Article : Google Scholar

101 

Koshikawa N, Hayashi J, Nakagawara A and Takenaga K: Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway. J Biol Chem. 284:33185–33194. 2009. View Article : Google Scholar : PubMed/NCBI

102 

Bonello S, Zähringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, Kietzmann T and Görlach A: Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol. 27:755–761. 2007. View Article : Google Scholar : PubMed/NCBI

103 

Noman MZ, Janji B, Berchem G, Mami-Chouaib F and Chouaib S: Hypoxia-induced autophagy: A new player in cancer immunotherapy? Autophagy. 8:704–706. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J and Mazure NM: Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 29:2570–2581. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Tirodkar TS and Voelkel-Johnson C: Sphingolipids in apoptosis. Exp Oncol. 34:231–242. 2012.PubMed/NCBI

106 

Aureli M, Murdica V, Loberto N, Samarani M, Prinetti A, Bassi R and Sonnino S: Exploring the link between ceramide and ionizing radiation. Glycoconj J. 31:449–459. 2014. View Article : Google Scholar : PubMed/NCBI

107 

Young MM, Kester M and Wang HG: Sphingolipids: Regulators of crosstalk between apoptosis and autophagy. J Lipid Res. 54:5–19. 2013. View Article : Google Scholar :

108 

Edinger AL: Starvation in the midst of plenty: Making sense of ceramide-induced autophagy by analysing nutrient transporter expression. Biochem Soc Trans. 37:253–258. 2009. View Article : Google Scholar : PubMed/NCBI

109 

Peralta ER and Edinger AL: Ceramide-induced starvation triggers homeostatic autophagy. Autophagy. 5:407–409. 2009. View Article : Google Scholar : PubMed/NCBI

110 

Li DD, Wang LL, Deng R, Tang J, Shen Y, Guo JF, Wang Y, Xia LP, Feng GK, Liu QQ, et al: The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene. 28:886–898. 2009. View Article : Google Scholar

111 

Jiang W and Ogretmen B: Autophagy paradox and ceramide. Biochim Biophys Acta. 1841:783–792. 2014. View Article : Google Scholar :

112 

Dany M and Ogretmen B: Ceramide induced mitophagy and tumor suppression. Biochim Biophys Acta. 1853B:2834–2845. 2015. View Article : Google Scholar

113 

Salazar M, Carracedo A, Salanueva IJ, Hernández-Tiedra S, Lorente M, Egia A, Vázquez P, Blázquez C, Torres S, García S, et al: Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest. 119:1359–1372. 2009. View Article : Google Scholar : PubMed/NCBI

114 

Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM, et al: Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol. 8:831–838. 2012. View Article : Google Scholar : PubMed/NCBI

115 

Rimessi A, Bonora M, Marchi S, Patergnani S, Marobbio CM, Lasorsa FM and Pinton P: Perturbed mitochondrial Ca2+ signals as causes or consequences of mitophagy induction. Autophagy. 9:1677–1686. 2013. View Article : Google Scholar : PubMed/NCBI

116 

Voehringer DW, Story MD, O’Neil RG and Meyn RE: Modulating Ca2+ in radiation-induced apoptosis suppresses DNA fragmentation but does not enhance clonogenic survival. Int J Radiat Biol. 71:237–243. 1997. View Article : Google Scholar : PubMed/NCBI

117 

Teshima K, Yamamoto A, Yamaoka K, Honda Y, Honda S, Sasaki T and Kojima S: Involvement of calcium ion in elevation of mRNA for gamma-glutamylcysteine synthetase (gamma-GCS) induced by low-dose gamma-rays. Int J Radiat Biol. 76:1631–1639. 2000. View Article : Google Scholar

118 

Todd DG, Mikkelsen RB, Rorrer WK, Valerie K and Schmidt-Ullrich RK: Ionizing radiation stimulates existing signal transduction pathways involving the activation of epidermal growth factor receptor and ERBB-3, and changes of intracellular calcium in A431 human squamous carcinoma cells. J Recept Signal Transduct Res. 19:885–908. 1999. View Article : Google Scholar : PubMed/NCBI

119 

East DA and Campanella M: Ca2+ in quality control: An unresolved riddle critical to autophagy and mitophagy. Autophagy. 9:1710–1719. 2013. View Article : Google Scholar : PubMed/NCBI

120 

La Rovere RM, Roest G, Bultynck G and Parys JB: Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium. 60:74–87. 2016. View Article : Google Scholar : PubMed/NCBI

121 

Sakaki K, Wu J and Kaufman RJ: Protein kinase Ctheta is required for autophagy in response to stress in the endoplasmic reticulum. J Biol Chem. 283:15370–15380. 2008. View Article : Google Scholar : PubMed/NCBI

122 

Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M and Carling D: Ca2+ /calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2:21–33. 2005. View Article : Google Scholar : PubMed/NCBI

123 

Zhang J, Chiu J, Zhang H, Qi T, Tang Q, Ma K, Lu H and Li G: Autophagic cell death induced by resveratrol depends on the Ca(2+)/AMPK/mTOR pathway in A549 cells. Biochem Pharmacol. 86:317–328. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Apel A, Herr I, Schwarz H, Rodemann HP and Mayer A: Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res. 68:1485–1494. 2008. View Article : Google Scholar : PubMed/NCBI

125 

Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S, Mikkelson T, Wang D, Chang YC, Hu J, et al: A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 10:1359–1368. 2014. View Article : Google Scholar : PubMed/NCBI

126 

Rojas-Puentes LL, Gonzalez-Pinedo M, Crismatt A, Ortega-Gomez A, Gamboa-Vignolle C, Nuñez-Gomez R, Dorantes-Gallareta Y, Arce-Salinas C and Arrieta O: Phase II randomized, double-blind, placebo-controlled study of wholebrain irradiation with concomitant chloroquine for brain metastases. Radiat Oncol. 8:2092013. View Article : Google Scholar

127 

Chen YH, Wei MF, Wang CW, Lee HW, Pan SL, Gao M, Kuo SH, Cheng AL and Teng CM: Dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor is an effective radiosensitizer for colorectal cancer. Cancer Lett. 357:582–590. 2015. View Article : Google Scholar

128 

Ozpolat B and Benbrook DM: Targeting autophagy in cancer management - strategies and developments. Cancer Manag Res. 7:291–299. 2015. View Article : Google Scholar : PubMed/NCBI

129 

Liang DH, El-Zein R and Dave B: Autophagy inhibition to increase radiosensitization in breast cancer. J Nucl Med Radiat Ther. 6:62015. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hu L, Wang H, Huang L, Zhao Y and Wang J: Crosstalk between autophagy and intracellular radiation response (Review). Int J Oncol 49: 2217-2226, 2016.
APA
Hu, L., Wang, H., Huang, L., Zhao, Y., & Wang, J. (2016). Crosstalk between autophagy and intracellular radiation response (Review). International Journal of Oncology, 49, 2217-2226. https://doi.org/10.3892/ijo.2016.3719
MLA
Hu, L., Wang, H., Huang, L., Zhao, Y., Wang, J."Crosstalk between autophagy and intracellular radiation response (Review)". International Journal of Oncology 49.6 (2016): 2217-2226.
Chicago
Hu, L., Wang, H., Huang, L., Zhao, Y., Wang, J."Crosstalk between autophagy and intracellular radiation response (Review)". International Journal of Oncology 49, no. 6 (2016): 2217-2226. https://doi.org/10.3892/ijo.2016.3719
Copy and paste a formatted citation
x
Spandidos Publications style
Hu L, Wang H, Huang L, Zhao Y and Wang J: Crosstalk between autophagy and intracellular radiation response (Review). Int J Oncol 49: 2217-2226, 2016.
APA
Hu, L., Wang, H., Huang, L., Zhao, Y., & Wang, J. (2016). Crosstalk between autophagy and intracellular radiation response (Review). International Journal of Oncology, 49, 2217-2226. https://doi.org/10.3892/ijo.2016.3719
MLA
Hu, L., Wang, H., Huang, L., Zhao, Y., Wang, J."Crosstalk between autophagy and intracellular radiation response (Review)". International Journal of Oncology 49.6 (2016): 2217-2226.
Chicago
Hu, L., Wang, H., Huang, L., Zhao, Y., Wang, J."Crosstalk between autophagy and intracellular radiation response (Review)". International Journal of Oncology 49, no. 6 (2016): 2217-2226. https://doi.org/10.3892/ijo.2016.3719
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team