|
1
|
Ghosh D and Poisson LM: 'Omics' data and
levels of evidence for biomarker discovery. Genomics. 93:13–16.
2009. View Article : Google Scholar
|
|
2
|
Zong WX, Rabinowitz JD and White E:
Mitochondria and Cancer. Mol Cell. 61:667–676. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Locasale JW: Serine, glycine and
one-carbon units: Cancer metabolism in full circle. Nat Rev Cancer.
13:572–583. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hanley MP and Rosenberg DW: One-carbon
metabolism and colorectal cancer: Potential mechanisms of
chemoprevention. Curr Pharmacol Rep. 1:197–205. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Padmanabhan N and Watson ED: Lessons from
the one-carbon metabolism: Passing it along to the next generation.
Reprod Biomed Online. 27:637–643. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Miyo M, Konno M, Colvin H, Nishida N,
Koseki J, Kawamoto K, Tsunekuni K, Nishimura J, Hata T, Takemasa I,
et al: The importance of mitochondrial folate enzymes in human
colorectal cancer. Oncol Rep. 37:417–425. 2016.PubMed/NCBI
|
|
7
|
Farber S, Cutler EC, Hawkins JW, Harrison
JH, Peirce EC II and Lenz GG: The action of pteroylglutamic
conjugates on man. Science. 106:619–621. 1947. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Farber S, Diamond LK, Mercer RD, Sylvester
RF Jr and Wolff JA: Temporary remissions in acute leukemia in
children produced by folic acid antagonist, 4-aminopteroyl-glutamic
acid. N Engl J Med. 238:787–793. 1948. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chabner BA and Roberts TG Jr: Timeline:
Chemotherapy and the war on cancer. Nat Rev Cancer. 5:65–72. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Spears CP, Shahinian AH, Moran RG,
Heidelberger C and Corbett TH: In vivo kinetics of thymidylate
synthetase inhibition of 5-fluorouracil-sensitive and -resistant
murine colon adenocarcinomas. Cancer Res. 42:450–456.
1982.PubMed/NCBI
|
|
11
|
Burris HA III, Moore MJ, Andersen J, Green
MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo
AM, Tarassoff P, et al: Improvements in survival and clinical
benefit with gemcitabine as first-line therapy for patients with
advanced pancreas cancer: A randomized trial. J Clin Oncol.
15:2403–2413. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hasegawa S, Eguchi H, Nagano H, Konno M,
Tomimaru Y, Wada H, Hama N, Kawamoto K, Kobayashi S, Nishida N, et
al: MicroRNA-1246 expression associated with CCNG2-mediated
chemoresistance and stemness in pancreatic cancer. Br J Cancer.
111:1572–1580. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Pandey S, Garg P, Lee S, Choung HW, Choung
YH, Choung PH and Chung JH: Nucleotide biosynthesis arrest by
silencing SHMT1 function via vitamin B6-coupled vector and effects
on tumor growth inhibition. Biomaterials. 35:9332–9342. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pikman Y, Puissant A, Alexe G, Furman A,
Chen LM, Frumm SM, Ross L, Fenouille N, Bassil CF, Lewis CA, et al:
Targeting MTHFD2 in acute myeloid leukemia. J Med Chem.
213:1285–1306. 2016.
|
|
15
|
Marani M, Paone A, Fiascarelli A, Macone
A, Gargano M, Rinaldo S, Giardina G, Pontecorvi V, Koes D,
McDermott L, et al: A pyrazolopyran derivative preferentially
inhibits the activity of human cytosolic serine
hydroxymethyltransferase and induces cell death in lung cancer
cells. Oncotarget. 7:4570–4583. 2016.
|
|
16
|
Paiardini A, Fiascarelli A, Rinaldo S,
Daidone F, Giardina G, Koes DR, Parroni A, Montini G, Marani M,
Paone A, et al: Screening and in vitro testing of antifolate
inhibitors of human cytosolic serine hydroxymethyltransferase.
ChemMedChem. 10:490–497. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Witschel MC, Rottmann M, Schwab A,
Leartsakulpanich U, Chitnumsub P, Seet M, Tonazzi S, Schwertz G,
Stelzer F, Mietzner T, et al: Inhibitors of plasmodial serine
hydroxymethyltransferase (SHMT): Cocrystal structures of
pyrazolopyrans with potent blood- and liver-stage activities. J Med
Chem. 58:3117–3130. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Gustafsson R, Jemth AS, Gustafsson
Sheppard N, Färnegårdh K, Loseva O, Wiita E, Bonagas N, Dahllund L,
Llona-Minguez S and Häggblad M: Crystal structure of the emerging
cancer target MTHFD2 in complex with a substrate-based inhibitor.
Cancer Res. Nov 29–2016.Epub ahead of print. PubMed/NCBI
|
|
19
|
Miyoshi N, Ishii H, Nagano H, Haraguchi N,
Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, et
al: Reprogramming of mouse and human cells to pluripotency using
mature microRNAs. Cell Stem Cell. 8:633–638. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Anokye-Danso F, Trivedi CM, Juhr D, Gupta
M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, et al:
Highly efficient miRNA-mediated reprogramming of mouse and human
somatic cells to pluripotency. Cell Stem Cell. 8:376–388. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Miyoshi N, Ishii H, Nagai K, Hoshino H,
Mimori K, Tanaka F, Nagano H, Sekimoto M, Doki Y and Mori M:
Defined factors induce reprogramming of gastrointestinal cancer
cells. Proc Natl Acad Sci USA. 107:40–45. 2010. View Article : Google Scholar :
|
|
22
|
Dewi D, Ishii H, Haraguchi N, Nishikawa S,
Kano Y, Fukusumi T, Ohta K, Miyazaki S, Ozaki M, Sakai D, et al:
Reprogramming of gastrointestinal cancer cells. Cancer Sci.
103:393–399. 2012. View Article : Google Scholar
|
|
23
|
Ogawa H, Wu X, Kawamoto K, Nishida N,
Konno M, Koseki J, Matsui H, Noguchi K, Gotoh N, Yamamoto T, et al:
MicroRNAs induce epigenetic reprogramming and suppress malignant
phenotypes of human colon cancer cells. PLoS One. 10:e01271192015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Konno M, Koseki J, Kawamoto K, Nishida N,
Matsui H, Dewi DL, Ozaki M, Noguchi Y, Mimori K, Gotoh N, et al:
Embryonic microRNA-369 controls metabolic splicing factors and
urges cellular reprograming. PLoS One. 10:e01327892015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Avgustinova A and Benitah SA: The
epigenetics of tumour initiation: Cancer stem cells and their
chromatin. Curr Opin Genet Dev. 36:8–15. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rotili D and Mai A: Targeting histone
demethylases: A new avenue for the fight against cancer. Genes
Cancer. 2:663–679. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Roesch A, Fukunaga-Kalabis M, Schmidt EC,
Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T
and Herlyn M: A temporarily distinct subpopulation of slow-cycling
melanoma cells is required for continuous tumor growth. Cell.
141:583–594. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kano Y, Konno M, Ohta K, Haraguchi N,
Nishikawa S, Kagawa Y, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T,
et al: Jumonji/Arid1b (Jarid1b) protein modulates human esophageal
cancer cell growth. Mol Clin Oncol. 1:753–757. 2013.
|
|
29
|
Ohta K, Haraguchi N, Kano Y, Kagawa Y,
Konno M, Nishikawa S, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, et
al: Depletion of JARID1B induces cellular senescence in human
colorectal cancer. Int J Oncol. 42:1212–1218. 2013.PubMed/NCBI
|
|
30
|
Casero RAJ Jr and Marton LJ: Targeting
polyamine metabolism and function in cancer and other
hyperproliferative diseases. Nat Rev Drug Discov. 6:373–390. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Warren TK, Jordan R, Lo MK, Ray AS,
Mackman RL, Soloveva V, Siegel D, Perron M, Bannister R, Hui HC, et
al: Therapeutic efficacy of the small molecule GS-5734 against
Ebola virus in rhesus monkeys. Nature. 531:381–385. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Longley DB, Harkin DP and Johnston PG:
5-fluorouracil: Mechanisms of action and clinical strategies. Nat
Rev Cancer. 3:330–338. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sakuramoto S, Sasako M, Yamaguchi T,
Kinoshita T, Fujii M, Nashimoto A, Furukawa H, Nakajima T, Ohashi
Y, Imamura H, et al ACTS-GC Group: Adjuvant chemotherapy for
gastric cancer with S-1, an oral fluoropyrimidine. N Engl J Med.
357:1810–1820. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kaufman HE and Heidelberger C: Therapeutic
antiviral Action of 5-trifluoromethyl-2′-deoxyuridine in Herpes
simplex keratitis. Science. 145:585–586. 1964. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mayer RJ, Van Cutsem E, Falcone A, Yoshino
T, Garcia-Carbonero R, Mizunuma N, Yamazaki K, Shimada Y, Tabernero
J, Komatsu Y, et al RECOURSE Study Group: Randomized trial of
TAS-102 for refractory metastatic colorectal cancer. N Engl J Med.
372:1909–1919. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yoshino T, Mizunuma N, Yamazaki K, Nishina
T, Komatsu Y, Baba H, Tsuji A, Yamaguchi K, Muro K, Sugimoto N, et
al: TAS-102 monotherapy for pretreated metastatic colorectal
cancer: A double-blind, randomised, placebo-controlled phase 2
trial. Lancet Oncol. 13:993–1001. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Honma Y, Yamada Y, Terazawa T, Takashima
A, Iwasa S, Kato K, Hamaguchi T, Shimada Y, Ohashi M, Morita S, et
al: Feasibility of neoadjuvant S-1 and oxaliplatin followed by
surgery for resectable advanced gastric adenocarcinoma. Surg Today.
46:1076–1082. 2016. View Article : Google Scholar
|
|
38
|
Uehara K and Nagino M: Neoadjuvant
treatment for locally advanced rectal cancer: A systematic review.
Surg Today. 46:161–168. 2016. View Article : Google Scholar
|
|
39
|
Park IJ, Kim JY, Yu CS, Lee JS, Lim SB,
Lee JL, Yoon YS, Kim CW and Kim JC: Preoperative chemoradiotherapy
for clinically diagnosed T3N0 rectal cancer. Surg Today. 46:90–96.
2016. View Article : Google Scholar
|
|
40
|
Su X, Wellen KE and Rabinowitz JD:
Metabolic control of methylation and acetylation. Curr Opin Chem
Biol. 30:52–60. 2016. View Article : Google Scholar :
|
|
41
|
Hamabe A, Konno M, Tanuma N, Shima H,
Tsunekuni K, Kawamoto K, Nishida N, Koseki J, Mimori K, Gotoh N, et
al: Role of pyruvate kinase M2 in transcriptional regulation
leading to epithelial-mesenchymal transition. Proc Natl Acad Sci
USA. 111:15526–15531. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hamabe A, Yamamoto H, Konno M, Uemura M,
Nishimura J, Hata T, Takemasa I, Mizushima T, Nishida N, Kawamoto
K, et al: Combined evaluation of hexokinase 2 and phosphorylated
pyruvate dehydrogenase-E1α in invasive front lesions of colorectal
tumors predicts cancer metabolism and patient prognosis. Cancer
Sci. 105:1100–1108. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gerner EW and Meyskens FL Jr: Polyamines
and cancer: Old molecules, new understanding. Nat Rev Cancer.
4:781–792. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hayashi K, Tamari K, Ishii H, Konno M,
Nishida N, Kawamoto K, Koseki J, Fukusumi T, Kano Y, Nishikawa S,
et al: Visualization and characterization of cancer stem-like cells
in cervical cancer. Int J Oncol. 45:2468–2474. 2014.PubMed/NCBI
|
|
45
|
Kano Y, Konno M, Kawamoto K, Tamari K,
Hayashi K, Fukusumi T, Satoh T, Tanaka S, Ogawa K, Mori M, et al:
Novel drug discovery system for cancer stem cells in human squamous
cell carcinoma of the esophagus. Oncol Rep. 31:1133–1138.
2014.PubMed/NCBI
|
|
46
|
Tamari K, Hayashi K, Ishii H, Kano Y,
Konno M, Kawamoto K, Nishida N, Koseki J, Fukusumi T, Hasegawa S,
et al: Identification of chemoradiation-resistant osteosarcoma stem
cells using an imaging system for proteasome activity. Int J Oncol.
45:2349–2354. 2014.PubMed/NCBI
|
|
47
|
Koseki J, Matsui H, Konno M, Nishida N,
Kawamoto K, Kano Y, Mori M, Doki Y and Ishii H: A Trans-omics
mathematical analysis reveals novel functions of the ornithine
metabolic pathway in cancer Stem cells. Sci Rep. 6:207262016.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Nowell PC: Foundations in cancer research.
Chromosomes and cancer: The evolution of an idea. Adv Cancer Res.
62:1–17. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Nowell PC and Croce CM: Chromosomes,
genes, and cancer. Am J Pathol. 125:7–15. 1986.PubMed/NCBI
|
|
52
|
Weinberg RA: Tumor suppressor genes.
Science. 254:1138–1146. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sherr CJ: Cancer cell cycles. Science.
274:1672–1677. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ohta M, Inoue H, Cotticelli MG, Kastury K,
Baffa R, Palazzo J, Siprashvili Z, Mori M, McCue P, Druck T, et al:
The FHIT gene, spanning the chromosome 3p14.2 fragile site and
renal carcinoma-associated t(3;8) breakpoint, is abnormal in
digestive tract cancers. Cell. 84:587–597. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Huang K and Frey PA: Engineering human
Fhit, a diadenosine triphosphate hydrolase, into an efficient
dinucleoside polyphosphate synthase. J Am Chem Soc. 126:9548–9549.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Huebner K and Croce CM: FRA3B and other
common fragile sites: The weakest links. Nat Rev Cancer. 1:214–221.
2001. View Article : Google Scholar
|
|
57
|
Dumon KR, Ishii H, Fong LY, Zanesi N,
Fidanza V, Mancini R, Vecchione A, Baffa R, Trapasso F, During MJ,
et al: FHIT gene therapy prevents tumor development in
Fhit-deficient mice. Proc Natl Acad Sci USA. 98:3346–3351. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Inoue H, Ishii H, Alder H, Snyder E, Druck
T, Huebner K and Croce CM: Sequence of the FRA3B common fragile
region: Implications for the mechanism of FHIT deletion. Proc Natl
Acad Sci USA. 94:14584–14589. 1997. View Article : Google Scholar
|
|
59
|
Mimori K, Druck T, Inoue H, Alder H, Berk
L, Mori M, Huebner K and Croce CM: Cancer-specific chromosome
alterations in the constitutive fragile region FRA3B. Proc Natl
Acad Sci USA. 96:7456–7461. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ishii H, Mimori K, Inoue H, Inageta T,
Ishikawa K, Semba S, Druck T, Trapasso F, Tani K, Vecchione A, et
al: Fhit modulates the DNA damage checkpoint response. Cancer Res.
66:11287–11292. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Semba S, Trapasso F, Fabbri M, McCorkell
KA, Volinia S, Druck T, Iliopoulos D, Pekarsky Y, Ishii H, Garrison
PN, et al: Fhit modulation of the Akt-survivin pathway in lung
cancer cells: Fhit-tyrosine 114 (Y114) is essential. Oncogene.
25:2860–2872. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Arlt MF, Casper AM and Glover TW: Common
fragile sites. Cytogenet Genome Res. 100:92–100. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Dayem AA, Choi HY, Kim JH and Cho SG: Role
of oxidative stress in stem, cancer, and cancer stem cells. Cancers
(Basel). 2:859–884. 2010. View Article : Google Scholar
|
|
64
|
Al-Hajj M, Wicha MS, Benito-Hernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. Proc Natl Acad Sci USA.
100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ambrosone CB: Oxidants and antioxidants in
breast cancer. Antioxid Redox Signal. 2:903–917. 2000. View Article : Google Scholar
|
|
66
|
Barreiro E, Peinado VI, Galdiz JB, Ferrer
E, Marin-Corral J, Sánchez F, Gea J and Barberà JA; ENIGMA in COPD
Project: Cigarette smoke-induced oxidative stress: A role in
chronic obstructive pulmonary disease skeletal muscle dysfunction.
Am J Respir Crit Care Med. 182:477–488. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Cairns RA, Harris IS and Mak TW:
Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kobayashi CI and Suda T: Regulation of
reactive oxygen species in stem cells and cancer stem cells. J Cell
Physiol. 227:421–430. 2012. View Article : Google Scholar
|
|
69
|
Turrens JF: Mitochondrial formation of
reactive oxygen species. J Physiol. 552:335–344. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Dickinson BC and Chang CJ: Chemistry and
biology of reactive oxygen species in signaling or stress
responses. Nat Chem Biol. 7:504–511. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lee KW, Lee DJ, Lee JY, Kang DH, Kwon J
and Kang SW: Peroxiredoxin II restrains DNA damage-induced death in
cancer cells by positively regulating JNK-dependent DNA repair. J
Biol Chem. 286:8394–8404. 2011. View Article : Google Scholar :
|
|
72
|
Phillips TM, McBride WH and Pajonk F: The
response of CD24−/low/CD44+ breast
cancer-initiating cells to radiation. J Natl Cancer Inst.
98:1777–1785. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Giannoni E, Buricchi F, Raugei G, Ramponi
G and Chiarugi P: Intracellular reactive oxygen species activate
Src tyrosine kinase during cell adhesion and anchorage-dependent
cell growth. Mol Cell Biol. 25:6391–6403. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hoeijmakers JH: DNA damage, aging, and
cancer. N Engl J Med. 361:1475–1485. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yee C, Yang W and Hekimi S: The intrinsic
apoptosis pathway mediates the pro-longevity response to
mitochondrial ROS in C. elegans. Cell. 157:897–909. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Fruehauf JP and Meyskens FL Jr: Reactive
oxygen species: A breath of life or death? Clin Cancer Res.
13:789–794. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Szatrowski TP and Nathan CF: Production of
large amounts of hydrogen peroxide by human tumor cells. Cancer
Res. 51:794–798. 1991.PubMed/NCBI
|
|
78
|
Halliwell B: Oxidative stress and cancer:
Have we moved forward? Biochem J. 401:1–11. 2007. View Article : Google Scholar
|
|
79
|
Trachootham D, Alexandre J and Huang P:
Targeting cancer cells by ROS-mediated mechanisms: A radical
therapeutic approach? Nat Rev Drug Discov. 8:579–591. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chan SM and Majeti R: Role of DNMT3A,
TET2, and IDH1/2 mutations in pre-leukemic stem cells in acute
myeloid leukemia. Int J Hematol. 98:648–657. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hermann PC, Huber SL, Herrler T, Aicher A,
Ellwart JW, Guba M, Bruns CJ and Heeschen C: Distinct populations
of cancer stem cells determine tumor growth and metastatic activity
in human pancreatic cancer. Cell Stem Cell. 1:313–323. 2007.
View Article : Google Scholar
|
|
82
|
Eyler CE and Rich JN: Survival of the
fittest: Cancer stem cells in therapeutic resistance and
angiogenesis. J Clin Oncol. 26:2839–2845. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kurtova AV, Xiao J, Mo Q, Pazhanisamy S,
Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL, et al: Blocking
PGE2-induced tumour repopulation abrogates bladder
cancer chemoresistance. Nature. 517:209–213. 2015. View Article : Google Scholar
|
|
84
|
Schafer ZT, Grassian AR, Song L, Jiang Z,
Gerhart-Hines Z, Irie HY, Gao S, Puigserver P and Brugge JS:
Antioxidant and oncogene rescue of metabolic defects caused by loss
of matrix attachment. Nature. 461:109–113. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang K, Zhang T, Dong Q, Nice EC, Huang C
and Wei Y: Redox homeostasis: The linchpin in stem cell
self-renewal and differentiation. Cell Death Dis. 4:e5372013.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Shi X, Zhang Y, Zheng J and Pan J:
Reactive oxygen species in cancer stem cells. Antioxid Redox
Signal. 16:1215–1228. 2012. View Article : Google Scholar : PubMed/NCBI
|