|
1
|
Jaboin JJ, Shinohara ET, Moretti L, Yang
ES, Kaminski JM and Lu B: The role of mTOR inhibition in augmenting
radiation induced autophagy. Technol Cancer Res Treat. 6:443–447.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Periyasamy P, Guo ML and Buch S: Cocaine
induces astrocytosis through ER stress-mediated activation of
autophagy. Autophagy. 12:1310–1329. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Codogno P: Shining light on autophagy. Nat
Rev Mol Cell Biol. 15:1532014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Park JM, Jung CH, Seo M, Otto NM, Grunwald
D, Kim KH, Moriarity B, Kim YM, Starker C, Nho RS, et al: The ULK1
complex mediates MTORC1 signaling to the autophagy initiation
machinery via binding and phosphorylating ATG14. Autophagy.
12:547–564. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yao Z, Delorme-Axford E, Backues SK and
Klionsky DJ: Atg41/Icy2 regulates autophagosome formation.
Autophagy. 11:2288–2299. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Feng Y, Backues SK, Baba M, Heo JM, Harper
JW and Klionsky DJ: Phosphorylation of Atg9 regulates movement to
the phagophore assembly site and the rate of autophagosome
formation. Autophagy. 12:648–658. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Molejon MI, Ropolo A and Vaccaro MI: VMP1
is a new player in the regulation of the autophagy-specific
phosphatidylinositol 3-kinase complex activation. Autophagy.
9:933–935. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Murrow L, Malhotra R and Debnath J:
ATG12-ATG3 interacts with Alix to promote basal autophagic flux and
late endosome function. Nat Cell Biol. 17:300–310. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Perluigi M, Di Domenico F and Butterfield
DA: mTOR signaling in aging and neurodegeneration: At the crossroad
between metabolism dysfunction and impairment of autophagy.
Neurobiol Dis. 84:39–49. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yang Z and Klionsky DJ: Mammalian
autophagy: Core molecular machinery and signaling regulation. Curr
Opin Cell Biol. 22:124–131. 2010. View Article : Google Scholar :
|
|
11
|
Kroemer G, Mariño G and Levine B:
Autophagy and the integrated stress response. Mol Cell. 40:280–293.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Dalby KN, Tekedereli I, Lopez-Berestein G
and Ozpolat B: Targeting the prodeath and prosurvival functions of
autophagy as novel therapeutic strategies in cancer. Autophagy.
6:322–329. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ito H, Daido S, Kanzawa T, Kondo S and
Kondo Y: Radiation-induced autophagy is associated with LC3 and its
inhibition sensitizes malignant glioma cells. Int J Oncol.
26:1401–1410. 2005.PubMed/NCBI
|
|
14
|
Li X, Cen Y, Cai Y, Liu T, Liu H, Cao G,
Liu D, Li B, Peng W, Zou J, et al: TLR9-ERK-mTOR signaling is
critical for autophagic cell death induced by CpG
oligodeoxynucleotide 107 combined with irradiation in glioma cells.
Sci Rep. 6:271042016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ko A, Kanehisa A, Martins I, Senovilla L,
Chargari C, Dugue D, Mariño G, Kepp O, Michaud M, Perfettini JL, et
al: Autophagy inhibition radiosensitizes in vitro, yet reduces
radioresponses in vivo due to deficient immunogenic signalling.
Cell Death Differ. 21:92–99. 2014. View Article : Google Scholar
|
|
16
|
Kepp O, Senovilla L, Vitale I, Vacchelli
E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N,
et al: Consensus guidelines for the detection of immunogenic cell
death. OncoImmunology. 3:e9556912014. View Article : Google Scholar
|
|
17
|
Mo N, Lu YK, Xie WM, Liu Y, Zhou WX, Wang
HX, Nong L, Jia YX, Tan AH, Chen Y, et al: Inhibition of autophagy
enhances the radiosensitivity of nasopharyngeal carcinoma by
reducing Rad51 expression. Oncol Rep. 32:1905–1912. 2014.PubMed/NCBI
|
|
18
|
Sun Q, Liu T, Yuan Y, Guo Z, Xie G, Du S,
Lin X, Xu Z, Liu M, Wang W, et al: MiR-200c inhibits autophagy and
enhances radiosensitivity in breast cancer cells by targeting
UBQLN1. Int J Cancer. 136:1003–1012. 2015. View Article : Google Scholar
|
|
19
|
Yang Y, Yang Y, Yang X, Zhu H, Guo Q, Chen
X, Zhang H, Cheng H and Sun X: Autophagy and its function in
radiosensitivity. Tumour Biol. 36:4079–4087. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wu SY, Liu YW, Wang YK, Lin TH, Li YZ,
Chen SH and Lee YR: Ionizing radiation induces autophagy in human
oral squamous cell carcinoma. J BUON. 19:137–144. 2014.PubMed/NCBI
|
|
21
|
Saglar E, Unlu S, Babalioglu I, Gokce SC
and Mergen H: Assessment of ER stress and autophagy induced by
ionizing radiation in both radiotherapy patients and ex vivo
irradiated samples. J Biochem Mol Toxicol. 28:413–417. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bristol ML, Di X, Beckman MJ, Wilson EN,
Henderson SC, Maiti A, Fan Z and Gewirtz DA: Dual functions of
autophagy in the response of breast tumor cells to radiation:
Cytoprotective autophagy with radiation alone and cytotoxic
autophagy in radio-sensitization by vitamin D 3. Autophagy.
8:739–753. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sharma K, Goehe RW, Di X, Hicks MA II,
Torti SV, Torti FM, Harada H and Gewirtz DA: A novel cytostatic
form of autophagy in sensitization of non-small cell lung cancer
cells to radiation by vitamin D and the vitamin D analog, EB 1089.
Autophagy. 10:2346–2361. 2014. View Article : Google Scholar
|
|
24
|
Gewirtz DA, Hilliker ML and Wilson EN:
Promotion of autophagy as a mechanism for radiation sensitization
of breast tumor cells. Radiother Oncol. 92:323–328. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sharma K, Le N, Alotaibi M and Gewirtz DA:
Cytotoxic autophagy in cancer therapy. Int J Mol Sci.
15:10034–10051. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Huang YH, Yang PM, Chuah QY, Lee YJ, Hsieh
YF, Peng CW and Chiu SJ: Autophagy promotes radiation-induced
senescence but inhibits bystander effects in human breast cancer
cells. Autophagy. 10:1212–1228. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Golden EB, Pellicciotta I, Demaria S,
Barcellos-Hoff MH and Formenti SC: The convergence of radiation and
immunogenic cell death signaling pathways. Front Oncol. 2:882012.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Saitoh T and Akira S: Regulation of innate
immune responses by autophagy-related proteins. J Cell Biol.
189:925–935. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang Y, Martins I, Ma Y, Kepp O, Galluzzi
L and Kroemer G: Autophagy-dependent ATP release from dying cells
via lysosomal exocytosis. Autophagy. 9:1624–1625. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Michaud M, Martins I, Sukkurwala AQ,
Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot
G, et al: Autophagy-dependent anticancer immune responses induced
by chemotherapeutic agents in mice. Science. 334:1573–1577. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ratikan JA, Sayre JW and Schaue D:
Chloroquine engages the immune system to eradicate irradiated
breast tumors in mice. Int J Radiat Oncol Biol Phys. 87:761–768.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Havaki S, Kotsinas A, Chronopoulos E,
Kletsas D, Georgakilas A and Gorgoulis VG: The role of oxidative
DNA damage in radiation induced bystander effect. Cancer Lett.
356:43–51. 2015. View Article : Google Scholar
|
|
33
|
Sengupta S and Harris CC: p53: traffic cop
at the crossroads of DNA repair and recombination. Nat Rev Mol Cell
Biol. 6:44–55. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Smith J, Tho LM, Xu N and Gillespie DA:
The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and
cancer. Adv Cancer Res. 108:73–112. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liang N, Jia L, Liu Y, Liang B, Kong D,
Yan M, Ma S and Liu X: ATM pathway is essential for ionizing
radiation-induced autophagy. Cell Signal. 25:2530–2539. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jen KY and Cheung VG: Identification of
novel p53 target genes in ionizing radiation response. Cancer Res.
65:7666–7673. 2005.PubMed/NCBI
|
|
37
|
Li M, Brooks CL, Wu-Baer F, Chen D, Baer R
and Gu W: Mono-versus polyubiquitination: Differential control of
p53 fate by Mdm2. Science. 302:1972–1975. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Fei P and El-Deiry WS: P53 and radiation
responses. Oncogene. 22:5774–5783. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tang J, Di J, Cao H, Bai J and Zheng J:
p53-mediated autophagic regulation: A prospective strategy for
cancer therapy. Cancer Lett. 363:101–107. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zheng R, Yao Q, Du S, Ren C, Sun Q, Xu Z,
Lin X and Yuan Y: The status of p53 in cancer cells affects the
role of autophagy in tumor radiosensitisation. J BUON. 19:336–341.
2014.PubMed/NCBI
|
|
41
|
Feng Z, Zhang H, Levine AJ and Jin S: The
coordinate regulation of the p53 and mTOR pathways in cells. Proc
Natl Acad Sci USA. 102:8204–8209. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cui L, Song Z, Liang B, Jia L, Ma S and
Liu X: Radiation induces autophagic cell death via the p53/DRAM
signaling pathway in breast cancer cells. Oncol Rep. 35:3639–3647.
2016.PubMed/NCBI
|
|
43
|
Xu K, Liu P and Wei W: mTOR signaling in
tumorigenesis. Biochim Biophys Acta. 1846:638–654. 2014.PubMed/NCBI
|
|
44
|
Zheng H, Wang M, Wu J, Wang ZM, Nan HJ and
Sun H: Inhibition of mTOR enhances radiosensitivity of lung cancer
cells and protects normal lung cells against radiation. Biochem
Cell Biol. 94:213–220. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Egan DF, Shackelford DB, Mihaylova MM,
Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor
R, et al: Phosphorylation of ULK1 (hATG1) by AMP-activated protein
kinase connects energy sensing to mitophagy. Science. 331:456–461.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kim J, Kundu M, Viollet B and Guan KL:
AMPK and mTOR regulate autophagy through direct phosphorylation of
Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hönscheid P, Datta K and Muders MH:
Autophagy: Detection, regulation and its role in cancer and therapy
response. Int J Radiat Biol. 90:628–635. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Nagata Y, Takahashi A, Ohnishi K, Ota I,
Ohnishi T, Tojo T and Taniguchi S: Effect of rapamycin, an mTOR
inhibitor, on radiation sensitivity of lung cancer cells having
different p53 gene status. Int J Oncol. 37:1001–1010. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Dai ZJ, Gao J, Kang HF, Ma YG, Ma XB, Lu
WF, Lin S, Ma HB, Wang XJ and Wu WY: Targeted inhibition of
mammalian target of rapamycin (mTOR) enhances radiosensitivity in
pancreatic carcinoma cells. Drug Des Devel Ther. 7:149–159. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang D, Xiang J, Gu Y, Xu W, Xu H, Zu M,
Pei D and Zheng J: Inhibition of mammalian target of rapamycin by
rapamycin increases the radiosensitivity of esophageal carcinoma
Eca109 cells. Oncol Lett. 8:575–581. 2014.PubMed/NCBI
|
|
51
|
Ushijima H, Suzuki Y, Oike T, Komachi M,
Yoshimoto Y, Ando K, Okonogi N, Sato H, Noda SE, Saito J, et al:
Radiosensitization effect of an mTOR inhibitor, temsirolimus, on
lung adenocarcinoma A549 cells under normoxic and hypoxic
conditions. J Radiat Res (Tokyo). 56:663–668. 2015. View Article : Google Scholar
|
|
52
|
Tsai WB, Chung YM, Takahashi Y, Xu Z and
Hu MC: Functional interaction between FOXO3a and ATM regulates DNA
damage response. Nat Cell Biol. 10:460–467. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yang JY, Xia W and Hu MC: Ionizing
radiation activates expression of FOXO3a, Fas ligand, and Bim, and
induces cell apoptosis. Int J Oncol. 29:643–648. 2006.PubMed/NCBI
|
|
54
|
Tarrade S, Bhardwaj T, Flegal M, Bertrand
L, Velegzhaninov I, Moskalev A and Klokov D: Histone H2AX is
involved in FoxO3a-mediated transcriptional responses to ionizing
radiation to maintain genome stability. Int J Mol Sci.
16:29996–30014. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tran H, Brunet A, Grenier JM, Datta SR,
Fornace AJ Jr, DiStefano PS, Chiang LW and Greenberg ME: DNA repair
pathway stimulated by the forkhead transcription factor FOXO3a
through the Gadd45 protein. Science. 296:530–534. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cho EA, Kim EJ, Kwak SJ and Juhnn YS: cAMP
signaling inhibits radiation-induced ATM phosphorylation leading to
the augmentation of apoptosis in human lung cancer cells. Mol
Cancer. 13:362014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Rodríguez-Vargas JM, Ruiz-Magaña MJ,
Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodríguez MI,
Muñoz-Gámez JA, de Almodóvar MR, Siles E, Rivas AL, et al:
ROS-induced DNA damage and PARP-1 are required for optimal
induction of starvation-induced autophagy. Cell Res. 22:1181–1198.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yang M, Liu L, Xie M, Sun X, Yu Y, Kang R,
Yang L, Zhu S, Cao L and Tang D: Poly-ADP-ribosylation of HMGB1
regulates TNFSF10/TRAIL resistance through autophagy. Autophagy.
11:214–224. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bridges KA, Toniatti C, Buser CA, Liu H,
Buchholz TA and Meyn RE: Niraparib (MK-4827), a novel
poly(ADP-Ribose) polymerase inhibitor, radiosensitizes human lung
and breast cancer cells. Oncotarget. 5:5076–5086. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen ZT, Zhao W, Qu S, Li L, Lu XD, Su F,
Liang ZG, Guo SY and Zhu XD: PARP-1 promotes autophagy via the
AMPK/mTOR pathway in CNE-2 human nasopharyngeal carcinoma cells
following ionizing radiation, while inhibition of autophagy
contributes to the radiation sensitization of CNE-2 cells. Mol Med
Rep. 12:1868–1876. 2015.PubMed/NCBI
|
|
61
|
Xie Y, Zhang J, Ye S, He M, Ren R, Yuan D
and Shao C: SirT1 regulates radiosensitivity of hepatoma cells
differently under normoxic and hypoxic conditions. Cancer Sci.
103:1238–1244. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lapierre LR, Kumsta C, Sandri M, Ballabio
A and Hansen M: Transcriptional and epigenetic regulation of
autophagy in aging. Autophagy. 11:867–880. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang B, Davidson MM, Zhou H, Wang C,
Walker WF and Hei TK: Cytoplasmic irradiation results in
mitochondrial dysfunction and DRP1-dependent mitochondrial fission.
Cancer Res. 73:6700–6710. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kam WW and Banati RB: Effects of ionizing
radiation on mitochondria. Free Radic Biol Med. 65:607–619. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Shadel GS and Horvath TL: Mitochondrial
ROS signaling in organismal homeostasis. Cell. 163:560–569. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lin WJ and Kuang HY: Oxidative stress
induces autophagy in response to multiple noxious stimuli in
retinal ganglion cells. Autophagy. 10:1692–1701. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Filomeni G, De Zio D and Cecconi F:
Oxidative stress and autophagy: The clash between damage and
metabolic needs. Cell Death Differ. 22:377–388. 2015. View Article : Google Scholar :
|
|
68
|
Zhang D, Wang W, Sun X, Xu D, Wang C,
Zhang Q, Wang H, Luo W, Chen Y, Chen H, et al: AMPK regulates
autophagy by phosphorylating BECN1 at Threonine 388. Autophagy.
12:1447–1459. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Shimura T, Kobayashi J, Komatsu K and
Kunugita N: Severe mitochondrial damage associated with low-dose
radiation sensitivity in ATM- and NBS1-deficient cells. Cell Cycle.
15:1099–1107. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Shimura T, Sasatani M, Kamiya K, Kawai H,
Inaba Y and Kunugita N: Mitochondrial reactive oxygen species
perturb AKT/cyclin D1 cell cycle signaling via oxidative
inactivation of PP2A in lowdose irradiated human fibroblasts.
Oncotarget. 7:3559–3570. 2016.
|
|
71
|
Garg AD, Dudek AM, Ferreira GB, Verfaillie
T, Vandenabeele P, Krysko DV, Mathieu C and Agostinis P:
ROS-induced autophagy in cancer cells assists in evasion from
determinants of immunogenic cell death. Autophagy. 9:1292–1307.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Clerkin JS, Naughton R, Quiney C and
Cotter TG: Mechanisms of ROS modulated cell survival during
carcinogenesis. Cancer Lett. 266:30–36. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Datta K, Suman S and Fornace AJ Jr:
Radiation persistently promoted oxidative stress, activated mTOR
via PI3K/Akt, and downregulated autophagy pathway in mouse
intestine. Int J Biochem Cell Biol. 57:167–176. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Narendra DP, Jin SM, Tanaka A, Suen DF,
Gautier CA, Shen J, Cookson MR and Youle RJ: PINK1 is selectively
stabilized on impaired mitochondria to activate Parkin. PLoS Biol.
8:e10002982010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Poillet-Perez L, Despouy G,
Delage-Mourroux R and Boyer-Guittaut M: Interplay between ROS and
autophagy in cancer cells, from tumor initiation to cancer therapy.
Redox Biol. 4:184–192. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang B, Wang Y, Pang X, Su Y, Ai G and
Wang T: ER stress induced by ionising radiation in IEC-6 cells. Int
J Radiat Biol. 86:429–435. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li F, Zheng X, Liu Y, Li P, Liu X, Ye F,
Zhao T, Wu Q, Jin X and Li Q: Different roles of CHOP and JNK in
mediating radiation-induced autophagy and apoptosis in breast
cancer cells. Radiat Res. 185:539–548. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chiu HW, Fang WH, Chen YL, Wu MD, Yuan GF,
Ho SY and Wang YJ: Monascuspiloin enhances the radiation
sensitivity of human prostate cancer cells by stimulating
endoplasmic reticulum stress and inducing autophagy. PLoS One.
7:e404622012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chiu HW, Yeh YL, Wang YC, Huang WJ, Ho SY,
Lin P and Wang YJ: Combination of the novel histone deacetylase
inhibitor YCW1 and radiation induces autophagic cell death through
the downregulation of BNIP3 in triple-negative breast cancer cells
in vitro and in an orthotopic mouse model. Mol Cancer. 15:462016.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yang Z, Xu Y, Xu L, Maccauro G, Rossi B,
Chen Y, Li H, Zhang J, Sun H, Yang Y, et al: Regulation of
autophagy via PERK-eIF2α effectively relieve the radiation myelitis
induced by iodine-125. PLoS One. 8:e768192013. View Article : Google Scholar
|
|
81
|
Kim KW, Moretti L, Mitchell LR, Jung DK
and Lu B: Endoplasmic reticulum stress mediates radiation-induced
autophagy by perk-eIF2alpha in caspase-3/7-deficient cells.
Oncogene. 29:3241–3251. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kim EJ, Lee YJ, Kang S and Lim YB:
Ionizing radiation activates PERK/eIF2α/ATF4 signaling via ER
stress-independent pathway in human vascular endothelial cells. Int
J Radiat Biol. 90:306–312. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Harding HP, Zhang Y, Zeng H, Novoa I, Lu
PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, et al: An
integrated stress response regulates amino acid metabolism and
resistance to oxidative stress. Mol Cell. 11:619–633. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Milani M, Rzymski T, Mellor HR, Pike L,
Bottini A, Generali D and Harris AL: The role of ATF4 stabilization
and autophagy in resistance of breast cancer cells treated with
Bortezomib. Cancer Res. 69:4415–4423. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Huang Q, Wu YT, Tan HL, Ong CN and Shen
HM: A novel function of poly(ADP-ribose) polymerase-1 in modulation
of autophagy and necrosis under oxidative stress. Cell Death
Differ. 16:264–277. 2009. View Article : Google Scholar
|
|
86
|
Kyriakis JM, Banerjee P, Nikolakaki E, Dai
T, Rubie EA, Ahmad MF, Avruch J and Woodgett JR: The
stress-activated protein kinase subfamily of c-Jun kinases. Nature.
369:156–160. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Urano F, Wang X, Bertolotti A, Zhang Y,
Chung P, Harding HP and Ron D: Coupling of stress in the ER to
activation of JNK protein kinases by transmembrane protein kinase
IRE1. Science. 287:664–666. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Senft D and Ronai ZA: UPR, autophagy, and
mitochondria crosstalk underlies the ER stress response. Trends
Biochem Sci. 40:141–148. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Davalli P, Mitic T, Caporali A, Lauriola A
and D’Arca D: ROS, cell senescence, and novel molecular mechanisms
in aging and age-related diseases. Oxid Med Cell Longev.
2016:35651272016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Corre I, Niaudet C and Paris F: Plasma
membrane signaling induced by ionizing radiation. Mutat Res.
704:61–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu Y, Cui Y, Shi M, Zhang Q, Wang Q and
Chen X: Deferoxamine promotes MDA-MB-231 cell migration and
invasion through increased ROS-dependent HIF-1α accumulation. Cell
Physiol Biochem. 33:1036–1046. 2014. View Article : Google Scholar
|
|
92
|
Sridharan S, Jain K and Basu A: Regulation
of autophagy by kinases. Cancers (Basel). 3:2630–2654. 2011.
View Article : Google Scholar
|
|
93
|
Bode JG, Ehlting C and Häussinger D: The
macrophage response towards LPS and its control through the
p38(MAPK)-STAT3 axis. Cell Signal. 24:1185–1194. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tang G, Yue Z, Talloczy Z, Hagemann T, Cho
W, Messing A, Sulzer DL and Goldman JE: Autophagy induced by
Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK
and mTOR signaling pathways. Hum Mol Genet. 17:1540–1555. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lien SC, Chang SF, Lee PL, Wei SY, Chang
MD, Chang JY and Chiu JJ: Mechanical regulation of cancer cell
apoptosis and autophagy: Roles of bone morphogenetic protein
receptor, Smad1/5, and p38 MAPK. Biochim Biophys Acta.
1833:3124–3133. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kim YH, Yoo KC, Cui YH, Uddin N, Lim EJ,
Kim MJ, Nam SY, Kim IG, Suh Y and Lee SJ: Radiation promotes
malignant progression of glioma cells through HIF-1alpha
stabilization. Cancer Lett. 354:132–141. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Gu Q, He Y, Ji J, Yao Y, Shen W, Luo J,
Zhu W, Cao H, Geng Y, Xu J, et al: Hypoxia-inducible factor 1α
(HIF-1α) and reactive oxygen species (ROS) mediates
radiation-induced invasiveness through the SDF-1α/CXCR4 pathway in
non-small cell lung carcinoma cells. Oncotarget. 6:10893–10907.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Li P, Shi J, He Q, Hu Q, Wang YY, Zhang
LJ, Chan WT and Chen WX: Streptococcus pneumoniae induces autophagy
through the inhibition of the PI3K-I/Akt/mTOR pathway and ROS
hypergeneration in A549 cells. PLoS One. 10:e01227532015.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wang GL, Jiang BH, Rue EA and Semenza GL:
Hypoxiainducible factor 1 is a basic-helix-loop-helix-PAS
heterodimer regulated by cellular O2 tension. Proc Natl
Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar
|
|
100
|
Harada H: Hypoxia-inducible factor
1-mediated characteristic features of cancer cells for tumor
radioresistance. J Radiat Res (Tokyo). 57(Suppl 1): i99–i105. 2016.
View Article : Google Scholar
|
|
101
|
Koshikawa N, Hayashi J, Nakagawara A and
Takenaga K: Reactive oxygen species-generating mitochondrial DNA
mutation up-regulates hypoxia-inducible factor-1alpha gene
transcription via phosphatidylinositol 3-kinase-Akt/protein kinase
C/histone deacetylase pathway. J Biol Chem. 284:33185–33194. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Bonello S, Zähringer C, BelAiba RS,
Djordjevic T, Hess J, Michiels C, Kietzmann T and Görlach A:
Reactive oxygen species activate the HIF-1alpha promoter via a
functional NFkappaB site. Arterioscler Thromb Vasc Biol.
27:755–761. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Noman MZ, Janji B, Berchem G, Mami-Chouaib
F and Chouaib S: Hypoxia-induced autophagy: A new player in cancer
immunotherapy? Autophagy. 8:704–706. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Bellot G, Garcia-Medina R, Gounon P,
Chiche J, Roux D, Pouysségur J and Mazure NM: Hypoxia-induced
autophagy is mediated through hypoxia-inducible factor induction of
BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol.
29:2570–2581. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Tirodkar TS and Voelkel-Johnson C:
Sphingolipids in apoptosis. Exp Oncol. 34:231–242. 2012.PubMed/NCBI
|
|
106
|
Aureli M, Murdica V, Loberto N, Samarani
M, Prinetti A, Bassi R and Sonnino S: Exploring the link between
ceramide and ionizing radiation. Glycoconj J. 31:449–459. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Young MM, Kester M and Wang HG:
Sphingolipids: Regulators of crosstalk between apoptosis and
autophagy. J Lipid Res. 54:5–19. 2013. View Article : Google Scholar :
|
|
108
|
Edinger AL: Starvation in the midst of
plenty: Making sense of ceramide-induced autophagy by analysing
nutrient transporter expression. Biochem Soc Trans. 37:253–258.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Peralta ER and Edinger AL:
Ceramide-induced starvation triggers homeostatic autophagy.
Autophagy. 5:407–409. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Li DD, Wang LL, Deng R, Tang J, Shen Y,
Guo JF, Wang Y, Xia LP, Feng GK, Liu QQ, et al: The pivotal role of
c-Jun NH2-terminal kinase-mediated Beclin 1 expression during
anticancer agents-induced autophagy in cancer cells. Oncogene.
28:886–898. 2009. View Article : Google Scholar
|
|
111
|
Jiang W and Ogretmen B: Autophagy paradox
and ceramide. Biochim Biophys Acta. 1841:783–792. 2014. View Article : Google Scholar :
|
|
112
|
Dany M and Ogretmen B: Ceramide induced
mitophagy and tumor suppression. Biochim Biophys Acta.
1853B:2834–2845. 2015. View Article : Google Scholar
|
|
113
|
Salazar M, Carracedo A, Salanueva IJ,
Hernández-Tiedra S, Lorente M, Egia A, Vázquez P, Blázquez C,
Torres S, García S, et al: Cannabinoid action induces
autophagy-mediated cell death through stimulation of ER stress in
human glioma cells. J Clin Invest. 119:1359–1372. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Sentelle RD, Senkal CE, Jiang W, Ponnusamy
S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ,
Szulc ZM, et al: Ceramide targets autophagosomes to mitochondria
and induces lethal mitophagy. Nat Chem Biol. 8:831–838. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Rimessi A, Bonora M, Marchi S, Patergnani
S, Marobbio CM, Lasorsa FM and Pinton P: Perturbed mitochondrial
Ca2+ signals as causes or consequences of mitophagy
induction. Autophagy. 9:1677–1686. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Voehringer DW, Story MD, O’Neil RG and
Meyn RE: Modulating Ca2+ in radiation-induced apoptosis
suppresses DNA fragmentation but does not enhance clonogenic
survival. Int J Radiat Biol. 71:237–243. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Teshima K, Yamamoto A, Yamaoka K, Honda Y,
Honda S, Sasaki T and Kojima S: Involvement of calcium ion in
elevation of mRNA for gamma-glutamylcysteine synthetase (gamma-GCS)
induced by low-dose gamma-rays. Int J Radiat Biol. 76:1631–1639.
2000. View Article : Google Scholar
|
|
118
|
Todd DG, Mikkelsen RB, Rorrer WK, Valerie
K and Schmidt-Ullrich RK: Ionizing radiation stimulates existing
signal transduction pathways involving the activation of epidermal
growth factor receptor and ERBB-3, and changes of intracellular
calcium in A431 human squamous carcinoma cells. J Recept Signal
Transduct Res. 19:885–908. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
East DA and Campanella M: Ca2+
in quality control: An unresolved riddle critical to autophagy and
mitophagy. Autophagy. 9:1710–1719. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
La Rovere RM, Roest G, Bultynck G and
Parys JB: Intracellular Ca(2+) signaling and
Ca(2+) microdomains in the control of cell survival,
apoptosis and autophagy. Cell Calcium. 60:74–87. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Sakaki K, Wu J and Kaufman RJ: Protein
kinase Ctheta is required for autophagy in response to stress in
the endoplasmic reticulum. J Biol Chem. 283:15370–15380. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Woods A, Dickerson K, Heath R, Hong SP,
Momcilovic M, Johnstone SR, Carlson M and Carling D:
Ca2+ /calmodulin-dependent protein kinase kinase-beta
acts upstream of AMP-activated protein kinase in mammalian cells.
Cell Metab. 2:21–33. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhang J, Chiu J, Zhang H, Qi T, Tang Q, Ma
K, Lu H and Li G: Autophagic cell death induced by resveratrol
depends on the Ca(2+)/AMPK/mTOR pathway in A549 cells.
Biochem Pharmacol. 86:317–328. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Apel A, Herr I, Schwarz H, Rodemann HP and
Mayer A: Blocked autophagy sensitizes resistant carcinoma cells to
radiation therapy. Cancer Res. 68:1485–1494. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Rosenfeld MR, Ye X, Supko JG, Desideri S,
Grossman SA, Brem S, Mikkelson T, Wang D, Chang YC, Hu J, et al: A
phase I/II trial of hydroxychloroquine in conjunction with
radiation therapy and concurrent and adjuvant temozolomide in
patients with newly diagnosed glioblastoma multiforme. Autophagy.
10:1359–1368. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Rojas-Puentes LL, Gonzalez-Pinedo M,
Crismatt A, Ortega-Gomez A, Gamboa-Vignolle C, Nuñez-Gomez R,
Dorantes-Gallareta Y, Arce-Salinas C and Arrieta O: Phase II
randomized, double-blind, placebo-controlled study of wholebrain
irradiation with concomitant chloroquine for brain metastases.
Radiat Oncol. 8:2092013. View Article : Google Scholar
|
|
127
|
Chen YH, Wei MF, Wang CW, Lee HW, Pan SL,
Gao M, Kuo SH, Cheng AL and Teng CM: Dual phosphoinositide
3-kinase/mammalian target of rapamycin inhibitor is an effective
radiosensitizer for colorectal cancer. Cancer Lett. 357:582–590.
2015. View Article : Google Scholar
|
|
128
|
Ozpolat B and Benbrook DM: Targeting
autophagy in cancer management - strategies and developments.
Cancer Manag Res. 7:291–299. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Liang DH, El-Zein R and Dave B: Autophagy
inhibition to increase radiosensitization in breast cancer. J Nucl
Med Radiat Ther. 6:62015. View Article : Google Scholar
|