|
1
|
Cossetti RJD, Tyldesley SK, Speers CH,
Zheng Y and Gelmon KA: Comparison of breast cancer recurrence and
outcome patterns between patients treated from 1986 to 1992 and
from 2004 to 2008. J Clin Oncol. 33:65–73. 2015. View Article : Google Scholar
|
|
2
|
Riemsma R, Forbes CA, Kessels A,
Lykopoulos K, Amonkar MM, Rea DW and Kleijnen J: Systematic review
of aromatase inhibitors in the first-line treatment for hormone
sensitive advanced or metastatic breast cancer. Breast Cancer Res
Treat. 123:9–24. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dutta U and Pant K: Aromatase inhibitors:
Past, present and future in breast cancer therapy. Med Oncol.
25:113–124. 2008. View Article : Google Scholar
|
|
4
|
Brown SA and Guise TA: Cancer
treatment-related bone disease. Crit Rev Eukaryot Gene Expr.
19:47–60. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Datta M and Schwartz GG: Calcium and
Vitamin D supplementation and loss of bone mineral density in women
undergoing breast cancer therapy. Crit Rev Oncol Hematol.
88:613–624. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Rizzoli R, Body JJ, Brandi ML,
Cannata-Andia J, Chappard D, El Maghraoui A, Glüer CC, Kendler D,
Napoli N, Papaioannou A, et al International Osteoporosis
Foundation Committee of Scientific Advisors Working Group on
Cancer-Induced Bone Disease: Cancer-associated bone disease.
Osteoporos Int. 24:2929–2953. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Coleman R, Body JJ, Aapro M and Hadji P:
Bone health in cancer patients: ESMO Clinical Practice Guidelines.
Ann Oncol. 25(Suppl 3): iii124–iii137. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Coleman RE, Rathbone E and Brown JE:
Management of cancer treatment-induced bone loss. Nat Rev
Rheumatol. 9:365–374. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cepa M and Vaz C: Management of bone loss
in postmenopausal breast cancer patients treated with aromatase
inhibitors. Acta Reumatol Port. 40:323–330. 2015.
|
|
10
|
Hant FN and Bolster MB: Drugs that may
harm bone: Mitigating the risk. Cleve Clin J Med. 83:281–288. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Brant J: Vitamin D in the prevention of
aromatase inhibitor-induced musculoskeletal symptoms: Is it ready
for practice? J Adv Pract Oncol. 3:245–248. 2012.PubMed/NCBI
|
|
12
|
Jacobs ET, Kohler LN, Kunihiro AG and
Jurutka PW: Vitamin D and colorectal, breast, and prostate cancers:
A review of the epidemiological evidence. J Cancer. 7:232–240.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Feldman D, Krishnan AV, Swami S,
Giovannucci E and Feldman BJ: The role of vitamin D in reducing
cancer risk and progression. Nat Rev Cancer. 14:342–357. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jacot W, Pouderoux S, Thezenas S, Chapelle
A, Bleuse JP, Romieu G and Lamy PJ: Increased prevalence of vitamin
D insufficiency in patients with breast cancer after neoadjuvant
chemotherapy. Breast Cancer Res Treat. 134:709–717. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Singer O, Cigler T, Moore AB, Levine AB,
Do HT and Mandl LA: Hypovitaminosis D is a predictor of aromatase
inhibitor musculoskeletal symptoms. Breast J. 20:174–179. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
LaPorta E and Welsh J: Modeling vitamin D
actions in triple negative/basal-like breast cancer. J Steroid
Biochem Mol Biol. 144A:65–73. 2014. View Article : Google Scholar
|
|
17
|
Peppone LJ, Rickles AS, Janelsins MC,
Insalaco MR and Skinner KA: The association between breast cancer
prognostic indicators and serum 25-OH vitamin D levels. Ann Surg
Oncol. 19:2590–2599. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ness RA, Miller DD and Li W: The role of
vitamin D in cancer prevention. Chin J Nat Med. 13:481–497.
2015.PubMed/NCBI
|
|
19
|
Horst R, Prapong S, Reinhardt T, Koszewski
N, Knutson J and Bishop C: Comparison of the relative effects of
1,24-dihydroxyvitamin D(2) [1,24-(OH)(2)D(2)],
1,24-dihydroxyvitamin D(3) [1,24-(OH)(2)D(3)], and
1,25-dihydroxyvitamin D(3) [1,25-(OH) (2)D(3)] on selected vitamin
D-regulated events in the rat. Biochem Pharmacol. 60:701–708. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wietrzyk J, Pełczyńska M, Madej J, Dzimira
S, Kuśnierczyk H, Kutner A, Szelejewski W and Opolski A: Toxicity
and antineoplastic effect of (24R)-1,24-dihydroxyvitamin D3
(PRI-2191). Steroids. 69:629–635. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Milczarek M, Filip-Psurska B, Swiętnicki
W, Kutner A and Wietrzyk J: Vitamin D analogs combined with
5-fluorouracil in human HT-29 colon cancer treatment. Oncol Rep.
32:491–504. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wietrzyk J, Chodyński M, Fitak H, Wojdat
E, Kutner A and Opolski A: Antitumor properties of diastereomeric
and geometric analogs of vitamin D3. Anticancer Drugs. 18:447–457.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Milczarek M, Chodyński M, Filip-Psurska B,
Martowicz A, Krupa M, Krajewski K, Kutner A and Wietrzyk J:
Synthesis and biological activity of diastereomeric and geometric
analogs of calcipotriol, PRI-2202 and PRI-2205, against human HL-60
leukemia and MCF-7 breast cancer cells. Cancers (Basel).
5:1355–1378. 2013. View Article : Google Scholar
|
|
24
|
Filip B, Milczarek M, Wietrzyk J,
Chodyński M and Kutner A: Antitumor properties of (5e,7e) analogs
of vitamin D3. J Steroid Biochem Mol Biol. 121:399–402. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hisatake J, Kubota T, Hisatake Y,
Uskokovic M, Tomoyasu S and Koeffler HP: 5,6-trans-16-ene-vitamin
D3: A new class of potent inhibitors of proliferation of prostate,
breast, and myeloid leukemic cells. Cancer Res. 59:4023–4029.
1999.PubMed/NCBI
|
|
26
|
Opolski A, Wietrzyk J, Siwinska A,
Marcinkowska E, Chrobak A, Radzikowski C and Kutner A: Biological
activity in vitro of side-chain modified analogues of calcitriol.
Curr Pharm Des. 6:755–765. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wietrzyk J, Nevozhay D, Filip B, Milczarek
M and Kutner A: The antitumor effect of lowered doses of
cytostatics combined with new analogs of vitamin D in mice.
Anticancer Res. 27A:3387–3398. 2007.
|
|
28
|
Wietrzyk J, Milczarek M and Kutner A: The
effect of combined treatment on head and neck human cancer cell
lines with novel analogs of calcitriol and cytostatics. Oncol Res.
16:517–525. 2007. View Article : Google Scholar
|
|
29
|
Wietrzyk J, Nevozhay D, Milczarek M, Filip
B and Kutner A: Toxicity and antitumor activity of the vitamin D
analogs PRI-1906 and PRI-1907 in combined treatment with
cyclophosphamide in a mouse mammary cancer model. Cancer Chemother
Pharmacol. 62:787–797. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Milczarek M, Psurski M, Kutner A and
Wietrzyk J: Vitamin D analogs enhance the anticancer activity of
5-fluorouracil in an in vivo mouse colon cancer model. BMC Cancer.
13:2942013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Maj E, Filip-Psurska B, Świtalska M,
Kutner A and Wietrzyk J: Vitamin D analogs potentiate the antitumor
effect of imatinib mesylate in a human A549 lung tumor model. Int J
Mol Sci. 16:27191–27207. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Blazejczyk A, Papiernik D, Porshneva K,
Sadowska J and Wietrzyk J: Endothelium and cancer metastasis:
Perspectives for antimetastatic therapy. Pharmacol Rep. 67:711–718.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chodyński M, Wietrzyk J, Marcinkowska E,
Opolski A, Szelejewski W and Kutner A: Synthesis and
antiproliferative activity of side-chain unsaturated and
homologated analogs of 1,25-dihydroxyvitamin D(2).
(24E)-(1s)-24-Dehydro-24a-homo-1,25-dihydroxyergocalciferol and
congeners. Steroids. 67:789–798. 2002. View Article : Google Scholar
|
|
34
|
DuPré SA, Redelman D and Hunter KW Jr: The
mouse mammary carcinoma 4T1: Characterization of the cellular
landscape of primary tumours and metastatic tumour foci. Int J Exp
Pathol. 88:351–360. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Nevozhay D: Cheburator software for
automatically calculating drug inhibitory concentrations from in
vitro screening assays. PLoS One. 9:e1061862014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wenzel J, Zeisig R and Fichtner I:
Inhibition of metastasis in a murine 4T1 breast cancer model by
liposomes preventing tumor cell-platelet interactions. Clin Exp
Metastasis. 27:25–34. 2010. View Article : Google Scholar
|
|
37
|
DuPre' SA and Hunter KW Jr: Murine mammary
carcinoma 4T1 induces a leukemoid reaction with splenomegaly:
Association with tumor-derived growth factors. Exp Mol Pathol.
82:12–24. 2007. View Article : Google Scholar
|
|
38
|
Banka CL, Lund CV, Nguyen MTN, Pakchoian
AJ, Mueller BM and Eliceiri BP: Estrogen induces lung metastasis
through a host compartment-specific response. Cancer Res.
66:3667–3672. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
MacRitchie AN, Jun SS, Chen Z, German Z,
Yuhanna IS, Sherman TS and Shaul PW: Estrogen upregulates
endothelial nitric oxide synthase gene expression in fetal
pulmonary artery endothelium. Circ Res. 81:355–362. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yang X, Belosay A, Du M, Fan TM, Turner
RT, Iwaniec UT and Helferich WG: Estradiol increases ER-negative
breast cancer metastasis in an experimental model. Clin Exp
Metastasis. 30:711–721. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Garcia CM de S, de Araújo MR, Lopes MTP,
Ferreira MAND and Cassali GD: Morphological and immunophenotipical
characterization of murine mammary carcinoma 4t1. Braz J Vet
Pathol. 7:158–165. 2014.
|
|
42
|
Mi Z, Guo H, Wai PY, Gao C, Wei J and Kuo
PC: Differential osteopontin expression in phenotypically distinct
subclones of murine breast cancer cells mediates metastatic
behavior. J Biol Chem. 279:46659–46667. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sangaletti S, Tripodo C, Sandri S,
Torselli I, Vitali C, Ratti C, Botti L, Burocchi A, Porcasi R,
Tomirotti A, et al: Osteopontin shapes immunosuppression in the
metastatic niche. Cancer Res. 74:4706–4719. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pang H, Lu H, Song H, Meng Q, Zhao Y, Liu
N, Lan F, Liu Y, Yan S, Dong X, et al: Prognostic values of
osteopontin-c, E-cadherin and β-catenin in breast cancer. Cancer
Epidemiol. 37:985–992. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chang P-L, Harkins L, Hsieh Y-H, Hicks P,
Sappayatosok K, Yodsanga S, Swasdison S, Chambers AF, Elmets CA and
Ho KJ: Osteopontin expression in normal skin and non-melanoma skin
tumors. J Histochem Cytochem. 56:57–66. 2008. View Article : Google Scholar
|
|
46
|
Yin M, Soikkeli J, Jahkola T, Virolainen
S, Saksela O and Hölttä E: Osteopontin promotes the invasive growth
of melanoma cells by activating integrin αvβ3 and down-regulating
tetraspanin CD9. Am J Pathol. 184:842–858. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Sulpice L, Rayar M, Desille M, Turlin B,
Fautrel A, Boucher E, Llamas-Gutierrez F, Meunier B, Boudjema K,
Clément B, et al: Molecular profiling of stroma identifies
osteopontin as an independent predictor of poor prognosis in
intrahepatic cholangiocarcinoma. Hepatology. 58:1992–2000. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Pang H, Cai L, Yang Y, Chen X, Sui G and
Zhao C: Knockdown of osteopontin chemosensitizes MDA-MB-231 cells
to cyclophosphamide by enhancing apoptosis through activating p38
MAPK pathway. Cancer Biother Radiopharm. 26:165–173. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Denhardt DT, Noda M, O'Regan AW, Pavlin D
and Berman JS: Osteopontin as a means to cope with environmental
insults: Regulation of inflammation, tissue remodeling, and cell
survival. J Clin Invest. 107:1055–1061. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kon S, Nakayama Y, Matsumoto N, Ito K,
Kanayama M, Kimura C, Kouro H, Ashitomi D, Matsuda T and Uede T: A
novel cryptic binding motif, LRSKSRSFQVSDEQY, in the C-terminal
fragment of MMP-3/7-cleaved osteopontin as a novel ligand for α9β1
integrin is involved in the anti-type II collagen antibody-induced
arthritis. PLoS One. 9:e1162102014. View Article : Google Scholar
|
|
51
|
Barry ST, Ludbrook SB, Murrison E and
Horgan CM: A regulated interaction between alpha5beta1 integrin and
osteopontin. Biochem Biophys Res Commun. 267:764–769. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Helluin O, Chan C, Vilaire G, Mousa S,
DeGrado WF and Bennett JS: The activation state of alphavbeta 3
regulates platelet and lymphocyte adhesion to intact and
thrombin-cleaved osteopontin. J Biol Chem. 275:18337–18343. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kale S, Raja R, Thorat D, Soundararajan G,
Patil TV and Kundu GC: Osteopontin signaling upregulates
cyclooxy-genase-2 expression in tumor-associated macrophages
leading to enhanced angiogenesis and melanoma growth via α9β1
integrin. Oncogene. 33:2295–2306. 2014. View Article : Google Scholar
|
|
54
|
Raja R, Kale S, Thorat D, Soundararajan G,
Lohite K, Mane A, Karnik S and Kundu GC: Hypoxia-driven osteopontin
contributes to breast tumor growth through modulation of
HIF1α-mediated VEGF-dependent angiogenesis. Oncogene. 33:2053–2064.
2014. View Article : Google Scholar
|
|
55
|
Noda M, Vogel RL, Craig AM, Prahl J,
DeLuca HF and Denhardt DT: Identification of a DNA sequence
responsible for binding of the 1,25-dihydroxyvitamin D3 receptor
and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted
phosphoprotein 1 (SPP-1 or osteopontin) gene expression. Proc Natl
Acad Sci USA. 87:9995–9999. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xu H, McCann M, Zhang Z, Posner GH,
Bingham V, El-Tanani M and Campbell FC: Vitamin D receptor
modulates the neoplastic phenotype through antagonistic growth
regulatory signals. Mol Carcinog. 48:758–772. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lau WL, Leaf EM, Hu MC, Takeno MM, Kuro-o
M, Moe OW and Giachelli CM: Vitamin D receptor agonists increase
klotho and osteopontin while decreasing aortic calcification in
mice with chronic kidney disease fed a high phosphate diet. Kidney
Int. 82:1261–1270. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hu B, Zhou H, Gao H, Liu Y, Yan T, Zou L
and Chen L: IFN-γ inhibits osteopontin expression in human decidual
stromal cells and can be attenuated by 1α,25-dihydroxyvitamin D3.
Am J Reprod Immunol. 68:353–361. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chang PL, Ridall AL and Prince CW:
Calcitriol regulation of osteopontin expression in mouse epidermal
cells. Endocrinology. 135:863–869. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chang PL and Prince CW:
1α,25-dihydroxyvitamin D3 stimulates synthesis and secretion of
nonphosphorylated osteopontin (secreted phosphoprotein 1) in mouse
JB6 epidermal cells. Cancer Res. 51:2144–2150. 1991.PubMed/NCBI
|
|
61
|
Blomberg Jensen M, Jørgensen A, Nielsen
JE, Steinmeyer A, Leffers H, Juul A and Rajpert-De Meyts E: Vitamin
D metabolism and effects on pluripotency genes and cell
differentiation in testicular germ cell tumors in vitro and in
vivo. Neoplasia. 14:952–963. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chakraborty G, Jain S and Kundu GC:
Osteopontin promotes vascular endothelial growth factor-dependent
breast tumor growth and angiogenesis via autocrine and paracrine
mechanisms. Cancer Res. 68:152–161. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Das S, Samant RS and Shevde LA:
Nonclassical activation of Hedgehog signaling enhances multidrug
resistance and makes cancer cells refractory to
smoothened-targeting Hedgehog inhibition. J Biol Chem.
288:11824–11833. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Shevde LA and Samant RS: Role of
osteopontin in the pathophysiology of cancer. Matrix Biol.
37:131–141. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Johnstone CN, Smith YE, Cao Y, Burrows AD,
Cross RS, Ling X, Redvers RP, Doherty JP, Eckhardt BL, Natoli AL,
et al: Functional and molecular characterisation of EO771.LMB
tumours, a new C57BL/6-mouse-derived model of spontaneously
metastatic mammary cancer. Dis Model Mech. 8:237–251. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yu Y, Xiao C-H, Tan L-D, Wang Q-S, Li X-Q
and Feng Y-M: Cancer-associated fibroblasts induce
epithelial-mesenchymal transition of breast cancer cells through
paracrine TGF-β signalling. Br J Cancer. 110:724–732. 2014.
View Article : Google Scholar
|
|
67
|
Inai T, Mancuso M, Hashizume H, Baffert F,
Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G,
Yancopoulos GD, et al: Inhibition of vascular endothelial growth
factor (VEGF) signaling in cancer causes loss of endothelial
fenestrations, regression of tumor vessels, and appearance of
basement membrane ghosts. Am J Pathol. 165:35–52. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Maj E, Papiernik D and Wietrzyk J:
Antiangiogenic cancer treatment: The great discovery and greater
complexity (Review). Int J Oncol. 49:1773–1784. 2016.PubMed/NCBI
|
|
69
|
Molin DGM, van den Akker NM and Post MJ:
Affirmative action of osteopontin on endothelial progenitors.
Arterioscler Thromb Vasc Biol. 28:2099–2100. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Leen LLS, Filipe C, Billon A, Garmy-Susini
B, Jalvy S, Robbesyn F, Daret D, Allières C, Rittling SR, Werner N,
et al: Estrogen-stimulated endothelial repair requires osteopontin.
Arterioscler Thromb Vasc Biol. 28:2131–2136. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Pepper MS: Transforming growth
factor-beta: Vasculogenesis, angiogenesis, and vessel wall
integrity. Cytokine Growth Factor Rev. 8:21–43. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Costanza B, Umelo IA, Bellier J,
Castronovo V and Turtoi A: Stromal modulators of TGF-β in cancer. J
Clin Med. 6:72017. View Article : Google Scholar
|
|
73
|
Nakagawa T, Li JH, Garcia G, Mu W, Piek E,
Böttinger EP, Chen Y, Zhu HJ, Kang DH, Schreiner GF, et al: TGF-β
induces proangiogenic and antiangiogenic factors via parallel but
distinct Smad pathways. Kidney Int. 66:605–613. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Orlova VV, Liu Z, Goumans M-J and ten
Dijke P: Controlling angiogenesis by two unique TGF-β type I
receptor signaling pathways. Histol Histopathol. 26:1219–1230.
2011.PubMed/NCBI
|
|
75
|
Goumans M-J, Valdimarsdottir G, Itoh S,
Rosendahl A, Sideras P and ten Dijke P: Balancing the activation
state of the endothelium via two distinct TGF-beta type I
receptors. EMBO J. 21:1743–1753. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Khan Z and Marshall JF: The role of
integrins in TGFβ activation in the tumour stroma. Cell Tissue Res.
365:657–673. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Takai K, Le A, Weaver VM and Werb Z:
Targeting the cancer-associated fibroblasts as a treatment in
triple-negative breast cancer. Oncotarget. 7:82889–82901.
2016.PubMed/NCBI
|
|
78
|
Sharon Y, Raz Y, Cohen N, Ben-Shmuel A,
Schwartz H, Geiger T and Erez N: Tumor-derived osteopontin
reprograms normal mammary fibroblasts to promote inflammation and
tumor growth in breast cancer. Cancer Res. 75:963–973. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Weber CE, Kothari AN, Wai PY, Li NY,
Driver J, Zapf MA, Franzen CA, Gupta GN, Osipo C, Zlobin A, et al:
Osteopontin mediates an MzF1-TGF-β1-dependent transformation of
mesenchymal stem cells into cancer-associated fibroblasts in breast
cancer. Oncogene. 34:4821–4833. 2015. View Article : Google Scholar
|
|
80
|
Koli K and Keski-Oja J:
1,25-Dihydroxyvitamin D3 enhances the expression of transforming
growth factor beta 1 and its latent form binding protein in
cultured breast carcinoma cells. Cancer Res. 55:1540–1546.
1995.PubMed/NCBI
|
|
81
|
Shany S, Sigal-Batikoff I and Lamprecht S:
Vitamin D and myofibroblasts in fibrosis and cancer: At
cross-purposes with TGF-β/SMAD signaling. Anticancer Res.
36:6225–6234. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tao Q, Wang B, Zheng Y, Jiang X, Pan Z and
Ren J: Vitamin D prevents the intestinal fibrosis via induction of
vitamin D receptor and inhibition of transforming growth
factor-beta1/Smad3 pathway. Dig Dis Sci. 60:868–875. 2015.
View Article : Google Scholar
|
|
83
|
Ivanović V, Demajo M, Krtolica K,
Krajnović M, Konstantinović M, Baltić V, Prtenjak G, Stojiljković
B, Breberina M, Nesković-Konstantinović Z, et al: Elevated plasma
TGF-β1 levels correlate with decreased survival of metastatic
breast cancer patients. Clin Chim Acta. 371:191–193. 2006.
View Article : Google Scholar
|
|
84
|
Moo-Young TA, Larson JW, Belt BA, Tan MC,
Hawkins WG, Eberlein TJ, Goedegebuure PS and Linehan DC:
Tumor-derived TGF-beta mediates conversion of
CD4+Foxp3+ regulatory T cells in a murine
model of pancreas cancer. J Immunother. 32:12–21. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gong D, Shi W, Yi SJ, Chen H, Groffen J
and Heisterkamp N: TGFβ signaling plays a critical role in
promoting alternative macrophage activation. BMC Immunol.
13:312012. View Article : Google Scholar
|
|
86
|
Fridlender ZG, Sun J, Kim S, Kapoor V,
Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of
tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2'
TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wculek SK and Malanchi I: Neutrophils
support lung colonization of metastasis-initiating breast cancer
cells. Nature. 528:413–417. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Cho HJ, Jung JI, Lim DY, Kwon GT, Her S,
Park JH and Park JHY: Bone marrow-derived, alternatively activated
macrophages enhance solid tumor growth and lung metastasis of
mammary carcinoma cells in a Balb/C mouse orthotopic model. Breast
Cancer Res. 14:R812012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Adams LS and Teegarden D:
1,25-dihydroxycholecalciferol inhibits apoptosis in C3H10T1/2
murine fibroblast cells through activation of nuclear factor
kappaB. J Nutr. 134:2948–2952. 2004.PubMed/NCBI
|
|
90
|
Cohen-Lahav M, Shany S, Tobvin D,
Chaimovitz C and Douvdevani A: Vitamin D decreases NFkappaB
activity by increasing IkappaBalpha levels. Nephrol Dial
Transplant. 21:889–897. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Williams JD, Aggarwal A, Swami S, Krishnan
AV, Ji L, Albertelli MA and Feldman BJ: Tumor autonomous effects of
Vitamin D deficiency promote breast cancer metastasis.
Endocrinology. 157:1341–1347. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Aslakson CJ and Miller FR: Selective
events in the metastatic process defined by analysis of the
sequential dissemination of subpopulations of a mouse mammary
tumor. Cancer Res. 52:1399–1405. 1992.PubMed/NCBI
|
|
93
|
Simões RV, Serganova IS, Kruchevsky N,
Leftin A, Shestov AA, Thaler HT, Sukenick G, Locasale JW, Blasberg
RG, Koutcher JA, et al: Metabolic plasticity of metastatic breast
cancer cells: Adaptation to changes in the microenvironment.
Neoplasia. 17:671–684. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Meyer MB, Benkusky NA, Kaufmann M, Lee SM,
Onal M, Jones G and Pike JW: A Kidney-specific genetic control
module in mice governs endocrine regulation of the cytochrome P450
gene Cyp27b1 essential for vitamin D 3 activation. J Biol Chem.
2017 Aug 14–2017.Epub ahead of print. View Article : Google Scholar
|
|
95
|
Anderson PH: Vitamin D activity and
metabolism in bone. Curr Osteoporos Rep. 15:443–449. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Marik R, Fackler M, Gabrielson E, Zeiger
MA, Sukumar S, Stearns V and Umbricht CB: DNA methylation-related
vitamin D receptor insensitivity in breast cancer. Cancer Biol
Ther. 10:44–53. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Banwell CM, O'Neill LP, Uskokovic MR and
Campbell MJ: Targeting 1α,25-dihydroxyvitamin D3 antiproliferative
insensitivity in breast cancer cells by co-treatment with histone
deacetylation inhibitors. J Steroid Biochem Mol Biol.
89–90:245–249. 2004. View Article : Google Scholar
|
|
98
|
Khanim FL, Gommersall LM, Wood VHJ, Smith
KL, Montalvo L, O'Neill LP, Xu Y, Peehl DM, Stewart PM, Turner BM,
et al: Altered SMRT levels disrupt vitamin D3 receptor signalling
in prostate cancer cells. Oncogene. 23:6712–6725. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhi H-Y, Hou S-W, Li R-S, Basir Z, Xiang
Q, Szabo A and Chen G: PTPH1 cooperates with vitamin D receptor to
stimulate breast cancer growth through their mutual stabilization.
Oncogene. 30:1706–1715. 2011. View Article : Google Scholar :
|
|
100
|
Krishnan AV, Swami S and Feldman D:
Equivalent anticancer activities of dietary vitamin D and
calcitriol in an animal model of breast cancer: Importance of
mammary CYP27B1 for treatment and prevention. J Steroid Biochem Mol
Biol. 136:289–295. 2013. View Article : Google Scholar :
|
|
101
|
Swami S, Krishnan AV, Wang JY, Jensen K,
Horst R, Albertelli MA and Feldman D: Dietary vitamin D3 and
1,25-dihydroxyvitamin D3 (calcitriol) exhibit equivalent anticancer
activity in mouse xenograft models of breast and prostate cancer.
Endocrinology. 153:2576–2587. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Jeong Y, Swami S, Krishnan AV, Williams
JD, Martin S, Horst RL, Albertelli MA, Feldman BJ, Feldman D and
Diehn M: Inhibition of mouse breast tumor-initiating cells by
calcitriol and dietary vitamin D. Mol Cancer Ther. 14:1951–1961.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Rossdeutscher L, Li J, Luco A-L, Fadhil I,
Ochietti B, Camirand A, Huang DC, Reinhardt TA, Muller W and Kremer
R: Chemoprevention activity of 25-hydroxyvitamin D in the MMTV-PYMT
mouse model of breast cancer. Cancer Prev Res (Phila). 8:120–128.
2015. View Article : Google Scholar
|
|
104
|
Ooi LL, Zhou H, Kalak R, Zheng Y,
Conigrave AD, Seibel MJ and Dunstan CR: Vitamin D deficiency
promotes human breast cancer growth in a murine model of bone
metastasis. Cancer Res. 70:1835–1844. 2010. View Article : Google Scholar : PubMed/NCBI
|