|
1
|
Massagué J and Obenauf AC: Metastatic
colonization by circulating tumour cells. Nature. 529:298–306.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
World Health Organization: International
Agency for Research on Cancer: World cancer factsheet. Cancer
Research UK. http://gicr.iarc.fr/public/docs/20120906-WorldCancerFactSheet.pdf.
Accessed June 20, 2017.
|
|
3
|
Cheung EC and Vousden KH: The role of p53
in glucose metabolism. Curr Opin Cell Biol. 22:186–191. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Engelmann D and Pützer BM: Emerging from
the shade of p53 mutants: N-terminally truncated variants of the
p53 family in EMT signaling and cancer progression. Sci Signal.
7:re92014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hengartner MO: The biochemistry of
apoptosis. Nature. 407:770–776. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kamijo T, Zindy F, Roussel MF, Quelle DE,
Downing JR, Ashmun RA, Grosveld G and Sherr CJ: Tumor suppression
at the mouse INK4a locus mediated by the alternative reading frame
product p19ARF. Cell. 91:649–659. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Korenjak M and Brehm A: E2F-Rb complexes
regulating transcription of genes important for differentiation and
development. Curr Opin Genet Dev. 15:520–527. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sharpless NE, Alson S, Chan S, Silver DP,
Castrillon DH and DePinho RA: p16INK4a and p53
deficiency cooperate in tumorigenesis. Cancer Res. 62:2761–2765.
2002.PubMed/NCBI
|
|
9
|
Stott FJ, Bates S, James MC, McConnell BB,
Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, et
al: The alternative product from the human CDKN2A locus,
p14ARF, participates in a regulatory feedback loop with
p53 and MDM2. EMBO J. 17:5001–5014. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Dakeng S, Duangmano S, Jiratchariyakul W,
U-Pratya Y, Bögler O and Patmasiriwat P: Inhibition of Wnt
signaling by cucurbitacin B in breast cancer cells: Reduction of
Wnt-associated proteins and reduced translocation of
galectin-3-mediated β-catenin to the nucleus. J Cell Biochem.
113:49–60. 2012. View Article : Google Scholar
|
|
11
|
Nefedova Y and Gabrilovich DI: Targeting
of Jak/STAT pathway in antigen presenting cells in cancer. Curr
Cancer Drug Targets. 7:71–77. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hung MH, Tai WT, Shiau CW and Chen KF:
Downregulation of signal transducer and activator of transcription
3 by sorafenib: A novel mechanism for hepatocellular carcinoma
therapy. World J Gastroenterol. 20:15269–15274. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hossain DM, Pal SK, Moreira D, Duttagupta
P, Zhang Q, Won H, Jones J, D'Apuzzo M, Forman S and Kortylewski M:
TLR9-targeted STAT3 silencing abrogates immunosuppressive activity
of myeloid-derived suppressor cells from prostate cancer patients.
Clin Cancer Res. 21:3771–3782. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Liu H, Ren G, Wang T, Chen Y, Gong C, Bai
Y, Wang B, Qi H, Shen J, Zhu L, et al: Aberrantly expressed Fra1 by
IL6/STAT3 transactivation promotes colorectal cancer aggressiveness
through epithelial mesenchymal transition. Carcinogenesis.
36:4594682015. View Article : Google Scholar
|
|
15
|
Peyser ND, Freilino M, Wang L, Zeng Y, Li
H, Johnson DE and Grandis JR: Frequent promoter hypermethylation of
PTPRT increases STAT3 activation and sensitivity to STAT3
inhibition in head and neck cancer. Oncogene. 35:1163–1169. 2016.
View Article : Google Scholar
|
|
16
|
Wen W, Wu J, Liu L, Tian Y, Buettner R,
Hsieh MY, Horne D, Dellinger TH, Han ES, Jove R, et al: Synergistic
anti-tumor effect of combined inhibition of EGFR and JAK/STAT3
pathways in human ovarian cancer. Mol Cancer. 14:1002015.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yao X, Liu H, Zhang X, Zhang L, Li X, Wang
C and Sun S: Cell surface GRP78 accelerated breast cancer cell
proliferation and migration by activating STAT3. PLoS One.
10:e01256342015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yoon J, Ko YS, Cho SJ, Park J, Choi YS,
Choi Y, Pyo JS, Ye SK, Youn HD, Lee JS, et al: Signal transducers
and activators of transcription 3-induced metastatic potential in
gastric cancer cells is enhanced by glycogen synthase kinase-3β.
APMIS. 123:373–382. 2015. View Article : Google Scholar
|
|
19
|
Royds JA, Dower SK, Qwarnstrom EE and
Lewis CE: Response of tumour cells to hypoxia: Role of p53 and
NF-κB. Mol Pathol. 51:55–61. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Bulavin DV and Fornace AJ Jr: p38 MAP
kinase's emerging role as a tumor suppressor. Adv Cancer Res.
92:95–118. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pal I and Mandal M: PI3K and Akt as
molecular targets for cancer therapy: Current clinical outcomes.
Acta Pharmacol Sin. 33:1441–1458. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Harley CB: Aging of cultured human skin
fibroblasts. Methods Mol Biol. 5:25–32. 1990.PubMed/NCBI
|
|
23
|
Hayflick L: The limited in vitro lifetime
of human diploid cell strains. Exp Cell Res. 37:614–636. 1965.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kimmelman AC and White E: Autophagy and
tumor metabolism. Cell Metab. 25:1037–1043. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kaefer CM and Milner JA: Herbs and Spices
in Cancer Prevention and Treatment. Herbal Medicine: Biomolecular
and Clinical Aspects. 2nd edition. CRC Press/Taylor & Francis;
2011, View Article : Google Scholar
|
|
26
|
Kaushik U, Aeri V and Mir SR:
Cucurbitacins - An insight into medicinal leads from nature.
Pharmacogn Rev. 9:12–18. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Alghasham AA: Cucurbitacins - a promising
target for cancer therapy. Int J Health Sci (Qassim). 7:77–89.
2013. View Article : Google Scholar
|
|
28
|
Clericuzio M, Mella M, Vita-Finzi P, Zema
M and Vidari G: Cucurbitane triterpenoids from Leucopaxillus
gentianeus. J Nat Prod. 67:1823–1828. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen JC, Chiu MH, Nie RL, Cordell GA and
Qiu SX: Cucurbitacins and cucurbitane glycosides: Structures and
biological activities. Nat Prod Rep. 22:386–399. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Clericuzio M, Tabasso S, Bianco MA,
Pratesi G, Beretta G, Tinelli S, Zunino F and Vidari G: Cucurbitane
triterpenes from the fruiting bodies and cultivated mycelia of
Leucopaxillus gentianeus. J Nat Prod. 69:1796–1799. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wiart C: The definition and significance
of Cucurbitacin B a STAT3 inhibitors. Cancer Lett. 328:1882013.
View Article : Google Scholar
|
|
32
|
Dantas INF, Gadelha GCM, Chaves DC, Monte
FJQ, Pessoa C, de Moraes MO and Costa-Lotufo LV: Studies on the
cytotoxicity of cucurbitacins isolated from Cayaponia racemosa
(Cucurbitaceae). Z Naturforsch C. 61:643–646. 2006.PubMed/NCBI
|
|
33
|
Hatam NAR, Whiting DA and Yousif NJ:
Cucurbitacin glycosides from Citrullus colocynthis. Phytohemistry.
28:1268–1271. 1989. View Article : Google Scholar
|
|
34
|
Abou-Khalil R, Jraij A, Magdalou J, Ouaini
N, Tome D and Greige-Gerges H: Interaction of cucurbitacins with
human serum albumin: Thermodynamic characteristics and influence on
the binding of site specific ligands. J Photochem Photobiol B.
95:189–195. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li K, Yu Y, Sun S, Liu Y, Garg S, Kaul SC,
Lei Z, Gao R, Wadhwa R and Zhang Z: Functional characterization of
anticancer activity in the aqueous extract of Helicteres
angustifolia L. roots. PLoS One. 11:e01520172016. View Article : Google Scholar
|
|
36
|
Oberlies NH, Burgess JP, Navarro HA, Pinos
RE, Soejarto DD, Farnsworth NR, Kinghorn AD, Wani MC and Wall ME:
Bioactive constituents of the roots of Licania intrapetiolaris. J
Nat Prod. 64:497–501. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Beutler JA, McCall KL, Herbert K, Herald
DL, Pettit GR, Johnson T, Shoemaker RH and Boyd MR: Novel cytotoxic
diterpenes from Casearia arborea. J Nat Prod. 63:657–661. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ayyad SEN, Abdel-Lateff A, Basaif SA and
Shier T: Cucurbitacins-type triterpene with potent activity on
mouse embryonic fibroblast from Cucumis prophetarum, cucurbitaceae.
Pharmacognosy Res. 3:189–193. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chen C, Qiang S, Lou L and Zhao W:
Cucurbitane-type triterpenoids from the stems of Cucumis melo. J
Nat Prod. 72:824–829. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Dat NT, Jin X, Hong YS and Lee JJ: An
isoaurone and other constituents from Trichosanthes kirilowii seeds
inhibit hypoxia-inducible factor-1 and nuclear factor-kappaB. J Nat
Prod. 73:1167–1169. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wu KJ, Grandori C, Amacker M, Simon-Vermot
N, Polack A, Lingner J and Dalla-Favera R: Direct activation of
TERT transcription by c-MYC. Nat Genet. 21:220–224. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yesilada E, Tanaka S, Sezik E and Tabata
M: Isolation of an anti-inflammatory principle from the fruit juice
of Ecballium elaterium. J Nat Prod. 51:504–508. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Rawat I, Sharma D and Goel HC: Antioxidant
and anti-inflammatory potential of some dietary cucurbits. Oxid
Antioxid Med Sci. 3:65–72. 2014. View Article : Google Scholar
|
|
44
|
Schabort JC and Potgieter JJ: A thin-layer
and an improved paper-chromatographic methods for the separation of
Cucurbitacin B and 23,24-dihydrocucurbitacin B. J Chromatog.
31:235–237. 1967. View Article : Google Scholar
|
|
45
|
Tannin-Spitz T, Grossman S, Dovrat S,
Gottlieb HE and Bergman M: Growth inhibitory activity of
cucurbitacin glucosides isolated from Citrullus colocynthis on
human breast cancer cells. Biochem Pharmacol. 73:56–67. 2007.
View Article : Google Scholar
|
|
46
|
Wakimoto N, Yin D, O'Kelly J, Haritunians
T, Karlan B, Said J, Xing H and Koeffler HP: Cucurbitacin B has a
potent antiproliferative effect on breast cancer cells in vitro and
in vivo. Cancer Sci. 99:1793–1797. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Duangmano S, Dakeng S, Jiratchariyakul W,
Suksamrarn A, Smith DR and Patmasiriwat P: Antiproliferative
effects of cucurbitacin B in breast cancer cells: Down-regulation
of the c-Myc/hTERT/telomerase pathway and obstruction of the cell
cycle. Int J Mol Sci. 11:5323–5338. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wu PL, Lin FW, Wu TS, Kuoh CS, Lee KH and
Lee SJ: Cytotoxic and anti-HIV principles from the rhizomes of
Begonia nantoensis. Chem Pharm Bull (Tokyo). 52:345–349. 2004.
View Article : Google Scholar
|
|
49
|
Duangmano S, Sae-Lim P, Suksamrarn A,
Domann FE and Patmasiriwat P: Cucurbitacin B inhibits human breast
cancer cell proliferation through disruption of microtubule
polymerization and nucleophosmin/B23 translocation. BMC Complement
Altern Med. 12:1852012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Promkan M, Dakeng S, Chakrabarty S, Bögler
O and Patmasiriwat P: The effectiveness of cucurbitacin B in BRCA1
defective breast cancer cells. PLoS One. 8:e557322013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Boone JJ, Bhosle J, Tilby MJ, Hartley JA
and Hochhauser D: Involvement of the HER2 pathway in repair of DNA
damage produced by chemotherapeutic agents. Mol Cancer Ther.
8:3015–3023. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Friedrichs K, Ruiz P, Franke F, Gille I,
Terpe HJ and Imhof BA: High expression level of alpha 6 integrin in
human breast carcinoma is correlated with reduced survival. Cancer
Res. 55:901–906. 1995.PubMed/NCBI
|
|
53
|
Jones JL, Royall JE, Critchley DR and
Walker RA: Modulation of myoepithelial-associated alpha6beta4
integrin in a breast cancer cell line alters invasive potential.
Exp Cell Res. 235:325–333. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Desgrosellier JS and Cheresh DA: Integrins
in cancer: Biological implications and therapeutic opportunities.
Nat Rev Cancer. 10:9–22. 2010. View Article : Google Scholar
|
|
55
|
Gupta P and Srivastava SK: Inhibition of
Integrin-HER2 signaling by Cucurbitacin B leads to in vitro and in
vivo breast tumor growth suppression. Oncotarget. 5:1812–1828.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gupta P and Srivastava SK: HER2 mediated
de novo production of TGFβ leads to SNAIL driven
epithelial-to-mesenchymal transition and metastasis of breast
cancer. Mol Oncol. 8:1532–1547. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
de Herreros AG, Peiró S, Nassour M and
Savagner P: Snail family regulation and epithelial mesenchymal
transitions in breast cancer progression. J Mammary Gland Biol
Neoplasia. 15:135–147. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ren G, Sha T, Guo J, Li W, Lu J and Chen
X: Cucurbitacin B induces DNA damage and autophagy mediated by
reactive oxygen species (ROS) in MCF-7 breast cancer cells. J Nat
Med. 69:522–530. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sinha S, Khan S, Shukla S, Lakra AD, Kumar
S, Das G, Maurya R and Meeran SM: Cucurbitacin B inhibits breast
cancer metastasis and angiogenesis through VEGF-mediated
suppression of FAK/MMP-9 signaling axis. Int J Biochem Cell Biol.
77(Pt A): 41–56. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lang KL, Silva IT, Zimmermann LA, Machado
VR, Teixeira MR, Lapuh MI, Galetti MA, Palermo JA, Cabrera GM,
Bernardes LS, et al: Synthesis and cytotoxic activity evaluation of
dihydrocucurbitacin B and cucurbitacin B derivatives. Bioorg Med
Chem. 20:3016–3030. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kausar H, Munagala R, Bansal SS, Aqil F,
Vadhanam MV and Gupta RC: Cucurbitacin B potently suppresses
non-small-cell lung cancer growth: Identification of intracellular
thiols as critical targets. Cancer Lett. 332:35–45. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Guo J, Wu G, Bao J, Hao W, Lu J and Chen
X: Cucurbitacin B induced ATM-mediated DNA damage causes G2/M cell
cycle arrest in a ROS-dependent manner. PLoS One. 9:e881402014.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang M, Bian ZG, Zhang Y, Wang JH, Kan L,
Wang X, Niu HY and He P: Cucurbitacin B inhibits proliferation and
induces apoptosis via STAT3 pathway inhibition in A549 lung cancer
cells. Mol Med Rep. 10:2905–2911. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Shukla S, Khan S, Kumar S, Sinha S, Farhan
M, Bora HK, Maurya R and Meeran SM: Cucurbitacin B alters the
expression of tumor-related genes by epigenetic modifications in
NSCLC and inhibits NNK-induced lung tumorigenesis. Cancer Prev Res
(Phila). 8:552–562. 2015. View Article : Google Scholar
|
|
65
|
Silva IT, Geller FC, Persich L, Dudek SE,
Lang KL, Caro MS, Durán FJ, Schenkel EP, Ludwig S and Simões CM:
Cytotoxic effects of natural and semisynthetic cucurbitacins on
lung cancer cell line A549. Invest New Drugs. 34:139–148. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Shukla S, Sinha S, Khan S, Kumar S, Singh
K, Mitra K, Maurya R and Meeran SM: Cucurbitacin B inhibits the
stemness and metastatic abilities of NSCLC via downregulation of
canonical Wnt/β-catenin signaling axis. Sci Rep. 6:218602016.
View Article : Google Scholar
|
|
67
|
Zhang Y, Ouyang D, Xu L, Ji Y, Zha Q, Cai
J and He X: Cucurbitacin B induces rapid depletion of the G-actin
pool through reactive oxygen species-dependent actin aggregation in
melanoma cells. Acta Biochim Biophys Sin (Shanghai). 43:556–567.
2011. View Article : Google Scholar
|
|
68
|
Bamburg JR and Bernstein BW: Roles of
ADF/cofilin in actin polymerization and beyond. F1000 Biol Rep.
2:622010.PubMed/NCBI
|
|
69
|
Wang W, Eddy R and Condeelis J: The
cofilin pathway in breast cancer invasion and metastasis. Nat Rev
Cancer. 7:429–440. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Van Troys M, Huyck L, Leyman S, Dhaese S,
Vandekerkhove J and Ampe C: Ins and outs of ADF/cofilin activity
and regulation. Eur J Cell Biol. 87:649–667. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Bamburg JR, Bernstein BW, Davis RC, Flynn
KC, Goldsbury C, Jensen JR, Maloney MT, Marsden IT, Minamide LS,
Pak CW, et al: ADF/Cofilin-actin rods in neurodegenerative
diseases. Curr Alzheimer Res. 7:241–250. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang YT, Ouyang DY, Xu LH, Zha QB and He
XH: Formation of cofilin-actin rods following
cucurbitacin-B-induced actin aggregation depends on Slingshot
homolog 1-mediated cofilin hyperactivation. J Cell Biochem.
114:2415–2429. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Trichet L, Sykes C and Plastino J:
Relaxing the actin cytoskeleton for adhesion and movement with
Ena/VASP. J Cell Biol. 181:19–25. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhang YT, Xu LH, Lu Q, Liu KP, Liu PY, Ji
F, Liu XM, Ouyang DY and He XH: VASP activation via the
Gα13/RhoA/PKA pathway mediates cucurbitacin-B-induced actin
aggregation and cofilin-actin rod formation. PLoS One.
9:e935472014. View Article : Google Scholar
|
|
75
|
Yin D, Wakimoto N, Xing H, Lu D, Huynh T,
Wang X, Black KL and Koeffler HP: Cucurbitacin B markedly inhibits
growth and rapidly affects the cytoskeleton in glioblastoma
multiforme. Int J Cancer. 123:1364–1375. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Touihri-Barakati I, Kallech-Ziri O, Ayadi
W, Kovacic H, Hanchi B, Hosni K and Luis J: Cucurbitacin B purified
from Ecballium elaterium (L.) A. Rich from Tunisia inhibits α5β1
integrin-mediated adhesion, migration, proliferation of human
glioblastoma cell line and angiogenesis. Eur J Pharmacol.
797:153–161. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zheng Q, Liu Y, Liu W, Ma F, Zhou Y, Chen
M, Chang J, Wang Y, Yang G and He G: Cucurbitacin B inhibits growth
and induces apoptosis through the JAK2/STAT3 and MAPK pathways in
SH-SY5Y human neuroblastoma cells. Mol Med Rep. 10:89–94. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Shang Y, Guo XX, Li WW, Rao W, Chen ML, Mu
LN and Li SJ: Cucurbitacin-B inhibits neuroblastoma cell
proliferation through up-regulation of PTEN. Eur Rev Med Pharmacol
Sci. 18:3297–3303. 2014.PubMed/NCBI
|
|
79
|
Chan KT, Meng FY, Li Q, Ho CY, Lam TS, To
Y, Lee WH, Li M, Chu KH and Toh M: Cucurbitacin B induces apoptosis
and S phase cell cycle arrest in BEL-7402 human hepatocellular
carcinoma cells and is effective via oral administration. Cancer
Lett. 294:118–124. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Niu Y, Sun W, Lu JJ, Ma DL, Leung CH, Pei
L and Chen X: PTEN activation by DNA damage induces protective
autophagy in response to cucurbitacin B in hepatocellular carcinoma
cells. Oxid Med Cell Longev. 2016:43132042016. View Article : Google Scholar
|
|
81
|
Haritunians T, Gueller S, Zhang L, Badr R,
Yin D, Xing H, Fung MC and Koeffler HP: Cucurbitacin B induces
differentiation, cell cycle arrest, and actin cytoskeletal
alterations in myeloid leukemia cells. Leuk Res. 32:1366–1373.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chan KT, Li K, Liu SL, Chu KH, Toh M and
Xie WD: Cucurbitacin B inhibits STAT3 and the Raf/MEK/ERK pathway
in leukemia cell line K562. Cancer Lett. 289:46–52. 2010.
View Article : Google Scholar
|
|
83
|
Zhu JS, Ouyang DY, Shi ZJ, Xu LH, Zhang YT
and He XH: Cucurbitacin B induces cell cycle arrest, apoptosis and
autophagy associated with G actin reduction and persistent
activation of cofilin in Jurkat cells. Pharmacology. 89:348–6.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Gao Y, Islam MS, Tian J, Lui VWY and Xiao
D: Inactivation of ATP citrate lyase by Cucurbitacin B: A bioactive
compound from cucumber, inhibits prostate cancer growth. Cancer
Lett. 349:15–25. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zaidi N, Swinnen JV and Smans K:
ATP-citrate lyase: A key player in cancer metabolism. Cancer Res.
72:3709–3714. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zaytseva YY, Rychahou PG, Gulhati P,
Elliott VA, Mustain WC, O'Connor K, Morris AJ, Sunkara M, Weiss HL,
Lee EY, et al: Inhibition of fatty acid synthase attenuates
CD44-associated signaling and reduces metastasis in colorectal
cancer. Cancer Res. 72:1504–1517. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liu T, Zhang M, Zhang H, Sun C and Deng Y:
Inhibitory effects of cucurbitacin B on laryngeal squamous cell
carcinoma. Eur Arch Otorhinolaryngol. 265:1225–1232. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Xie YL, Tao WH, Yang TX and Qiao JG:
Anticancer effect of cucurbitacin B on MKN-45 cells via inhibition
of the JAK2/STAT3 signaling pathway. Exp Ther Med. 12:2709–2715.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Liu X, Duan C, Ji J, Zhang T, Yuan X,
Zhang Y, Ma W, Yang J, Yang L, Jiang Z, et al: Cucurbitacin B
induces autophagy and apoptosis by suppressing CIP2A/PP2A/mTORC1
signaling axis in human cisplatin resistant gastric cancer cells.
Oncol Rep. 38:271–278. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhang ZR, Gao MX and Yang K: Cucurbitacin
B inhibits cell proliferation and induces apoptosis in human
osteosarcoma cells via modulation of the JAK2/STAT3 and MAPK
pathways. Exp Ther Med. 14:805–812. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Qu Y, Cong P, Lin C, Deng Y, Li-Ling J and
Zhang M: Inhibition of paclitaxel resistance and apoptosis
induction by cucurbitacin B in ovarian carcinoma cells. Oncol Lett.
14:145–152. 2017.PubMed/NCBI
|
|
92
|
Ma J, Zi Jiang Y, Shi H, Mi C, Li J, Xing
Nan J, Wu X, Joon Lee J and Jin X: Cucurbitacin B inhibits the
translational expression of hypoxia-inducible factor-1α. Eur J
Pharmacol. 723:46–54. 2014. View Article : Google Scholar
|
|
93
|
Wang X, Tanaka M, Peixoto HS and Wink M:
Cucurbitacins: Elucidation of their interactions with the
cytoskeleton. PeerJ. 5:e33572017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhang T, Li Y, Park KA, Byun HS, Won M,
Jeon J, Lee Y, Seok JH, Choi SW, Lee SH, et al: Cucurbitacin
induces autophagy through mitochondrial ROS production which
counteracts to limit caspase-dependent apoptosis. Autophagy.
8:559–576. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Marostica LL, Silva IT, Kratz JM, Persich
L, Geller FC, Lang KL, Caro MSB, Durán FJ, Schenkel EP and Simões
CM: Synergetic antiproliferative effects of a new cucurbitacin B
derivative and chemotherapy drugs on lung cancer cell line A549.
Chem Res Toxicol. 28:1949–1960. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Silva IT, Carvalho A, Lang KL, Dudek SE,
Masemann D, Durán FJ, Caro MSB, Rapp UR, Wixler V, Schenkel EP, et
al: In vitro and in vivo antitumor activity of a novel
semisynthetic derivative of cucurbitacin B. PLoS One.
10:e01177942015. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Chen W, Leiter A, Yin D, Meiring M, Louw
VJ and Koeffler HP: Cucurbitacin B inhibits growth, arrests the
cell cycle, and potentiates antiproliferative efficacy of cisplatin
in cutaneous squamous cell carcinoma cell lines. Int J Oncol.
37:737–743. 2010.PubMed/NCBI
|
|
98
|
Liu T, Peng H, Zhang M, Deng Y and Wu Z:
Cucurbitacin B, a small molecule inhibitor of the Stat3 signaling
pathway, enhances the chemosensitivity of laryngeal squamous cell
carcinoma cells to cisplatin. Eur J Pharmacol. 641:15–22. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
El-Senduny FF, Badria FA, El-Waseef AM,
Chauhan SC and Halaweish F: Approach for chemosensitization of
cisplatin-resistant ovarian cancer by cucurbitacin B. Tumour Biol.
37:685–698. 2016. View Article : Google Scholar
|
|
100
|
Marostica LL, de Barros ALB, Oliveira J,
Salgado BS, Cassali GD, Leite EA, Cardoso VN, Lang KL, Caro MSB,
Durán FJ, et al: Antitumor effectiveness of a combined therapy with
a new cucurbitacin B derivative and paclitaxel on a human lung
cancer xenograft model. Toxicol Appl Pharmacol. 329:272–281. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Aribi A, Gery S, Lee DH, Thoennissen NH,
Thoennissen GB, Alvarez R, Ho Q, Lee K, Doan NB, Chan KT, et al:
The triterpenoid cucurbitacin B augments the antiproliferative
activity of chemotherapy in human breast cancer. Int J Cancer.
132:2730–2737. 2013. View Article : Google Scholar
|
|
102
|
Liu T, Zhang M, Zhang H, Sun C, Yang X,
Deng Y and Ji W: Combined antitumor activity of cucurbitacin B and
docetaxel in laryngeal cancer. Eur J Pharmacol. 587:78–84. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Thoennissen NH, Iwanski GB, Doan NB,
Okamoto R, Lin P, Abbassi S, Song JH, Yin D, Toh M, Xie WD, et al:
Cucurbitacin B induces apoptosis by inhibition of the JAK/STAT
pathway and potentiates antiproliferative effects of gemcitabine on
pancreatic cancer cells. Cancer Res. 69:5876–5884. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Iwanski GB, Lee DH, En-Gal S, Doan NB,
Castor B, Vogt M, Toh M, Bokemeyer C, Said JW, Thoennissen NH, et
al: Cucurbitacin B, a novel in vivo potentiator of gemcitabine with
low toxicity in the treatment of pancreatic cancer. Br J Pharmacol.
160:998–1007. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yar Saglam AS, Alp E, Elmazoglu Z and
Menevse S: Treatment with cucurbitacin B alone and in combination
with gefitinib induces cell cycle inhibition and apoptosis via EGFR
and JAK/STAT pathway in human colorectal cancer cell lines. Hum Exp
Toxicol. 35:526–543. 2016. View Article : Google Scholar
|
|
106
|
Lee DH, Thoennissen NH, Goff C, Iwanski
GB, Forscher C, Doan NB, Said JW and Koeffler HP: Synergistic
effect of low-dose cucurbitacin B and low-dose methotrexate for
treatment of human osteosarcoma. Cancer Lett. 306:161–170. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Tacar O, Sriamornsak P and Dass CR:
Doxorubicin: An update on anticancer molecular action, toxicity and
novel drug delivery systems. J Pharm Pharmacol. 65:157–170. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhang Z, Zhang Y, Lv J and Wang J: The
survivin suppressant YM155 reverses doxorubicin resistance in
osteosarcoma. Int J Clin Exp Med. 8:18032–18040. 2015.
|
|
109
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG,
Yoo HJ and Lee SJ: Doxorubicin has a synergistic cytotoxicity with
cucurbitacin B in anaplastic thyroid carcinoma cells. Tumour Biol.
39:10104283176922522017.PubMed/NCBI
|
|
110
|
Yang T, Liu J, Yang M, Huang N, Zhong Y,
Zeng T, Wei R, Wu Z, Xiao C, Cao X, et al: Cucurbitacin B exerts
anti-cancer activities in human multiple myeloma cells in vitro and
in vivo by modulating multiple cellular pathways. Oncotarget.
8:5800–5813. 2017.
|
|
111
|
Di Gennaro E, Bruzzese F, Pepe S, Leone A,
Delrio P, Subbarayan PR, Avallone A and Budillon A: Modulation of
thymidilate synthase and p53 expression by HDAC inhibitor
vorinostat resulted in synergistic antitumor effect in combination
with 5FU or raltitrexed. Cancer Biol Ther. 8:782–791. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ouyang D, Zhang Y, Xu L, Li J, Zha Q and
He X: Histone deacetylase inhibitor valproic acid sensitizes B16F10
melanoma cells to cucurbitacin B treatment. Acta Biochim Biophys
Sin (Shanghai). 43:487–495. 2011. View Article : Google Scholar
|
|
113
|
Lee HI, McGregor RA, Choi MS, Seo KI, Jung
UJ, Yeo J, Kim MJ and Lee MK: Low doses of curcumin protect
alcohol-induced liver damage by modulation of the alcohol metabolic
pathway, CYP2E1 and AMPK. Life Sci. 93:693–699. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
García-Niño WR and Pedraza-Chaverrí J:
Protective effect of curcumin against heavy metals-induced liver
damage. Food Chem Toxicol. 69:182–201. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Cerný D, Lekić N, Váňová K, Muchová L,
Hořínek A, Kmoníčková E, Zídek Z, Kameníková L and Farghali H:
Hepatoprotective effect of curcumin in
lipopolysaccharide/-galactosamine model of liver injury in rats:
Relationship to HO-1/CO antioxidant system. Fitoterapia.
82:786–791. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Aggarwal BB, Kumar A and Bharti AC:
Anticancer potential of curcumin: Preclinical and clinical studies.
Anticancer Res. 23(1A): 363–398. 2003.PubMed/NCBI
|
|
117
|
Sun Y, Zhang J, Zhou J, Huang Z, Hu H,
Qiao M, Zhao X and Chen D: Synergistic effect of cucurbitacin B in
combination with curcumin via enhancing apoptosis induction and
reversing multidrug resistance in human hepatoma cells. Eur J
Pharmacol. 768:28–40. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Tannin-Spitz T, Bergman M and Grossman S:
Cucurbitacin glucosides: Antioxidant and free-radical scavenging
activities. Biochem Biophys Res Commun. 364:181–186. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Duangmano S, Sae-Lim P, Suksamrarn A,
Patmasiriwat P and Domann FE: Cucurbitacin B causes increased
radiation sensitivity of human breast cancer cells via G2/M cell
cycle arrest. J Oncol. 2012:6016822012. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Smit HF, van den Berg AJJ, Kroes BH,
Beukelman CJ, Quarles van Ufford HC, van Dijk H and Labadie RP and
Labadie RP: Inhibition of T-lymphocyte proliferation by
cucurbitacins from Picrorhiza scrophulariaeflora. J Nat Prod.
63:1300–1302. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Chen JC, Chiu MH, Nie RL, Cordell GA and
Qiu SX: Cucurbitacins and cucurbitane glycosides: Structures and
biological activities. Nat Prod Rep. 22:386–399. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Jayaprakasam B, Seeram NP and Nair MG:
Anticancer and antiinflammatory activities of cucurbitacins from
Cucurbita andreana. Cancer Lett. 189:11–16. 2003. View Article : Google Scholar
|
|
123
|
Miro M: Cucurbitacins and their
pharmacological effects. Phytother Res. 9:159–168. 1995. View Article : Google Scholar
|
|
124
|
Xiao Y, Yang Z, Wu QQ, Jiang XH, Yuan Y,
Chang W, Bian ZY, Zhu JX and Tang QZ: Cucurbitacin B: Cucurbitacin
B protects against pressure overload induced cardiac hypertrophy. J
Cell Biochem. 118:3899–3910. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Hua S, Liu X, Lv S and Wang Z: Protective
effects of Cucurbitacin B on acute lung injury induced by sepsis in
rats. Med Sci Monit. 23:1355–1362. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
El Naggar MB, Chalupová M, Pražanová G,
Parák T, Švajdlenka E, Žemlička M and Suchý P: Hepatoprotective and
proapoptotic effect of Ecballium elaterium on
CCl4-induced hepatotoxicity in rats. Asian Pac J Trop
Med. 8:526–531. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Li ZJ, Shin JM, Choi DK, Lim SK, Yoon TJ,
Lee YH, Sohn KC, Im M, Lee Y, Seo YJ, et al: Inhibitory effect of
cucurbitacin B on imiquimod-induced skin inflammation. Biochem
Biophys Res Commun. 459:673–678. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Park SY, Kim YH and Park G: Cucurbitacins
attenuate microglial activation and protect from neuroinflammatory
injury through Nrf2/ARE activation and STAT/NF-κB inhibition.
Neurosci Lett. 609:129–136. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Peters RR, Farias MR and Ribeiro-do-Valle
RM: Anti-inflammatory and analgesic effects of cucurbitacins from
Wilbrandia ebracteata. Planta Med. 63:525–528. 1997. View Article : Google Scholar
|
|
130
|
Seo CR, Yang DK, Song NJ, Yun UJ, Gwon AR,
Jo DG, Cho JY, Yoon K, Ahn JY, Nho CW, et al: Cucurbitacin B and
cucurbitacin I suppress adipocyte differentiation through
inhibition of STAT3 signaling. Food Chem Toxicol. 64:217–224. 2014.
View Article : Google Scholar
|
|
131
|
Hassan STS, Berchova-Bimova K, Petras J
and Hassan KTS: Cucurbitacin B interacts synergistically with
antibiotics against Staphylococcus aureus clinical isolates and
exhibits antiviral activity against HSV-1. S Afr J Bot. 108:90–94.
2017. View Article : Google Scholar
|
|
132
|
Duportets L, Maria A, Vitecek S, Gadenne C
and Debernard S: Steroid hormone signaling is involved in the
age-dependent behavioral response to sex pheromone in the adult
male moth Agrotis ipsilon. Gen Comp Endocrinol. 186:58–66. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Mezher M: The essential list of regulatory
authorities in Asia. Regulatory Affairs Professional Society.
published April 4, 2015. http://www.raps.org/Regulatory-Focus/News/Databases/2015/04/06/21908/The-Essential-List-of-Regulatory-Authorities-in-Asia/.
Accessed Sep 29, 2017.
|
|
134
|
David A and Vallance DK: Bitter principles
of Cucurbitaceae. J Pharm Pharmacol. 7:295–296. 1955. View Article : Google Scholar
|
|
135
|
Baxter H, Harborne JB and Moss GP:
Phytochemical Dictionary: A Handbook of Bioactive Compounds from
Plants. 2nd edition. Taylor & Francis Ltd; London, UK: pp.
7861999
|
|
136
|
World Health Organization: WHO Monograph
on Selected Medicinal Plants. 4:2662009.
|
|
137
|
Ferguson JE, Fischer DC and Metcalf RL: A
report of Cucurbitacin poisonings in humans. Rep Cucurbit Genet
Coop. 6:73–74. 1983.
|
|
138
|
Therapeutic Goods Association: Health
Safety Regulation - Substances that may be used in listed medicines
in Australia. Government of Australia. 862011.
|
|
139
|
Le Men J, Buffard G, Provost J, Tiberghien
R, Forgacs P, Lagrange E, Albert O and Aurousseau M: Relations
entre la structure de quelques cucurbitacines, leur toxicité et
leur activité laxative. Chim Therapeutique. 4:459–465. 1969.In
French.
|
|
140
|
Enslin PR: Bitter principles of the
Cucurbitaceae I - observations on the chemistry of cucurbitacin A.
J Sci Food Agric. 5:410–416. 1954. View Article : Google Scholar
|
|
141
|
Gry J, Soborg I and Anderson HC: Identity,
physical and chemical properties, analytical methods. Cucurbitacins
in plant food. Ekspressen Tyrk & Kopicenter, Copenhagen,
Denmark. 182006.
|
|
142
|
Sezik E: Research on the Turkish medicinal
plant Ecballium elaterium. Chem Nat Compd. 33:541–542. 1997.
View Article : Google Scholar
|
|
143
|
Steyn DG: The toxicity of bitter-tasting
cucurbitaceous vegetables (vegetable marrow, watermelons, etc) for
man. S Afr Med J. 24:713–715. 1950.PubMed/NCBI
|
|
144
|
Stoewsand GS, Jaworski A, Shannon S and
Robinson RW: Toxicologic response in mice fed Cucurbita fruit. J
Food Prot. 48:50–51. 1985. View Article : Google Scholar
|
|
145
|
Barri MES, Onsa TO, Elawad AA, Elsayed NY,
Wasfi IA, Abdul-Bari EM and Adam SEI: Toxicity of five Sudanese
plants to young ruminants. J Comp Pathol. 93:559–575. 1983.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Bakhiet AO and Adam SE: An estimation of
Citrullus colocynthis toxicity for chicks. Vet Hum Toxicol.
37:356–358. 1995.PubMed/NCBI
|
|
147
|
Rymal KS, Chambliss OL, Bond MD and Smith
DA: Squash containing toxic Cucurbitacin compounds occurring in
California and Alabama. J Food Prot. 47:270–271. 1984. View Article : Google Scholar
|
|
148
|
Pilegaard K and Søborg I: Squash med
bitter smag. Nyt Levnedsmiddelstyrelsen Nr. 23:1995.In Danish.
|
|
149
|
Raikhlin-Eisenkraft B and Bentur Y:
Ecbalium elaterium (squirting cucumber) - remedy or poison? J
Toxicol Clin Toxicol. 38:305–308. 2000. View Article : Google Scholar
|
|
150
|
Jung ME and Lui RM: Studies toward the
total syntheses of cucurbitacins B and D. J Org Chem. 75:7146–7158.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Razavilar N and Choi P: Molecular dynamics
study of the diffusivity of a hydrophobic drug Cucurbitacin B in
pseudo-poly(ethylene oxide-b-caprolactone) micelle environments.
Langmuir. 30:7798–7803. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Toker G, Memişoğlu M, Toker MC and
Yeşilada E: Callus formation and cucurbitacin B accumulation in
Ecballium elaterium callus cultures. Fitoterapia. 74:618–623. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Mei J, Li S, Jin H, Tang L, Yi Y, Wang H
and Ying G: A biotransformation process for the production of
cucurbitacin B from its glycoside using a selected Streptomyces sp.
Bioprocess Biosyst Eng. 39:1435–1440. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Lv Q, Shen C, Li X, Shen B, Yu C, Xu P, Xu
H, Han J and Yuan H: Mucoadhesive buccal films containing
phospholipid-bile salts-mixed micelles as an effective carrier for
cucurbitacin B delivery. Drug Deliv. 22:351–358. 2015. View Article : Google Scholar
|
|
155
|
Molavi O, Ma Z, Mahmud A, Alshamsan A,
Samuel J, Lai R, Kwon GS and Lavasanifar A: Polymeric micelles for
the solubilization and delivery of STAT3 inhibitor cucurbitacins in
solid tumors. Int J Pharm. 347:118–127. 2008. View Article : Google Scholar
|
|
156
|
Patel SK, Lavasanifar A and Choi P: Roles
of nonpolar and polar intermolecular interactions in the
improvement of the drug loading capacity of PEO-b-PCL with
increasing PCL content for two hydrophobic Cucurbitacin drugs.
Biomacromolecules. 10:2584–2591. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Cheng L, Xu PH, Shen BD, Shen G, Li JJ,
Qiu L, Liu CY, Yuan HL and Han J: Improve bile duct-targeted drug
delivery and therapeutic efficacy for cholangiocarcinoma by
cucurbitacin B loaded phospholipid complex modified with berberine
hydrochloride. Int J Pharm. 489:148–157. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Wang W, Zhao X, Hu H, Chen D, Gu J, Deng Y
and Sun J: Galactosylated solid lipid nanoparticles with
cucurbitacin B improves the liver targetability. Drug Deliv.
17:114–122. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
You L, Wang Z, Li H, Shou J, Jing Z, Xie
J, Sui X, Pan H and Han W: The role of STAT3 in autophagy.
Autophagy. 11:729–739. 2015. View Article : Google Scholar : PubMed/NCBI
|