Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
April-2017 Volume 50 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2017 Volume 50 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction

  • Authors:
    • Shaoguang Wang
    • Xiaomei Meng
    • Yaozhong Dong
  • View Affiliations / Copyright

    Affiliations: Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
  • Pages: 1330-1340
    |
    Published online on: February 22, 2017
       https://doi.org/10.3892/ijo.2017.3890
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cervical cancer is a cause of cancer death, making it one of the most common causes of death among women globally. Previously, a variety of studies have revealed the molecular mechanisms by which cervical cancer develops. However, there are still limitations in treatment for cervical cancer. Ursolic acid is a naturally derived pentacyclic triterpene acid, exhibiting broad anticancer effects. Nanoparticulate drug delivery systems have been known to better the bioavailability of drugs on intranasal administration compared with only drug solutions. Administration of ursolic acid nanoparticles is thought to be sufficient to lead to considerable suppression of cervical cancer progression. We loaded gold-ursolic acid into poly(DL-lactide-co-glycolide) nanoparticles to cervical cancer cell lines due to the properties of ursolic acid in altering cellular processes and the easier absorbance of nanoparticles. In addition, in this study, ursolic acid nanoparticles were administered to cervical cancer cells to find effective treatments for cervical cancer inhibition. In the present study, ELISA, western blotting, flow cytometry and immunohistochemistry assays were carried out to calculate the molecular mechanism by which ursolic acid nanoparticles modulated cervical cancer progression. Data indicated that ursolic acid nanoparticles, indeed, significantly suppress cervial cancer cell proliferation, invasion and migration compared to the control group, and apoptosis was induced by ursolic acid nanoparticles in cervical cancer cells through activating caspases, p53 and suppressing anti-apoptosis-related signals. Furthermore, tumor size was reduced by treatment of ursolic acid nanoparticles in in vivo experiments. In conclusion, this study suggests that ursolic acid nanoparticles inhibited cervical cancer cell proliferation via apoptosis induction, which could be a potential target for future therapeutic strategy clinically.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Bast RC Jr, Hennessy B and Mills GB: The biology of ovarian cancer: New opportunities for translation. Nat Rev Cancer. 9:415–428. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Phongsavan K, Phengsavanh A, Wahlström R and Marions L: Women's perception of cervical cancer and its prevention in rural Laos. Int J Gynecol Cancer. 20:821–826. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Agarwal SM, Raghav D, Singh H and Raghava GP: CCDB: A curated database of genes involved in cervix cancer. Nucleic Acids Res. 39(Database): D975–D979. 2011. View Article : Google Scholar :

4 

Kawase R, Ishiwata T, Matsuda Y, Onda M, Kudo M, Takeshita T and Naito Z: Expression of fibroblast growth factor receptor 2 IIIc in human uterine cervical intraepithelial neoplasia and cervical cancer. Int J Oncol. 36:331–340. 2010.PubMed/NCBI

5 

World Health Organization: International Agency for Research on Cancer Cervical Cancer - Estimated Incidence. (Mortality and Prevalence Worldwide in 2012)

6 

Pollier J and Goossens A: Oleanolic acid. Phytochemistry. 77:10–15. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Yang EJ, Lee W, Ku SK, Song KS and Bae JS: Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs. Food Chem Toxicol. 50:1288–1294. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Reisman SA, Aleksunes LM and Klaassen CD: Oleanolic acid activates Nrf2 and protects from acetaminophen hepatotoxicity via Nrf2-dependent and Nrf2-independent processes. Biochem Pharmacol. 77:1273–1282. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Hsu HY, Yang JJ and Lin CC: Effects of oleanolic acid and ursolic acid on inhibiting tumor growth and enhancing the recovery of hematopoietic system postirradiation in mice. Cancer Lett. 111:7–13. 1997. View Article : Google Scholar : PubMed/NCBI

10 

Yamai H, Sawada N, Yoshida T, Seike J, Takizawa H, Kenzaki K, Miyoshi T, Kondo K, Bando Y, Ohnishi Y, et al: Triterpenes augment the inhibitory effects of anticancer drugs on growth of human esophageal carcinoma cells in vitro and suppress experimental metastasis in vivo. Int J Cancer. 125:952–960. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Ngo SN, Williams DB and Head RJ: Rosemary and cancer prevention: Preclinical perspectives. Crit Rev Food Sci Nutr. 51:946–954. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Shishodia S, Majumdar S, Banerjee S and Aggarwal BB: Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: Correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 63:4375–4383. 2003.PubMed/NCBI

13 

Wang X, Zhang F, Yang L, Mei Y, Long H, Zhang X, Zhang J, Qimuge-Suyila and Su X: Ursolic acid inhibits proliferation and induces apoptosis of cancer cells in vitro and in vivo. J Biomed Biotechnol. 2011:4193432011. View Article : Google Scholar : PubMed/NCBI

14 

Lin CC, Huang CY, Mong MC, Chan CY and Yin MC: Antiangiogenic potential of three triterpenic acids in human liver cancer cells. J Agric Food Chem. 59:755–762. 2011. View Article : Google Scholar

15 

Huang CY, Lin CY, Tsai CW and Yin MC: Inhibition of cell proliferation, invasion and migration by ursolic acid in human lung cancer cell lines. Toxicol In Vitro. 25:1274–1280. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Kim KH, Seo HS, Choi HS, Choi I, Shin YC and Ko SG: Induction of apoptotic cell death by ursolic acid through mitochondrial death pathway and extrinsic death receptor pathway in MDA-MB-231 cells. Arch Pharm Res. 34:1363–1372. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Gong YY, Liu YY, Yu S, Zhu XN, Cao XP and Xiao HP: Ursolic acid suppresses growth and adrenocorticotrophic hormone secretion in AtT20 cells as a potential agent targeting adrenocorticotrophic hormone-producing pituitary adenoma. Mol Med Rep. 9:2533–2539. 2014.PubMed/NCBI

18 

Wang X, Wang Y, Chen ZG and Shin DM: Advances of cancer therapy by nanotechnology. Cancer Res Treat. 41:1–11. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Kreuter J: Nanoparticles - a historical perspective. Int J Pharm. 331:1–10. 2007. View Article : Google Scholar

20 

Byrne JD, Betancourt T and Brannon-Peppas L: Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 60:1615–1626. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Cho K, Wang X, Nie S, Chen ZG and Shin DM: Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 14:1310–1316. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Iyer AK, Khaled G, Fang J and Maeda H: Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 11:812–818. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Talekar M, Kendall J, Denny W and Garg S: Targeting of nanoparticles in cancer: Drug delivery and diagnostics. Anticancer Drugs. 22:949–962. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Maeda H: Nitroglycerin enhances vascular blood flow and drug delivery in hypoxic tumor tissues: Analogy between angina pectoris and solid tumors and enhancement of the EPR effect. J Control Release. 142:296–298. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Zeng X, Tao W, Mei L, Huang L, Tan C and Feng SS: Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials. 34:6058–6067. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Mayer B and Oberbauer R: Mitochondrial regulation of apoptosis. News Physiol Sci. 18:89–94. 2003.PubMed/NCBI

27 

Danial NN and Korsmeyer SJ: Cell death: Critical control points. Cell. 116:205–219. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Suzuki Y, Nakabayashi Y, Nakata K, Reed JC and Takahashi R: X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J Biol Chem. 276:27058–27063. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Kaul R, Mukherjee S, Ahmed F, Bhat MK, Chhipa R, Galande S and Chattopadhyay S: Direct interaction with and activation of p53 by SMAR1 retards cell-cycle progression at G2/M phase and delays tumor growth in mice. Int J Cancer. 103:606–615. 2003. View Article : Google Scholar

30 

Brake T and Lambert PF: Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc Natl Acad Sci USA. 102:2490–2495. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Smith JS, Green J, Berrington de Gonzalez A, Appleby P, Peto J, Plummer M, Franceschi S and Beral V: Cervical cancer and use of hormonal contraceptives: A systematic review. Lancet. 361:1159–1167. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Sasieni P: Cervical cancer and hormonal contraceptives: Collaborative reanalysis of individual data for 16 573 women with cervical cancer and 35 509 women without cervical cancer from 24 epidemiological studies. Lancet. 370:1609–1621. 2007. View Article : Google Scholar

33 

Gavrilescu MM, Todosi AM, Aniţei MG, Filip B and Scripcariu V: Expression of bmi-1 protein in cervical, breast and ovarian cancer. Rev Med Chir Soc Med Nat Iasi. 116:1112–1117. 2012.

34 

McCredie MR, Sharples KJ, Paul C, Baranyai J, Medley G, Jones RW and Skegg DC: Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: A retrospective cohort study. Lancet Oncol. 9:425–434. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Ikeda Y, Murakami A and Ohigashi H: Ursolic acid: An anti- and pro-inflammatory triterpenoid. Mol Nutr Food Res. 52:26–42. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Andersson D, Liu JJ, Nilsson A and Duan RD: Ursolic acid inhibits proliferation and stimulates apoptosis in HT29 cells following activation of alkaline sphingomyelinase. Anticancer Res. 23:3317–3322. 2003.PubMed/NCBI

37 

Ji HF, Li XJ and Zhang HY: Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 10:194–200. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Xavier CP, Lima CF, Preto A, Seruca R, Fernandes-Ferreira M and Pereira-Wilson C: Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Lett. 281:162–170. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Hsu YL, Kuo PL and Lin CC: Proliferative inhibition, cell-cycle dysregulation, and induction of apoptosis by ursolic acid in human non-small cell lung cancer A549 cells. Life Sci. 75:2303–2316. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Choi BM, Park R, Pae HO, Yoo JC, Kim YC, Jun CD, Jung BH, Oh GS, So HS, Kim YM, et al: Cyclic adenosine monophosphate inhibits ursolic acid-induced apoptosis via activation of protein kinase A in human leukaemic HL-60 cells. Pharmacol Toxicol. 86:53–58. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Cha HJ, Bae SK, Lee HY, Lee OH, Sato H, Seiki M, Park BC and Kim KW: Anti-invasive activity of ursolic acid correlates with the reduced expression of matrix metalloproteinase-9 (MMP-9) in HT1080 human fibrosarcoma cells. Cancer Res. 56:2281–2284. 1996.PubMed/NCBI

42 

Liu L, Wu J, Zhang J, Li Z, Wang C, Chen M, Wang Y, Sun Y, Wang L and Luo C: A compatibility assay of ursolic acid and foodborne microbial exopolysaccharides by antioxidant power and anti-proliferative properties in hepatocarcinoma cells. J Food Agric Environ. 10:111–114. 2012.

43 

Wang Y, Cui H, Li K, Sun C, Du W, Cui J, Zhao X and Chen W: A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. PLoS One. 9:e1028862014. View Article : Google Scholar : PubMed/NCBI

44 

Delyagina E, Schade A, Scharfenberg D, Skorska A, Lux C, Li W and Steinhoff G: Improved transfection in human mesenchymal stem cells: Effective intracellular release of pDNA by magnetic polyplexes. Nanomedicine (Lond). 9:999–1017. 2014. View Article : Google Scholar

45 

Wang Y, Cui H, Sun C, Du W, Cui J and Zhao X: Study on performance of magnetic fluorescent nanoparticles as gene carrier and location in pig kidney cells. Nanoscale Res Lett. 8:1272013. View Article : Google Scholar : PubMed/NCBI

46 

Underbrink MP, Howie HL, Bedard KM, Koop JI and Galloway DA: E6 proteins from multiple human betapapillomavirus types degrade Bak and protect keratinocytes from apoptosis after UVB irradiation. J Virol. 82:10408–10417. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Kabsch K and Alonso A: The human papillomavirus type 16 E5 protein impairs TRAIL- and FasL-mediated apoptosis in HaCaT cells by different mechanisms. J Virol. 76:12162–12172. 2002. View Article : Google Scholar : PubMed/NCBI

48 

Wang X, Shi Q, Xu K, Gao C, Chen C, Li XL, Wang GR, Tian C, Han J and Dong XP: Familial CJD associated PrP mutants within transmembrane region induced Ctm-PrP retention in ER and triggered apoptosis by ER stress in SH-SY5Y cells. PLoS One. 6:e146022011. View Article : Google Scholar : PubMed/NCBI

49 

Xu K, Wang X, Shi Q, Chen C, Tian C, Li XL, Zhou RM, Chu YL and Dong XP: Human prion protein mutants with deleted and inserted octarepeats undergo different pathways to trigger cell apoptosis. J Mol Neurosci. 43:225–234. 2011. View Article : Google Scholar

50 

Virkajärvi N, Pääkkö P and Soini Y: Apoptotic index and apoptosis influencing proteins bcl-2, mcl-1, bax and caspases 3, 6 and 8 in pancreatic carcinoma. Histopathology. 33:432–439. 1998. View Article : Google Scholar : PubMed/NCBI

51 

Sträter J, Herter I, Merkel G, Hinz U, Weitz J and Möller P: Expression and prognostic significance of APAF-1, caspase-8 and caspase-9 in stage II/III colon carcinoma: Caspase-8 and caspase-9 is associated with poor prognosis. Int J Cancer. 127:873–880. 2010.

52 

Satoh K, Kaneko K, Hirota M, Toyota T and Shimosegawa T: The pattern of CPP32/caspase-3 expression reflects the biological behavior of the human pancreatic duct cell tumors. Pancreas. 21:352–357. 2000. View Article : Google Scholar : PubMed/NCBI

53 

Meggiato T, Calabrese F, De Cesare CM, Baliello E, Valente M and Del Favero G: C-JUN and CPP32 (CASPASE 3) in human pancreatic cancer: Relation to cell proliferation and death. Pancreas. 26:65–70. 2003. View Article : Google Scholar

54 

Noble P, Vyas M, Al-Attar A, Durrant S, Scholefield J and Durrant L: High levels of cleaved caspase-3 in colorectal tumour stroma predict good survival. Br J Cancer. 108:2097–2105. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Aylon Y and Oren M: p53: guardian of ploidy. Mol Oncol. 5:315–323. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Murray-Zmijewski F, Slee EA and Lu X: A complex barcode underlies the heterogeneous response of p53 to stress. Nat Rev Mol Cell Biol. 9:702–712. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Blanchette P and Branton PE: Manipulation of the ubiquitin-proteasome pathway by small DNA tumor viruses. Virology. 384:317–323. 2009. View Article : Google Scholar

58 

Cory S and Adams JM: The Bcl2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer. 2:647–656. 2002. View Article : Google Scholar : PubMed/NCBI

59 

Youle RJ and Strasser A: The BCL-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 9:47–59. 2008. View Article : Google Scholar

60 

Zhang YX, Kong CZ, Wang HQ, Wang LH, Xu CL and Sun YH: Phosphorylation of Bcl-2 and activation of caspase-3 via the c-Jun N-terminal kinase pathway in ursolic acid-induced DU145 cells apoptosis. Biochimie. 91:1173–1179. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Wensveen FM, Alves NL, Derks IA, Reedquist KA and Eldering E: Apoptosis induced by overall metabolic stress converges on the Bcl-2 family proteins Noxa and Mcl-1. Apoptosis. 16:708–721. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Choi YH, Baek JH, Yoo MA, Chung HY, Kim ND and Kim KW: Induction of apoptosis by ursolic acid through activation of caspases and down-regulation of c-IAPs in human prostate epithelial cells. Int J Oncol. 17:565–571. 2000.PubMed/NCBI

63 

Dubrez-Daloz L, Dupoux A and Cartier J: IAPs: More than just inhibitors of apoptosis proteins. Cell Cycle. 7:1036–1046. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang S, Meng X and Dong Y: Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. Int J Oncol 50: 1330-1340, 2017.
APA
Wang, S., Meng, X., & Dong, Y. (2017). Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. International Journal of Oncology, 50, 1330-1340. https://doi.org/10.3892/ijo.2017.3890
MLA
Wang, S., Meng, X., Dong, Y."Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction". International Journal of Oncology 50.4 (2017): 1330-1340.
Chicago
Wang, S., Meng, X., Dong, Y."Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction". International Journal of Oncology 50, no. 4 (2017): 1330-1340. https://doi.org/10.3892/ijo.2017.3890
Copy and paste a formatted citation
x
Spandidos Publications style
Wang S, Meng X and Dong Y: Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. Int J Oncol 50: 1330-1340, 2017.
APA
Wang, S., Meng, X., & Dong, Y. (2017). Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. International Journal of Oncology, 50, 1330-1340. https://doi.org/10.3892/ijo.2017.3890
MLA
Wang, S., Meng, X., Dong, Y."Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction". International Journal of Oncology 50.4 (2017): 1330-1340.
Chicago
Wang, S., Meng, X., Dong, Y."Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction". International Journal of Oncology 50, no. 4 (2017): 1330-1340. https://doi.org/10.3892/ijo.2017.3890
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team