|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Conteduca V, Sansonno D, Lauletta G, Russi
S, Ingravallo G and Dammacco F: H. pylori infection and gastric
cancer: State of the art (Review). Int J Oncol. 42:5–18. 2013.
|
|
3
|
Amieva M and Peek RM Jr: Pathobiology of
Helicobacter pylori-induced gastric cancer. Gastroenterology.
150:64–78. 2016. View Article : Google Scholar
|
|
4
|
Kim J, Yum S, Kang C and Kang SJ:
Gene-gene interactions in gastrointestinal cancer susceptibility.
Oncotarget. 7:67612–67625. 2016.PubMed/NCBI
|
|
5
|
Raei N, Behrouz B, Zahri S and
Latifi-Navid S: Helicobacter pylori infection and dietary factors
act synergistically to promote gastric cancer. Asian Pac J Cancer
Prev. 17:917–921. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Warburg O: On respiratory impairment in
cancer cells. Science. 124:269–270. 1956.PubMed/NCBI
|
|
7
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yun J, Rago C, Cheong I, Pagliarini R,
Angenendt P, Rajagopalan H, Schmidt K, Willson JK, Markowitz S,
Zhou S, et al: Glucose deprivation contributes to the development
of KRAS pathway mutations in tumor cells. Science. 325:1555–1559.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim
SH, Ito S, Yang C, Wang P, Xiao MT, et al: Oncometabolite
2-hydroxyglutarate is a competitive inhibitor of
α-ketoglutarate-dependent dioxygenases. Cancer Cell. 19:17–30.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Dang L, White DW, Gross S, Bennett BD,
Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, et
al: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate.
Nature. 465:9662010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Fischer K, Hoffmann P, Voelkl S,
Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G,
Hoves S, et al: Inhibitory effect of tumor cell-derived lactic acid
on human T cells. Blood. 109:3812–3819. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Dietl K, Renner K, Dettmer K, Timischl B,
Eberhart K, Dorn C, Hellerbrand C, Kastenberger M, Kunz-Schughart
LA, Oefner PJ, et al: Lactic acid and acidification inhibit TNF
secretion and glycolysis of human monocytes. J Immunol.
184:1200–1209. 2010. View Article : Google Scholar
|
|
13
|
Herber DL, Cao W, Nefedova Y, Novitskiy
SV, Nagaraj S, Tyurin VA, Corzo A, Cho HI, Celis E, Lennox B, et
al: Lipid accumulation and dendritic cell dysfunction in cancer.
Nat Med. 16:880–886. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhang J, Ahn WS, Gameiro PA, Keibler MA,
Zhang Z and Stephanopoulos G: 13C isotope-assisted methods for
quantifying glutamine metabolism in cancer cells. Methods Enzymol.
542:369–389. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Beger RD: A review of applications of
metabolomics in cancer. Metabolites. 3:552–574. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Putri SP, Yamamoto S, Tsugawa H and
Fukusaki E: Current metabolomics: Technological advances. J Biosci
Bioeng. 116:9–16. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Duarte IF, Diaz SO and Gil AM: NMR
metabolomics of human blood and urine in disease research. J Pharm
Biomed Anal. 93:17–26. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ussher JR, Elmariah S, Gerszten RE and
Dyck JR: The emerging role of metabolomics in the diagnosis and
prognosis of cardiovascular disease. J Am Coll Cardiol.
68:2850–2870. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Guma M, Tiziani S and Firestein GS:
Metabolomics in rheumatic diseases: Desperately seeking biomarkers.
Nat Rev Rheumatol. 12:269–281. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Herrmann K, Walch A, Balluff B, Tänzer M,
Höfler H, Krause BJ, Schwaiger M, Friess H, Schmid RM and Ebert MP:
Proteomic and metabolic prediction of response to therapy in
gastrointestinal cancers. Nat Clin Pract Gastroenterol Hepatol.
6:170–183. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Armitage EG and Southam AD: Monitoring
cancer prognosis, diagnosis and treatment efficacy using
metabolomics and lipidomics. Metabolomics. 12:1462016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Jayavelu ND and Bar NS: Metabolomic
studies of human gastric cancer (Review). World J Gastroenterol.
20:8092–8101. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chan AW, Gill RS, Schiller D and Sawyer
MB: Potential role of metabolomics in diagnosis and surveillance of
gastric cancer. World J Gastroenterol. 20:12874–12882. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Miyagi Y, Higashiyama M, Gochi A, Akaike
M, Ishikawa T, Miura T, Saruki N, Bando E, Kimura H, Imamura F, et
al: Plasma free amino acid profiling of five types of cancer
patients and its application for early detection. PLoS One.
6:e241432011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yu L, Aa J, Xu J, Sun M, Qian S, Cheng L,
Yang S and Shi R: Metabolomic phenotype of gastric cancer and
precancerous stages based on gas chromatography time-of-flight mass
spectrometry. J Gastroenterol Hepatol. 26:1290–1297. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Song H, Peng JS, Dong-Sheng Y, Yang ZL,
Liu HL, Zeng YK, Shi XP and Lu BY: Serum metabolic profiling of
human gastric cancer based on gas chromatography/mass spectrometry.
Braz J Med Biol Res. 45:78–85. 2012. View Article : Google Scholar
|
|
27
|
Ikeda A, Nishiumi S, Shinohara M, Yoshie
T, Hatano N, Okuno T, Bamba T, Fukusaki E, Takenawa T, Azuma T, et
al: Serum metabolomics as a novel diagnostic approach for
gastrointestinal cancer. Biomed Chromatogr. 26:548–558. 2012.
View Article : Google Scholar
|
|
28
|
Aa J, Yu L, Sun M, Liu L, Li M, Cao B, Shi
J, Xu J, Cheng L, Zhou J, et al: Metabolic features of the tumor
microenvironment of gastric cancer and the link to the systemic
macroenvironment. Metabolomics. 8:164–173. 2012. View Article : Google Scholar
|
|
29
|
Choi JM, Park WS, Song KY, Lee HJ and Jung
BH: Development of simultaneous analysis of tryptophan metabolites
in serum and gastric juice - an investigation towards establishing
a biomarker test for gastric cancer diagnosis. Biomed Chromatogr.
30:1963–1974. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hu JD, Tang HQ, Zhang Q, Fan J, Hong J, Gu
JZ and Chen JL: Prediction of gastric cancer metastasis through
urinary metabolomic investigation using GC/MS. World J
Gastroenterol. 17:727–734. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jung J, Jung Y, Bang EJ, Cho SI, Jang YJ,
Kwak JM, Ryu DH, Park S and Hwang GS: Noninvasive diagnosis and
evaluation of curative surgery for gastric cancer by using
NMR-based metabolomic profiling. Ann Surg Oncol. 21(Suppl 4):
S736–S742. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liang Q, Wang C and Li B: Metabolomic
analysis using liquid chromatography/mass spectrometry for gastric
cancer. Appl Biochem Biotechnol. 176:2170–2184. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chan AW, Mercier P, Schiller D, Bailey R,
Robbins S, Eurich DT, Sawyer MB and Broadhurst D: (1)H-NMR urinary
metabolomic profiling for diagnosis of gastric cancer. Br J Cancer.
114:59–62. 2016. View Article : Google Scholar
|
|
34
|
Chen Y, Zhang J, Guo L, Liu L, Wen J, Xu
L, Yan M, Li Z, Zhang X, Nan P, et al: A characteristic
biosignature for discrimination of gastric cancer from healthy
population by high throughput GC-MS analysis. Oncotarget.
7:87496–87510. 2016.PubMed/NCBI
|
|
35
|
Hirayama A, Kami K, Sugimoto M, Sugawara
M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, et
al: Quantitative metabolome profiling of colon and stomach cancer
microenvironment by capillary electrophoresis time-of-flight mass
spectrometry. Cancer Res. 69:4918–4925. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen JL, Tang HQ, Hu JD, Fan J, Hong J and
Gu JZ: Metabolomics of gastric cancer metastasis detected by gas
chromatography and mass spectrometry. World J Gastroenterol.
16:5874–5880. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wu H, Xue R, Tang Z, Deng C, Liu T, Zeng
H, Sun Y and Shen X: Metabolomic investigation of gastric cancer
tissue using gas chromatography/mass spectrometry. Anal Bioanal
Chem. 396:1385–1395. 2010. View Article : Google Scholar
|
|
38
|
Cai Z, Zhao JS, Li JJ, Peng DN, Wang XY,
Chen TL, Qiu YP, Chen PP, Li WJ, Xu LY, et al: A combined
proteomics and metabolomics profiling of gastric cardia cancer
reveals characteristic dysregulations in glucose metabolism. Mol
Cell Proteomics. 9:2617–2628. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Song H, Wang L, Liu HL, Wu XB, Wang HS,
Liu ZH, Li Y, Diao DC, Chen HL and Peng JS: Tissue metabolomic
fingerprinting reveals metabolic disorders associated with human
gastric cancer morbidity. Oncol Rep. 26:431–438. 2011.PubMed/NCBI
|
|
40
|
Deng K, Lin S, Zhou L, Geng Q, Li Y, Xu M
and Na R: Three aromatic amino acids in gastric juice as potential
biomarkers for gastric malignancies. Anal Chim Acta. 694:100–107.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Deng K, Lin S, Zhou L and Li Y, Chen M,
Wang Y and Li Y: High levels of aromatic amino acids in gastric
juice during the early stages of gastric cancer progression. PLoS
One. 7:e494342012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Koukourakis MI, Pitiakoudis M,
Giatromanolaki A, Tsarouha A, Polychronidis A, Sivridis E and
Simopoulos C: Oxygen and glucose consumption in gastrointestinal
adenocarcinomas: Correlation with markers of hypoxia, acidity and
anaerobic glycolysis. Cancer Sci. 97:1056–1060. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pedersen PL, Mathupala S, Rempel A,
Geschwind JF and Ko YH: Mitochondrial bound type II hexokinase: A
key player in the growth and survival of many cancers and an ideal
prospect for therapeutic intervention. Biochim Biophys Acta.
1555:14–20. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gatenby RA and Gillies RJ: Why do cancers
have high aerobic glycolysis? Nat Rev Cancer. 4:891–899. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yuan LW, Yamashita H and Seto Y: Glucose
metabolism in gastric cancer: The cutting-edge. World J
Gastroenterol. 22:2046–2059. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Israelsen WJ and Vander Heiden MG:
Pyruvate kinase: Function, regulation and role in cancer. Semin
Cell Dev Biol. 43:43–51. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wu J, Hu L, Chen M, Cao W, Chen H and He
T: Pyruvate kinase M2 overexpression and poor prognosis in solid
tumors of digestive system: Evidence from 16 cohort studies. Onco
Targets Ther. 9:4277–4288. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Augoff K, Hryniewicz-Jankowska A and
Tabola R: Lactate dehydrogenase 5: An old friend and a new hope in
the war on cancer. Cancer Lett. 358:1–7. 2015. View Article : Google Scholar
|
|
49
|
Le A, Cooper CR, Gouw AM, Dinavahi R,
Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL and Dang
CV: Inhibition of lactate dehydrogenase A induces oxidative stress
and inhibits tumor progression. Proc Natl Acad Sci USA.
107:2037–2042. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Dhup S, Dadhich RK, Porporato PE and
Sonveaux P: Multiple biological activities of lactic acid in
cancer: Influences on tumor growth, angiogenesis and metastasis.
Curr Pharm Des. 18:1319–1330. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lardner A: The effects of extracellular pH
on immune function. J Leukoc Biol. 69:522–530. 2001.PubMed/NCBI
|
|
52
|
Gottfried E, Kunz-Schughart LA, Ebner S,
Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A and Kreutz M:
Tumor-derived lactic acid modulates dendritic cell activation and
antigen expression. Blood. 107:2013–2021. 2006. View Article : Google Scholar
|
|
53
|
Chen Z, Lu W, Garcia-Prieto C and Huang P:
The Warburg effect and its cancer therapeutic implications. J
Bioenerg Biomembr. 39:267–274. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Costello LC and Franklin RB: 'Why do
tumour cells glycolyse?': From glycolysis through citrate to
lipogenesis. Mol Cell Biochem. 280:1–8. 2005. View Article : Google Scholar
|
|
55
|
Lu Y, Zhang X, Zhang H, Lan J, Huang G,
Varin E, Lincet H, Poulain L and Icard P: Citrate induces apoptotic
cell death: A promising way to treat gastric carcinoma? Anticancer
Res. 31:797–805. 2011.PubMed/NCBI
|
|
56
|
Weljie AM and Jirik FR: Hypoxia-induced
metabolic shifts in cancer cells: Moving beyond the Warburg effect.
Int J Biochem Cell Biol. 43:981–989. 2011. View Article : Google Scholar
|
|
57
|
Ichinoe M, Yanagisawa N, Mikami T, Hana K,
Nakada N, Endou H, Okayasu I and Murakumo Y: L-Type amino acid
transporter 1 (LAT1) expression in lymph node metastasis of gastric
carcinoma: Its correlation with size of metastatic lesion and Ki-67
labeling. Pathol Res Pract. 211:533–538. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang M, Zhu GY, Gao HY, Zhao SP and Xue
Y: Expression of tissue levels of matrix metalloproteinases and
tissue inhibitors of metalloproteinases in gastric adenocarcinoma.
J Surg Oncol. 103:243–247. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sampieri CL, León-Córdoba K and
Remes-Troche JM: Matrix metalloproteinases and their tissue
inhibitors in gastric cancer as molecular markers. J Cancer Res
Ther. 9:356–363. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Qian HR and Yang Y: Functional role of
autophagy in gastric cancer. Oncotarget. 7:17641–17651.
2016.PubMed/NCBI
|
|
61
|
Hensley CT, Wasti AT and DeBerardinis RJ:
Glutamine and cancer: Cell biology, physiology, and clinical
opportunities. J Clin Invest. 123:3678–3684. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Nicklin P, Bergman P, Zhang B,
Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson
C, et al: Bidirectional transport of amino acids regulates mTOR and
autophagy. Cell. 136:521–534. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Liu W, Le A, Hancock C, Lane AN, Dang CV,
Fan TW and Phang JM: Reprogramming of proline and glutamine
metabolism contributes to the proliferative and metabolic responses
regulated by oncogenic transcription factor c-MYC. Proc Natl Acad
Sci USA. 109:8983–8988. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Possemato R, Marks KM, Shaul YD, Pacold
ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, et
al: Functional genomics reveal that the serine synthesis pathway is
essential in breast cancer. Nature. 476:346–350. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Godin-Ethier J, Hanafi LA, Piccirillo CA
and Lapointe R: Indoleamine 2,3-dioxygenase expression in human
cancers: Clinical and immunologic perspectives. Clin Cancer Res.
17:6985–6991. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wiggins T, Kumar S, Markar SR, Antonowicz
S and Hanna GB: Tyrosine, phenylalanine, and tryptophan in
gastroesophageal malignancy: A systematic review. Cancer Epidemiol
Biomarkers Prev. 24:32–38. 2015. View Article : Google Scholar
|
|
67
|
Bauer TM, Jiga LP, Chuang JJ, Randazzo M,
Opelz G and Terness P: Studying the immunosuppressive role of
indoleamine 2,3-dioxygenase: Tryptophan metabolites suppress rat
allogeneic T-cell responses in vitro and in vivo. Transpl Int.
18:95–100. 2005. View Article : Google Scholar
|
|
68
|
Zhang R, Li H, Yu J, Zhao J, Wang X, Wang
G, Yao Z, Wei F, Xue Q and Ren X: Immunoactivative role of
indoleamine 2,3-dioxygenase in gastric cancer cells in vitro. Mol
Med Rep. 4:169–173. 2011.PubMed/NCBI
|
|
69
|
McGaha TL, Huang L, Lemos H, Metz R,
Mautino M, Prendergast GC and Mellor AL: Amino acid catabolism: A
pivotal regulator of innate and adaptive immunity. Immunol Rev.
249:135–157. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Jain M, Nilsson R, Sharma S, Madhusudhan
N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB and Mootha
VK: Metabolite profiling identifies a key role for glycine in rapid
cancer cell proliferation. Science. 336:1040–1044. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Rose ML, Madren J, Bunzendahl H and
Thurman RG: Dietary glycine inhibits the growth of B16 melanoma
tumors in mice. Carcinogenesis. 20:793–798. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Amin K, Li J, Chao WR, Dewhirst MW and
Haroon ZA: Dietary glycine inhibits angiogenesis during wound
healing and tumor growth. Cancer Biol Ther. 2:173–178. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Bruns H, Petrulionis M, Schultze D, Al
Saeedi M, Lin S, Yamanaka K, Ambrazevičius M, Strupas K and
Schemmer P: Glycine inhibits angiogenic signaling in human
hepatocellular carcinoma cells. Amino Acids. 46:969–976. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Bruns H, Kazanavicius D, Schultze D,
Saeedi MA, Yamanaka K, Strupas K and Schemmer P: Glycine inhibits
angiogenesis in colorectal cancer: Role of endothelial cells. Amino
Acids. 48:2549–2558. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Phang JM, Donald SP, Pandhare J and Liu Y:
The metabolism of proline, a stress substrate, modulates
carcinogenic pathways. Amino Acids. 35:681–690. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Agustsson T, Rydén M, Hoffstedt J, van
Harmelen V, Dicker A, Laurencikiene J, Isaksson B, Permert J and
Arner P: Mechanism of increased lipolysis in cancer cachexia.
Cancer Res. 67:5531–5537. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Raghavamenon A, Garelnabi M, Babu S,
Aldrich A, Litvinov D and Parthasarathy S: Alpha-tocopherol is
ineffective in preventing the decomposition of preformed lipid
peroxides and may promote the accumulation of toxic aldehydes: A
potential explanation for the failure of antioxidants to affect
human atherosclerosis. Antioxid Redox Signal. 11:1237–1248. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Schallreuter KU and Wood JM: Azelaic acid
as a competitive inhibitor of thioredoxin reductase in human
melanoma cells. Cancer Lett. 36:297–305. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Muñoz-Pinedo C, El Mjiyad N and Ricci JE:
Cancer metabolism: Current perspectives and future directions. Cell
Death Dis. 3:e2482012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Swinnen JV, Roskams T, Joniau S, Van
Poppel H, Oyen R, Baert L, Heyns W and Verhoeven G: Overexpression
of fatty acid synthase is an early and common event in the
development of prostate cancer. Int J Cancer. 98:19–22. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Flavin R, Peluso S, Nguyen PL and Loda M:
Fatty acid synthase as a potential therapeutic target in cancer.
Future Oncol. 6:551–562. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hao Q, Li T, Zhang X, Gao P, Qiao P, Li S
and Geng Z: Expression and roles of fatty acid synthase in
hepatocellular carcinoma. Oncol Rep. 32:2471–2476. 2014.PubMed/NCBI
|
|
83
|
Kusakabe T, Nashimoto A, Honma K and
Suzuki T: Fatty acid synthase is highly expressed in carcinoma,
adenoma and in regenerative epithelium and intestinal metaplasia of
the stomach. Histopathology. 40:71–79. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ito T, Sato K, Maekawa H, Sakurada M,
Orita H, Shimada K, Daida H, Wada R, Abe M, Hino O, et al: Elevated
levels of serum fatty acid synthase in patients with gastric
carcinoma. Oncol Lett. 7:616–620. 2014.PubMed/NCBI
|
|
85
|
Lin HP, Cheng ZL, He RY, Song L, Tian MX,
Zhou LS, Groh BS, Liu WR, Ji MB, Ding C, et al: Destabilization of
fatty acid synthase by acetylation inhibits de novo lipogenesis and
tumor cell growth. Cancer Res. 76:6924–6936. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Takahiro T, Shinichi K and Toshimitsu S:
Expression of fatty acid synthase as a prognostic indicator in soft
tissue sarcomas. Clin Cancer Res. 9:2204–2212. 2003.PubMed/NCBI
|
|
87
|
Menendez JA, Lupu R and Colomer R:
Inhibition of tumor-associated fatty acid synthase hyperactivity
induces synergistic chemosensitization of HER-2/neu-overexpressing
human breast cancer cells to docetaxel (taxotere). Breast Cancer
Res Treat. 84:183–195. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Duan J, Sun L, Huang H, Wu Z, Wang L and
Liao W: Overexpression of fatty acid synthase predicts a poor
prognosis for human gastric cancer. Mol Med Rep. 13:3027–3035.
2016.PubMed/NCBI
|
|
89
|
Khasawneh J, Schulz MD, Walch A, Rozman J,
Hrabe de Angelis M, Klingenspor M, Buck A, Schwaiger M, Saur D,
Schmid RM, et al: Inflammation and mitochondrial fatty acid
beta-oxidation link obesity to early tumor promotion. Proc Natl
Acad Sci USA. 106:3354–3359. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Liu Y: Fatty acid oxidation is a dominant
bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic
Dis. 9:230–234. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Hyde CA and Missailidis S: Inhibition of
arachidonic acid metabolism and its implication on cell
proliferation and tumour-angiogenesis. Int Immunopharmacol.
9:701–715. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lu X, Yu H, Ma Q, Shen S and Das UN:
Linoleic acid suppresses colorectal cancer cell growth by inducing
oxidant stress and mitochondrial dysfunction. Lipids Health Dis.
9:1062010. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Swaminathan R, Major P, Snieder H and
Spector T: Serum creatinine and fat-free mass (lean body mass).
Clin Chem. 46:1695–1696. 2000.PubMed/NCBI
|
|
94
|
Eisner R, Stretch C, Eastman T, Xia J, Hau
D, Damaraju S, Greiner R, Wishart D and Baracos V: Learning to
predict cancer-associated skeletal muscle wasting from
1H-NMR profiles of urinary metabolites. Metabolomics.
7:25–34. 2011. View Article : Google Scholar
|
|
95
|
Correa P: Human gastric carcinogenesis: A
multistep and multifactorial process - First American Cancer
Society Award Lecture on Cancer Epidemiology and Prevention. Cancer
Res. 52:6735–6740. 1992.PubMed/NCBI
|
|
96
|
Brown GT and Murray GI: Current
mechanistic insights into the roles of matrix metalloproteinases in
tumour invasion and metastasis. J Pathol. 237:273–281. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Lau V, Wong AL, Ng C, Mok Y, Lakshmanan M
and Yan B: Drug sensitivity testing platforms for gastric cancer
diagnostics. J Clin Pathol. 69:93–96. 2016. View Article : Google Scholar
|
|
98
|
Lu J, Kunimoto S, Yamazaki Y, Kaminishi M
and Esumi H: Kigamicin D, a novel anticancer agent based on a new
anti-austerity strategy targeting cancer cells' tolerance to
nutrient starvation. Cancer Sci. 95:547–552. 2004. View Article : Google Scholar
|
|
99
|
Zhao W, Chen R, Zhao M, Li L, Fan L and
Che XM: High glucose promotes gastric cancer chemoresistance in
vivo and in vitro. Mol Med Rep. 12:843–850. 2015.PubMed/NCBI
|
|
100
|
Wang X, Yan SK, Dai WX, Liu XR, Zhang WD
and Wang JJ: A metabonomic approach to chemosensitivity prediction
of cisplatin plus 5-fluorouracil in a human xenograft model of
gastric cancer. Int J Cancer. 127:2841–2850. 2010. View Article : Google Scholar
|
|
101
|
Ilsley JN, Nakanishi M, Flynn C, Belinsky
GS, De Guise S, Adib JN, Dobrowsky RT, Bonventre JV and Rosenberg
DW: Cytoplasmic phospholipase A2 deletion enhances colon
tumorigenesis. Cancer Res. 65:2636–2643. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ganesan K, Ivanova T, Wu Y, Rajasegaran V,
Wu J, Lee MH, Yu K, Rha SY, Chung HC, Ylstra B, et al: Inhibition
of gastric cancer invasion and metastasis by PLA2G2A, a novel
beta-catenin/TCF target gene. Cancer Res. 68:4277–4286. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Sasada S, Miyata Y, Tsutani Y, Tsuyama N,
Masujima T, Hihara J and Okada M: Metabolomic analysis of dynamic
response and drug resistance of gastric cancer cells to
5-fluorouracil. Oncol Rep. 29:925–931. 2013.
|
|
104
|
Kim KB, Yang JY, Kwack SJ, Kim HS, Ryu DH,
Kim YJ, Bae JY, Lim DS, Choi SM, Kwon MJ, et al: Potential
metabolomic biomarkers for evaluation of adriamycin efficacy using
a urinary 1H-NMR spectroscopy. J Appl Toxicol.
33:1251–1259. 2013.
|
|
105
|
Büscher JM, Czernik D, Ewald JC, Sauer U
and Zamboni N: Cross-platform comparison of methods for
quantitative metabolomics of primary metabolism. Anal Chem.
81:2135–2143. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Adamski J and Suhre K: Metabolomics
platforms for genome wide association studies - linking the genome
to the metabolome. Curr Opin Biotechnol. 24:39–47. 2013. View Article : Google Scholar
|
|
107
|
Lofgren JL, Whary MT, Ge Z, Muthupalani S,
Taylor NS, Mobley M, Potter A, Varro A, Eibach D, Suerbaum S, et
al: Lack of commensal flora in Helicobacter pylori-infected INS-GAS
mice reduces gastritis and delays intraepithelial neoplasia.
Gastroenterology. 140:210–220. 2011. View Article : Google Scholar
|
|
108
|
Lertpiriyapong K, Whary MT, Muthupalani S,
Lofgren JL, Gamazon ER, Feng Y, Ge Z, Wang TC and Fox JG: Gastric
colonisation with a restricted commensal microbiota replicates the
promotion of neoplastic lesions by diverse intestinal microbiota in
the Helicobacter pylori INS-GAS mouse model of gastric
carcinogenesis. Gut. 63:54–63. 2014. View Article : Google Scholar :
|
|
109
|
Furusawa Y, Obata Y, Fukuda S, Endo TA,
Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et
al: Commensal microbe-derived butyrate induces the differentiation
of colonic regulatory T cells. Nature. 504:446–450. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Vanhoutvin SA, Troost FJ, Hamer HM,
Lindsey PJ, Koek GH, Jonkers DM, Kodde A, Venema K and Brummer RJ:
Butyrate-induced transcriptional changes in human colonic mucosa.
PLoS One. 4:e67592009. View Article : Google Scholar :
|
|
111
|
Singh N, Gurav A, Sivaprakasam S, Brady E,
Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, et
al: Activation of Gpr109a, receptor for niacin and the commensal
metabolite butyrate, suppresses colonic inflammation and
carcinogenesis. Immunity. 40:128–139. 2014. View Article : Google Scholar : PubMed/NCBI
|