Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
April-2018 Volume 52 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2018 Volume 52 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The post-translational modification, SUMOylation, and cancer (Review)

  • Authors:
    • Zhi-Jian Han
    • Yan-Hu Feng
    • Bao-Hong Gu
    • Yu-Min Li
    • Hao Chen
  • View Affiliations / Copyright

    Affiliations: Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China, Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
    Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1081-1094
    |
    Published online on: February 22, 2018
       https://doi.org/10.3892/ijo.2018.4280
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

SUMOylation is a reversible post-translational modification which has emerged as a crucial molecular regulatory mechanism, involved in the regulation of DNA damage repair, immune responses, carcinogenesis, cell cycle progression and apoptosis. Four SUMO isoforms have been identified, which are SUMO1, SUMO2/3 and SUMO4. The small ubiquitin-like modifier (SUMO) pathway is conserved in all eukaryotes and plays pivotal roles in the regulation of gene expression, cellular signaling and the maintenance of genomic integrity. The SUMO catalytic cycle includes maturation, activation, conjugation, ligation and de-modification. The dysregulation of the SUMO system is associated with a number of diseases, particularly cancer. SUMOylation is widely involved in carcinogenesis, DNA damage response, cancer cell proliferation, metastasis and apoptosis. SUMO can be used as a potential therapeutic target for cancer. In this review, we briefly outline the basic concepts of the SUMO system and summarize the involvement of SUMO proteins in cancer cells in order to better understand the role of SUMO in human disease.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B and Lavrik IN: Post-translational modification of caspases: The other side of apoptosis regulation. Trends Cell Biol. 27:322–339. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Liu J, Qian C and Cao X: Post-translational modification control of innate immunity. Immunity. 45:15–30. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Bode AM and Dong Z: Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer. 4:793–805. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Venne AS, Kollipara L and Zahedi RP: The next level of complexity: Crosstalk of posttranslational modifications. Proteomics. 14:513–524. 2014. View Article : Google Scholar

5 

Woolfrey KM and Dell'Acqua ML: Coordination of protein phosphorylation and dephosphorylation in synaptic plasticity. J Biol Chem. 290:28604–28612. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 127:635–648. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Johnson LN: The regulation of protein phosphorylation. Biochem Soc Trans. 37:627–641. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Jiang X and Chen ZJ: The role of ubiquitylation in immune defence and pathogen evasion. Nat Rev Immunol. 12:35–48. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Vucic D, Dixit VM and Wertz IE: Ubiquitylation in apoptosis: A post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol. 12:439–452. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Fulda S, Rajalingam K and Dikic I: Ubiquitylation in immune disorders and cancer: From molecular mechanisms to therapeutic implications. EMBO Mol Med. 4:545–556. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Komander D and Rape M: The ubiquitin code. Annu Rev Biochem. 81:203–229. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Choudhary C, Weinert BT, Nishida Y, Verdin E and Mann M: The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 15:536–550. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Guo M and Huang BX: Integration of phosphoproteomic, chemical, and biological strategies for the functional analysis of targeted protein phosphorylation. Proteomics. 13:424–437. 2013. View Article : Google Scholar

14 

Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, et al: Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 44:325–340. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Lamoliatte F, McManus FP, Maarifi G, Chelbi-Alix MK and Thibault P: Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification. Nat Commun. 8:141092017. View Article : Google Scholar : PubMed/NCBI

16 

Biggar KK and Li SS: Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol. 16:5–17. 2015. View Article : Google Scholar

17 

Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV and Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 325:834–840. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Drazic A, Myklebust LM, Ree R and Arnesen T: The world of protein acetylation. Biochim Biophys Acta. 1864:1372–1401. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Menzies KJ, Zhang H, Katsyuba E and Auwerx J: Protein acetylation in metabolism - metabolites and cofactors. Nat Rev Endocrinol. 12:43–60. 2016. View Article : Google Scholar

20 

Verdin E and Ott M: 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol. 16:258–264. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Bettermann K, Benesch M, Weis S and Haybaeck J: SUMOylation in carcinogenesis. Cancer Lett. 316:113–125. 2012. View Article : Google Scholar

22 

Eifler K and Vertegaal AC: SUMOylation-mediated regulation of cell cycle progression and cancer. Trends Biochem Sci. 40:779–793. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Flotho A and Melchior F: Sumoylation: A regulatory protein modification in health and disease. Annu Rev Biochem. 82:357–385. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Rabellino A, Andreani C and Scaglioni PP: The role of PIAS SUMO E3-ligases in cancer. Cancer Res. 77:1542–1547. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Seeler JS and Dejean A: SUMO and the robustness of cancer. Nat Rev Cancer. 17:184–197. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Wang Y and Dasso M: SUMOylation and deSUMOylation at a glance. J Cell Sci. 122:4249–4252. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Mahajan R, Delphin C, Guan T, Gerace L and Melchior F: A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell. 88:97–107. 1997. View Article : Google Scholar : PubMed/NCBI

28 

Matunis MJ, Coutavas E and Blobel G: A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol. 135:1457–1470. 1996. View Article : Google Scholar : PubMed/NCBI

29 

Saitoh H and Hinchey J: Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem. 275:6252–6258. 2000. View Article : Google Scholar : PubMed/NCBI

30 

Owerbach D, McKay EM, Yeh ET, Gabbay KH and Bohren KM: A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun. 337:517–520. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Wang CY, Yang P, Li M and Gong F: Characterization of a negative feedback network between SUMO4 expression and NFkappaB transcriptional activity. Biochem Biophys Res Commun. 381:477–481. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Miura K, Jin JB and Hasegawa PM: Sumoylation, a post-translational regulatory process in plants. Curr Opin Plant Biol. 10:495–502. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH and Hay RT: Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem. 276:35368–35374. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Nayak A and Müller S: SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biol. 15:4222014. View Article : Google Scholar : PubMed/NCBI

35 

Desterro JM, Rodriguez MS, Kemp GD and Hay RT: Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem. 274:10618–10624. 1999. View Article : Google Scholar : PubMed/NCBI

36 

Tatham MH, Kim S, Jaffray E, Song J, Chen Y and Hay RT: Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat Struct Mol Biol. 12:67–74. 2005. View Article : Google Scholar

37 

Bernier-Villamor V, Sampson DA, Matunis MJ and Lima CD: Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell. 108:345–356. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Werner A, Flotho A and Melchior F: The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Mol Cell. 46:287–298. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Cappadocia L, Pichler A and Lima CD: Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat Struct Mol Biol. 22:968–975. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Rytinki MM, Kaikkonen S, Pehkonen P, Jääskeläinen T and Palvimo JJ: PIAS proteins: Pleiotropic interactors associated with SUMO. Cell Mol Life Sci. 66:3029–3041. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Stephan AK, Kliszczak M and Morrison CG: The Nse2/Mms21 SUMO ligase of the Smc5/6 complex in the maintenance of genome stability. FEBS Lett. 585:2907–2913. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Reverter D and Lima CD: Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature. 435:687–692. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Yang SH and Sharrocks AD: The SUMO E3 ligase activity of Pc2 is coordinated through a SUMO interaction motif. Mol Cell Biol. 30:2193–2205. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Kagey MH, Melhuish TA and Wotton D: The polycomb protein Pc2 is a SUMO E3. Cell. 113:127–137. 2003. View Article : Google Scholar : PubMed/NCBI

45 

Hatakeyama S: TRIM family proteins: Roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci. 42:297–311. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Koliopoulos MG, Esposito D, Christodoulou E, Taylor IA and Rittinger K: Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity. EMBO J. 35:1204–1218. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Hickey CM, Wilson NR and Hochstrasser M: Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol. 13:755–766. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Mendes AV, Grou CP, Azevedo JE and Pinto MP: Evaluation of the activity and substrate specificity of the human SENP family of SUMO proteases. Biochim Biophys Acta. 1863:139–147. 2016. View Article : Google Scholar

49 

Shin EJ, Shin HM, Nam E, Kim WS, Kim JH, Oh BH and Yun Y: DeSUMOylating isopeptidase: A second class of SUMO protease. EMBO Rep. 13:339–346. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Yeh ET: SUMOylation and De-SUMOylation: Wrestling with life's processes. J Biol Chem. 284:8223–8227. 2009. View Article : Google Scholar :

51 

Kim JH and Baek SH: Emerging roles of desumoylating enzymes. Biochim Biophys Acta. 1792:155–162. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Huang CJ, Wu D, Khan FA and Huo LJ: DeSUMOylation: An important therapeutic target and protein regulatory event. DNA Cell Biol. 34:652–660. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Enchev RI, Schulman BA and Peter M: Protein neddylation: Beyond cullin-RING ligases. Nat Rev Mol Cell Biol. 16:30–44. 2015. View Article : Google Scholar

54 

Bergink S and Jentsch S: Principles of ubiquitin and SUMO modifications in DNA repair. Nature. 458:461–467. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Thomson TM and Guerra-Rebollo M: Ubiquitin and SUMO signalling in DNA repair. Biochem Soc Trans. 38:116–131. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Ulrich HD: Ubiquitin and SUMO in DNA repair at a glance. J Cell Sci. 125:249–254. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Jackson SP and Durocher D: Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell. 49:795–807. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Sarangi P and Zhao X: SUMO-mediated regulation of DNA damage repair and responses. Trends Biochem Sci. 40:233–242. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Seeler JS and Dejean A: Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol. 4:690–699. 2003. View Article : Google Scholar : PubMed/NCBI

60 

Stielow B, Sapetschnig A, Krüger I, Kunert N, Brehm A, Boutros M and Suske G: Identification of SUMO-dependent chromatin-associated transcriptional repression components by a genome-wide RNAi screen. Mol Cell. 29:742–754. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Zhong S, Müller S, Ronchetti S, Freemont PS, Dejean A and Pandolfi PP: Role of SUMO-1-modified PML in nuclear body formation. Blood. 95:2748–2752. 2000.PubMed/NCBI

62 

Schimmel J, Eifler K, Sigurðsson JO, Cuijpers SA, Hendriks IA, Verlaan-de Vries M, Kelstrup CD, Francavilla C, Medema RH, Olsen JV, et al: Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein. Mol Cell. 53:1053–1066. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Pichler A, Knipscheer P, Oberhofer E, van Dijk WJ, Körner R, Olsen JV, Jentsch S, Melchior F and Sixma TK: SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat Struct Mol Biol. 12:264–269. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Ouyang KJ, Woo LL, Zhu J, Huo D, Matunis MJ and Ellis NA: SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. PLoS Biol. 7:e10002522009. View Article : Google Scholar : PubMed/NCBI

65 

Keusekotten K, Bade VN, Meyer-Teschendorf K, Sriramachandran AM, Fischer-Schrader K, Krause A, Horst C, Schwarz G, Hofmann K, Dohmen RJ, et al: Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO. Biochem J. 457:207–214. 2014. View Article : Google Scholar :

66 

Song J, Durrin LK, Wilkinson TA, Krontiris TG and Chen Y: Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci USA. 101:14373–14378. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Merrill JC, Melhuish TA, Kagey MH, Yang SH, Sharrocks AD and Wotton D: A role for non-covalent SUMO interaction motifs in Pc2/CBX4 E3 activity. PLoS One. 5:e87942010. View Article : Google Scholar : PubMed/NCBI

68 

Rodríguez JA: Interplay between nuclear transport and ubiquitin/SUMO modifications in the regulation of cancer-related proteins. Semin Cancer Biol. 27:11–19. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Müller S, Ledl A and Schmidt D: SUMO: A regulator of gene expression and genome integrity. Oncogene. 23:1998–2008. 2004. View Article : Google Scholar : PubMed/NCBI

70 

Nie M and Boddy MN: Cooperativity of the SUMO and ubiquitin pathways in genome stability. Biomolecules. 6:142016. View Article : Google Scholar : PubMed/NCBI

71 

Melchior F, Schergaut M and Pichler A: SUMO: Ligases, isopeptidases and nuclear pores. Trends Biochem Sci. 28:612–618. 2003. View Article : Google Scholar : PubMed/NCBI

72 

Eifler K and Vertegaal AC: Mapping the SUMOylated landscape. FEBS J. 282:3669–3680. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Choi SG, Kim H, Jeong EI, Lee HJ, Park S, Lee SY, Lee HJ, Lee SW, Chung CH and Jung YK: SUMO-Modified FADD recruits cytosolic Drp1 and caspase-10 to mitochondria for regulated necrosis. Mol Cell Biol. 37:372017. View Article : Google Scholar

74 

Hendriks IA and Vertegaal AC: A comprehensive compilation of SUMO proteomics. Nat Rev Mol Cell Biol. 17:581–595. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Peuscher MH and Jacobs JJ: Posttranslational control of telomere maintenance and the telomere damage response. Cell Cycle. 11:1524–1534. 2012. View Article : Google Scholar : PubMed/NCBI

76 

von Wangenheim KH and Peterson HP: The role of cell differentiation in controlling cell multiplication and cancer. J Cancer Res Clin Oncol. 134:725–741. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Vlachostergios PJ and Papandreou CN: The role of the small ubiquitin-related modifier (SUMO) pathway in prostate cancer. Biomolecules. 2:240–255. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Zheng Z, Cai C, Omwancha J, Chen SY, Baslan T and Shemshedini L: SUMO-3 enhances androgen receptor transcriptional activity through a sumoylation-independent mechanism in prostate cancer cells. J Biol Chem. 281:4002–4012. 2006. View Article : Google Scholar

79 

Bawa-Khalfe T, Cheng J, Wang Z and Yeh ET: Induction of the SUMO-specific protease 1 transcription by the androgen receptor in prostate cancer cells. J Biol Chem. 282:37341–37349. 2007. View Article : Google Scholar : PubMed/NCBI

80 

Hu L, Yang F, Lu L and Dai W: Arsenic-induced sumoylation of Mus81 is involved in regulating genomic stability. Cell Cycle. 16:802–811. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Bawa-Khalfe T, Yang FM, Ritho J, Lin HK, Cheng J and Yeh ET: SENP1 regulates PTEN stability to dictate prostate cancer development. Oncotarget. 8:17651–17664. 2017. View Article : Google Scholar :

82 

Bawa-Khalfe T, Cheng J, Lin SH, Ittmann MM and Yeh ET: SENP1 induces prostatic intraepithelial neoplasia through multiple mechanisms. J Biol Chem. 285:25859–25866. 2010. View Article : Google Scholar : PubMed/NCBI

83 

Li S, Wang M, Qu X, Xu Z, Yang Y, Su Q and Wu H: SUMOylation of PES1 upregulates its stability and function via inhibiting its ubiquitination. Oncotarget. 7:50522–50534. 2016.PubMed/NCBI

84 

Finkbeiner E, Haindl M, Raman N and Muller S: SUMO routes ribosome maturation. Nucleus. 2:527–532. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Lecona E, Rodriguez-Acebes S, Specks J, Lopez-Contreras AJ, Ruppen I, Murga M, Muñoz J, Mendez J and Fernandez-Capetillo O: USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol. 23:270–277. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Smits VA and Freire R: USP7/HAUSP: A SUMO deubiquitinase at the heart of DNA replication. BioEssays. 38:863–868. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Sun L, Li H, Chen J, Iwasaki Y, Kubota T, Matsuoka M, Shen A, Chen Q and Xu Y: PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells. J Cell Sci. 126:3939–3947. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Li S, Yang C, Hong Y, Bi H, Zhao F, Liu Y, Ao X, Pang P, Xing X, Chang AK, et al: The transcriptional activity of co-activator AIB1 is regulated by the SUMO E3 ligase PIAS1. Biol Cell. 104:287–296. 2012. View Article : Google Scholar : PubMed/NCBI

89 

McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, et al: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 1773:1263–1284. 2007. View Article : Google Scholar

90 

Kubota Y, O'Grady P, Saito H and Takekawa M: Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation. Nat Cell Biol. 13:282–291. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Taylor EM, Copsey AC, Hudson JJ, Vidot S and Lehmann AR: Identification of the proteins, including MAGEG1, that make up the human SMC5-6 protein complex. Mol Cell Biol. 28:1197–1206. 2008. View Article : Google Scholar :

92 

Wu J, Liu T, Rios Z, Mei Q, Lin X and Cao S: Heat shock proteins and cancer. Trends Pharmacol Sci. 38:226–256. 2017. View Article : Google Scholar

93 

Rachidi S, Sun S, Wu BX, Jones E, Drake RR, Ogretmen B, Cowart LA, Clarke CJ, Hannun YA, Chiosis G, et al: Endoplasmic reticulum heat shock protein gp96 maintains liver homeostasis and promotes hepatocellular carcinogenesis. J Hepatol. 62:879–888. 2015. View Article : Google Scholar :

94 

Pinto MP, Carvalho AF, Grou CP, Rodríguez-Borges JE, Sá-Miranda C and Azevedo JE: Heat shock induces a massive but differential inactivation of SUMO-specific proteases. Biochim Biophys Acta. 1823:1958–1966. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Niskanen EA, Malinen M, Sutinen P, Toropainen S, Paakinaho V, Vihervaara A, Joutsen J, Kaikkonen MU, Sistonen L and Palvimo JJ: Global SUMOylation on active chromatin is an acute heat stress response restricting transcription. Genome Biol. 16:1532015. View Article : Google Scholar : PubMed/NCBI

96 

Ishihara K, Fatma N, Bhargavan B, Chhunchha B, Kubo E, Dey S, Takamura Y, Kumar A and Singh DP: Lens epithelium-derived growth factor deSumoylation by Sumo-specific protease-1 regulates its transcriptional activation of small heat shock protein and the cellular response. FEBS J. 279:3048–3070. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Castorálová M, Březinová D, Svéda M, Lipov J, Ruml T and Knejzlík Z: SUMO-2/3 conjugates accumulating under heat shock or MG132 treatment result largely from new protein synthesis. Biochim Biophys Acta. 1823:911–919. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Brunet Simioni M, De Thonel A, Hammann A, Joly AL, Bossis G, Fourmaux E, Bouchot A, Landry J, Piechaczyk M and Garrido C: Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. Oncogene. 28:3332–3344. 2009. View Article : Google Scholar : PubMed/NCBI

99 

Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M and Hay RT: System-wide changes to SUMO modifications in response to heat shock. Sci Signal. 2:ra242009. View Article : Google Scholar : PubMed/NCBI

100 

Liu HW, Zhang J, Heine GF, Arora M, Gulcin Ozer H, Onti-Srinivasan R, Huang K and Parvin JD: Chromatin modification by SUMO-1 stimulates the promoters of translation machinery genes. Nucleic Acids Res. 40:10172–10186. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Aguilar-Martinez E, Chen X, Webber A, Mould AP, Seifert A, Hay RT and Sharrocks AD: Screen for multi-SUMO-binding proteins reveals a multi-SIM-binding mechanism for recruitment of the transcriptional regulator ZMYM2 to chromatin. Proc Natl Acad Sci USA. 112:E4854–E4863. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Amente S, Lavadera ML, Palo GD and Majello B: SUMO-activating SAE1 transcription is positively regulated by Myc. Am J Cancer Res. 2:330–334. 2012.PubMed/NCBI

103 

Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM, Skinner SO, Xu Q, Li MZ, Hartman ZC, et al: A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science. 335:348–353. 2012. View Article : Google Scholar

104 

Hoellein A, Fallahi M, Schoeffmann S, Steidle S, Schaub FX, Rudelius M, Laitinen I, Nilsson L, Goga A, Peschel C, et al: Myc-induced SUMOylation is a therapeutic vulnerability for B-cell lymphoma. Blood. 124:2081–2090. 2014. View Article : Google Scholar : PubMed/NCBI

105 

González-Prieto R, Cuijpers SA, Kumar R, Hendriks IA and Vertegaal AC: c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle. 14:1859–1872. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Mo YY, Yu Y, Theodosiou E, Ee PL and Beck WT: A role for Ubc9 in tumorigenesis. Oncogene. 24:2677–2683. 2005. View Article : Google Scholar : PubMed/NCBI

107 

Mattoscio D, Casadio C, Miccolo C, Maffini F, Raimondi A, Tacchetti C, Gheit T, Tagliabue M, Galimberti VE, De Lorenzi F, et al: Autophagy regulates UBC9 levels during viral-mediated tumorigenesis. PLoS Pathog. 13:e10062622017. View Article : Google Scholar : PubMed/NCBI

108 

Lin CH, Liu SY and Lee EH: SUMO modification of Akt regulates global SUMOylation and substrate SUMOylation specificity through Akt phosphorylation of Ubc9 and SUMO1. Oncogene. 35:595–607. 2016. View Article : Google Scholar

109 

Li R, Wei J, Jiang C, Liu D, Deng L, Zhang K and Wang P: Akt SUMOylation regulates cell proliferation and tumorigenesis. Cancer Res. 73:5742–5753. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Moschos SJ, Jukic DM, Athanassiou C, Bhargava R, Dacic S, Wang X, Kuan SF, Fayewicz SL, Galambos C, Acquafondata M, et al: Expression analysis of Ubc9, the single small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, in normal and malignant tissues. Hum Pathol. 41:1286–1298. 2010. View Article : Google Scholar : PubMed/NCBI

111 

Wu F, Zhu S, Ding Y, Beck WT and Mo YY: MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res. 15:1550–1557. 2009. View Article : Google Scholar : PubMed/NCBI

112 

Gylfe AE, Kondelin J, Turunen M, Ristolainen H, Katainen R, Pitkänen E, Kaasinen E, Rantanen V, Tanskanen T, Varjosalo M, et al: Identification of candidate oncogenes in human colorectal cancers with microsatellite instability. Gastroenterology. 145:540–3.e22. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Packham S, Warsito D, Lin Y, Sadi S, Karlsson R, Sehat B and Larsson O: Nuclear translocation of IGF-1R via p150 (Glued) and an importin-β/RanBP2-dependent pathway in cancer cells. Oncogene. 34:2227–2238. 2015. View Article : Google Scholar

114 

Ritterhoff T, Das H, Hofhaus G, Schröder RR, Flotho A and Melchior F: The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes. Nat Commun. 7:114822016. View Article : Google Scholar

115 

Hatakeyama S: TRIM proteins and cancer. Nat Rev Cancer. 11:792–804. 2011. View Article : Google Scholar : PubMed/NCBI

116 

Watanabe M and Hatakeyama S: TRIM proteins and diseases. J Biochem. 161:135–144. 2017.PubMed/NCBI

117 

Sho T, Tsukiyama T, Sato T, Kondo T, Cheng J, Saku T, Asaka M and Hatakeyama S: TRIM29 negatively regulates p53 via inhibition of Tip60. Biochim Biophys Acta. 1813:1245–1253. 2011. View Article : Google Scholar : PubMed/NCBI

118 

Noguchi K, Okumura F, Takahashi N, Kataoka A, Kamiyama T, Todo S and Hatakeyama S: TRIM40 promotes neddylation of IKKγ and is downregulated in gastrointestinal cancers. Carcinogenesis. 32:995–1004. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Shibata M, Sato T, Nukiwa R, Ariga T and Hatakeyama S: TRIM45 negatively regulates NF-κB-mediated transcription and suppresses cell proliferation. Biochem Biophys Res Commun. 423:104–109. 2012. View Article : Google Scholar : PubMed/NCBI

120 

Wang J, Zhu J, Dong M, Yu H, Dai X and Li K: Knockdown of tripartite motif containing 24 by lentivirus suppresses cell growth and induces apoptosis in human colorectal cancer cells. Oncol Res. 22:39–45. 2014. View Article : Google Scholar

121 

Chen Y, Guo Y, Yang H, Shi G, Xu G, Shi J, Yin N and Chen D: TRIM66 overexpresssion contributes to osteosarcoma carcinogenesis and indicates poor survival outcome. Oncotarget. 6:23708–23719. 2015.PubMed/NCBI

122 

Chen W, Zhao K, Miao C, Xu A, Zhang J, Zhu J, Su S and Wang Z: Silencing Trim59 inhibits invasion/migration and epithelial-to-mesenchymal transition via TGF-β/Smad2/3 signaling pathway in bladder cancer cells. Onco Targets Ther. 10:1503–1512. 2017. View Article : Google Scholar :

123 

Bawa-Khalfe T and Yeh ET: SUMO losing balance: SUMO proteases disrupt SUMO homeostasis to facilitate cancer development and progression. Genes Cancer. 1:748–752. 2010. View Article : Google Scholar : PubMed/NCBI

124 

Kunz K, Wagner K, Mendler L, Hölper S, Dehne N and Müller S: SUMO signaling by hypoxic inactivation of SUMO-specific isopeptidases. Cell Reports. 16:3075–3086. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Chen CH, Chang CC, Lee TH, Luo M, Huang P, Liao PH, Wei S, Li FA, Chen RH, Zhou XZ, et al: SENP1 deSUMOylates and regulates Pin1 protein activity and cellular function. Cancer Res. 73:3951–3962. 2013. View Article : Google Scholar : PubMed/NCBI

126 

Shen HJ, Zhu HY, Yang C and Ji F: SENP2 regulates hepatocellular carcinoma cell growth by modulating the stability of β-catenin. Asian Pac J Cancer Prev. 13:3583–3587. 2012. View Article : Google Scholar

127 

Cheng J, Su M, Jin Y, Xi Q, Deng Y, Chen J, Wang W, Chen Y, Chen L, Shi N, et al: Upregulation of SENP3/SMT3IP1 promotes epithelial ovarian cancer progression and forecasts poor prognosis. Tumour Biol. 39:10104283176945432017. View Article : Google Scholar : PubMed/NCBI

128 

Ding X, Sun J, Wang L, Li G, Shen Y, Zhou X and Chen W: Overexpression of SENP5 in oral squamous cell carcinoma and its association with differentiation. Oncol Rep. 20:1041–1045. 2008.PubMed/NCBI

129 

Wang K and Zhang XC: Inhibition of SENP5 suppresses cell growth and promotes apoptosis in osteosarcoma cells. Exp Ther Med. 7:1691–1695. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Jin ZL, Pei H, Xu YH, Yu J and Deng T: The SUMO-specific protease SENP5 controls DNA damage response and promotes tumorigenesis in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 20:3566–3573. 2016.PubMed/NCBI

131 

Bawa-Khalfe T, Lu LS, Zuo Y, Huang C, Dere R, Lin FM and Yeh ET: Differential expression of SUMO-specific protease 7 variants regulates epithelial-mesenchymal transition. Proc Natl Acad Sci USA. 109:17466–17471. 2012. View Article : Google Scholar : PubMed/NCBI

132 

Stelter P and Ulrich HD: Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature. 425:188–191. 2003. View Article : Google Scholar : PubMed/NCBI

133 

Gali H, Juhasz S, Morocz M, Hajdu I, Fatyol K, Szukacsov V, Burkovics P and Haracska L: Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res. 40:6049–6059. 2012. View Article : Google Scholar : PubMed/NCBI

134 

Armstrong AA, Mohideen F and Lima CD: Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature. 483:59–63. 2012. View Article : Google Scholar : PubMed/NCBI

135 

Morris JR, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A, Butler L, Galanty Y, Pangon L, Kiuchi T, et al: The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature. 462:886–890. 2009. View Article : Google Scholar : PubMed/NCBI

136 

Guzzo CM, Berndsen CE, Zhu J, Gupta V, Datta A, Greenberg RA, Wolberger C and Matunis MJ: RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage. Sci Signal. 5:ra882012. View Article : Google Scholar : PubMed/NCBI

137 

Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM and Jackson SP: Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature. 462:935–939. 2009. View Article : Google Scholar : PubMed/NCBI

138 

Pfeiffer A, Luijsterburg MS, Acs K, Wiegant WW, Helfricht A, Herzog LK, Minoia M, Böttcher C, Salomons FA, van Attikum H, et al: Ataxin-3 consolidates the MDC1-dependent DNA double-strand break response by counteracting the SUMO-targeted ubiquitin ligase RNF4. EMBO J. 36:1066–1083. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Yin Y, Seifert A, Chua JS, Maure JF, Golebiowski F and Hay RT: SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. Genes Dev. 26:1196–1208. 2012. View Article : Google Scholar : PubMed/NCBI

140 

Galanty Y, Belotserkovskaya R, Coates J and Jackson SP: RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev. 26:1179–1195. 2012. View Article : Google Scholar : PubMed/NCBI

141 

He X, Riceberg J, Pulukuri SM, Grossman S, Shinde V, Shah P, Brownell JE, Dick L, Newcomb J and Bence N: Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation. PLoS One. 10:e01238822015. View Article : Google Scholar : PubMed/NCBI

142 

Zhang J, Huang FF, Wu DS, Li WJ, Zhan HE, Peng MY, Fang P, Cao PF, Zhang MM, Zeng H, et al: SUMOylation of insulin-like growth factor 1 receptor, promotes proliferation in acute myeloid leukemia. Cancer Lett. 357:297–306. 2015. View Article : Google Scholar

143 

You L, Liu C, Tang H, Liao Y and Fu S: Advances in targeting insulin-like growth factor signaling pathway in cancer treatment. Curr Pharm Des. 20:2899–2911. 2014. View Article : Google Scholar

144 

Oh Y and Chung KC: Small ubiquitin-like modifier (SUMO) modification of zinc finger protein 131 potentiates its negative effect on estrogen signaling. J Biol Chem. 287:17517–17529. 2012. View Article : Google Scholar : PubMed/NCBI

145 

Schulz S, Chachami G, Kozaczkiewicz L, Winter U, Stankovic-Valentin N, Haas P, Hofmann K, Urlaub H, Ovaa H, Wittbrodt J, et al: Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. EMBO Rep. 13:930–938. 2012. View Article : Google Scholar : PubMed/NCBI

146 

Xu J, Sun HY, Xiao FJ, Wang H, Yang Y, Wang L, Gao CJ, Guo ZK, Wu CT and Wang LS: SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling. Biochem Biophys Res Commun. 460:409–415. 2015. View Article : Google Scholar : PubMed/NCBI

147 

Huang HJ, Zhou LL, Fu WJ, Zhang CY, Jiang H, Du J and Hou J: β-catenin SUMOylation is involved in the dysregulated proliferation of myeloma cells. Am J Cancer Res. 5:309–320. 2014.

148 

Toropainen S, Malinen M, Kaikkonen S, Rytinki M, Jääskeläinen T, Sahu B, Jänne OA and Palvimo JJ: SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Res. 43:848–861. 2015. View Article : Google Scholar : PubMed/NCBI

149 

Wang W, Chen Y, Wang S, Hu N, Cao Z, Wang W, Tong T and Zhang X: PIASxα ligase enhances SUMO1 modification of PTEN protein as a SUMO E3 ligase. J Biol Chem. 289:3217–3230. 2014. View Article : Google Scholar

150 

Wen D, Xu Z, Xia L, Liu X, Tu Y, Lei H, Wang W, Wang T, Song L, Ma C, et al: Important role of SUMOylation of Spliceosome factors in prostate cancer cells. J Proteome Res. 13:3571–3582. 2014. View Article : Google Scholar : PubMed/NCBI

151 

Huang W, He T, Chai C, Yang Y, Zheng Y, Zhou P, Qiao X, Zhang B, Liu Z, Wang J, et al: Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression. PLoS One. 7:e376932012. View Article : Google Scholar : PubMed/NCBI

152 

Shao DF, Wang XH, Li ZY, Xing XF, Cheng XJ, Guo T, Du H, Hu Y, Dong B, Ding N, et al: High-level SAE2 promotes malignant phenotype and predicts outcome in gastric cancer. Am J Cancer Res. 5:140–154. 2014.

153 

Paakinaho V, Kaikkonen S, Makkonen H, Benes V and Palvimo JJ: SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor. Nucleic Acids Res. 42:1575–1592. 2014. View Article : Google Scholar :

154 

Hua G, Ganti KP and Chambon P: Glucocorticoid-induced tethered transrepression requires SUMOylation of GR and formation of a SUMO-SMRT/NCoR1-HDAC3 repressing complex. Proc Natl Acad Sci USA. 113:E635–E643. 2016. View Article : Google Scholar :

155 

Bies J, Sramko M and Wolff L: Stress-induced phosphorylation of Thr486 in c-Myb by p38 mitogenactivated protein kinases attenuates conjugation of SUMO-2/3. J Biol Chem. 288:36983–36993. 2013. View Article : Google Scholar : PubMed/NCBI

156 

Du JX, McConnell BB and Yang VW: A small ubiquitin-related modifier-interacting motif functions as the transcriptional activation domain of Krüppel-like factor 4. J Biol Chem. 285:28298–28308. 2010. View Article : Google Scholar : PubMed/NCBI

157 

Han Y, Huang C, Sun X, Xiang B, Wang M, Yeh ET, Chen Y, Li H, Shi G, Cang H, et al: SENP3-mediated de-conjugation of SUMO2/3 from promyelocytic leukemia is correlated with accelerated cell proliferation under mild oxidative stress. J Biol Chem. 285:12906–12915. 2010. View Article : Google Scholar : PubMed/NCBI

158 

Carter S, Bischof O, Dejean A and Vousden KH: C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol. 9:428–435. 2007. View Article : Google Scholar : PubMed/NCBI

159 

Dadke S, Cotteret S, Yip SC, Jaffer ZM, Haj F, Ivanov A, Rauscher F III, Shuai K, Ng T, Neel BG, et al: Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat Cell Biol. 9:80–85. 2007. View Article : Google Scholar

160 

Jin L, Shen K, Chen T, Zhang H and Yu W: SUMO-1 gene silencing inhibits proliferation and promotes apoptosis of human gastric cancer SGC-7901 Cells. Cell Physiol Biochem. 41:987–998. 2017. View Article : Google Scholar : PubMed/NCBI

161 

Wang B, Tang J, Liao D, Wang G, Zhang M, Sang Y, Cao J, Wu Y, Zhang R, Li S, et al: Chromobox homolog 4 is correlated with prognosis and tumor cell growth in hepatocellular carcinoma. Ann Surg Oncol. 20(Suppl 3): S684–S692. 2013. View Article : Google Scholar : PubMed/NCBI

162 

Bellail AC, Olson JJ and Hao C: SUMO1 modification stabilizes CDK6 protein and drives the cell cycle and glioblastoma progression. Nat Commun. 5:42342014. View Article : Google Scholar : PubMed/NCBI

163 

Wang Z, Jin J, Zhang J, Wang L and Cao J: Depletion of SENP1 suppresses the proliferation and invasion of triple-negative breast cancer cells. Oncol Rep. 36:2071–2078. 2016. View Article : Google Scholar : PubMed/NCBI

164 

Wang Q, Xia N, Li T, Xu Y, Zou Y, Zuo Y, Fan Q, Bawa-Khalfe T, Yeh ET and Cheng J: SUMO-specific protease-1 promotes prostate cancer progression and metastasis. Oncogene. 32:2493–2498. 2013. View Article : Google Scholar

165 

Tan M, Gong H, Wang J, Tao L, Xu D, Bao E, Liu Z and Qiu J: SENP2 regulates MMP13 expression in a bladder cancer cell line through SUMOylation of TBL1/TBLR1. Sci Rep. 5:139962015. View Article : Google Scholar : PubMed/NCBI

166 

Wang X, Li L, Wu Y, Zhang R, Zhang M, Liao D, Wang G, Qin G, Xu RH and Kang T: CBX4 suppresses metastasis via recruitment of HDAC3 to the Runx2 promoter in colorectal carcinoma. Cancer Res. 76:7277–7289. 2016. View Article : Google Scholar : PubMed/NCBI

167 

Li J, Xu Y, Long XD, Wang W, Jiao HK, Mei Z, Yin QQ, Ma LN, Zhou AW, Wang LS, et al: Cbx4 governs HIF-1α to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell. 25:118–131. 2014. View Article : Google Scholar : PubMed/NCBI

168 

Mei Z, Jiao H, Wang W, Li J, Chen G and Xu Y: Polycomb chromobox 4 enhances migration and pulmonary metastasis of hepatocellular carcinoma cell line MHCC97L. Sci China Life Sci. 57:610–617. 2014. View Article : Google Scholar : PubMed/NCBI

169 

Liu S, Long J, Yuan B, Zheng M, Xiao M, Xu J, Lin X and Feng XH: SUMO modification reverses inhibitory effects of Smad nuclear interacting protein-1 in TGF-β responses. J Biol Chem. 291:24418–24430. 2016. View Article : Google Scholar : PubMed/NCBI

170 

Zhang W, Sun H, Shi X, Wang H, Cui C, Xiao F, Wu C, Guo X and Wang L: SENP1 regulates hepatocyte growth factor-induced migration and epithelial-mesenchymal transition of hepatocellular carcinoma. Tumour Biol. 37:7741–7748. 2016. View Article : Google Scholar

171 

Hu W, Fan C, Jiang P, Ma Z, Yan X, Di S, Jiang S, Li T, Cheng Y and Yang Y: Emerging role of N-myc downstream-regulated gene 2 (NDRG2) in cancer. Oncotarget. 7:209–223. 2016.

172 

Tantai J, Pan X and Hu D: RNF4-mediated SUMOylation is essential for NDRG2 suppression of lung adenocarcinoma. Oncotarget. 7:26837–26843. 2016. View Article : Google Scholar : PubMed/NCBI

173 

Ryu T, Spatola B, Delabaere L, Bowlin K, Hopp H, Kunitake R, Karpen GH and Chiolo I: Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat Cell Biol. 17:1401–1411. 2015. View Article : Google Scholar : PubMed/NCBI

174 

Liu X, Xu Y, Pang Z, Guo F, Qin Q, Yin T, Sang Y, Feng C, Li X, Jiang L, et al: Knockdown of SUMO-activating enzyme subunit 2 (SAE2) suppresses cancer malignancy and enhances chemotherapy sensitivity in small cell lung cancer. J Hematol Oncol. 8:672015. View Article : Google Scholar : PubMed/NCBI

175 

Ma C, Wu B, Huang X, Yuan Z, Nong K, Dong B, Bai Y, Zhu H, Wang W and Ai K: SUMO-specific protease 1 regulates pancreatic cancer cell proliferation and invasion by targeting MMP-9. Tumour Biol. 35:12729–12735. 2014. View Article : Google Scholar : PubMed/NCBI

176 

Cashman R, Cohen H, Ben-Hamo R, Zilberberg A and Efroni S: SENP5 mediates breast cancer invasion via a TGFβRI SUMOylation cascade. Oncotarget. 5:1071–1082. 2014. View Article : Google Scholar : PubMed/NCBI

177 

Mooney SM, Grande JP, Salisbury JL and Janknecht R: Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry. 49:1–10. 2010. View Article : Google Scholar

178 

Tan MY, Mu XY, Liu B, Wang Y, Bao ED, Qiu JX and Fan Y: SUMO-specific protease 2 suppresses cell migration and invasion through inhibiting the expression of MMP13 in bladder cancer cells. Cell Physiol Biochem. 32:542–548. 2013. View Article : Google Scholar : PubMed/NCBI

179 

Garcia-Mata R, Boulter E and Burridge K: The 'invisible hand': Regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol. 12:493–504. 2011. View Article : Google Scholar : PubMed/NCBI

180 

Yu J, Zhang D, Liu J, Li J, Yu Y, Wu XR and Huang C: RhoGDI SUMOylation at Lys-138 increases its binding activity to Rho GTPase and its inhibiting cancer cell motility. J Biol Chem. 287:13752–13760. 2012. View Article : Google Scholar : PubMed/NCBI

181 

Castillo-Lluva S, Tatham MH, Jones RC, Jaffray EG, Edmondson RD, Hay RT and Malliri A: SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat Cell Biol. 12:1078–1085. 2010. View Article : Google Scholar : PubMed/NCBI

182 

Núñez-O'Mara A, Gerpe-Pita A, Pozo S, Carlevaris O, Urzelai B, Lopitz-Otsoa F, Rodríguez MS and Berra E: PHD3-SUMO conjugation represses HIF1 transcriptional activity independently of PHD3 catalytic activity. J Cell Sci. 128:40–49. 2015. View Article : Google Scholar

183 

Zhao XY, Chen TT, Xia L, Guo M, Xu Y, Yue F, Jiang Y, Chen GQ and Zhao KW: Hypoxia inducible factor-1 mediates expression of galectin-1: The potential role in migration/invasion of colorectal cancer cells. Carcinogenesis. 31:1367–1375. 2010. View Article : Google Scholar : PubMed/NCBI

184 

Zhu S, Sachdeva M, Wu F, Lu Z and Mo YY: Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene. 29:1763–1772. 2010. View Article : Google Scholar :

185 

Li H, Niu H, Peng Y, Wang J and He P: Ubc9 promotes invasion and metastasis of lung cancer cells. Oncol Rep. 29:1588–1594. 2013. View Article : Google Scholar : PubMed/NCBI

186 

Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK and Elledge SJ: A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 137:835–848. 2009. View Article : Google Scholar : PubMed/NCBI

187 

Moschos SJ, Smith AP, Mandic M, Athanassiou C, Watson-Hurst K, Jukic DM, Edington HD, Kirkwood JM and Becker D: SAGE and antibody array analysis of melanoma-infiltrated lymph nodes: Identification of Ubc9 as an important molecule in advanced-stage melanomas. Oncogene. 26:4216–4225. 2007. View Article : Google Scholar : PubMed/NCBI

188 

Zhao Z, Tan X, Zhao A, Zhu L, Yin B, Yuan J, Qiang B and Peng X: microRNA-214-mediated UBC9 expression in glioma. BMB Rep. 45:641–646. 2012. View Article : Google Scholar : PubMed/NCBI

189 

Lu Z, Wu H and Mo YY: Regulation of bcl-2 expression by Ubc9. Exp Cell Res. 312:1865–1875. 2006. View Article : Google Scholar : PubMed/NCBI

190 

Gupta GP and Massagué J: Cancer metastasis: Building a framework. Cell. 127:679–695. 2006. View Article : Google Scholar : PubMed/NCBI

191 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

192 

Morrison CD, Parvani JG and Schiemann WP: The relevance of the TGF-β Paradox to EMT-MET programs. Cancer Lett. 341:30–40. 2013. View Article : Google Scholar : PubMed/NCBI

193 

Gilkes DM, Semenza GL and Wirtz D: Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer. 14:430–439. 2014. View Article : Google Scholar : PubMed/NCBI

194 

Núñez-O'Mara A and Berra E: Deciphering the emerging role of SUMO conjugation in the hypoxia-signaling cascade. Biol Chem. 394:459–469. 2013.PubMed/NCBI

195 

Shao R, Zhang FP, Tian F, Anders Friberg P, Wang X, Sjöland H and Billig H: Increase of SUMO-1 expression in response to hypoxia: Direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS Lett. 569:293–300. 2004. View Article : Google Scholar : PubMed/NCBI

196 

Agbor TA, Cheong A, Comerford KM, Scholz CC, Bruning U, Clarke A, Cummins EP, Cagney G and Taylor CT: Small ubiquitin-related modifier (SUMO)-1 promotes glycolysis in hypoxia. J Biol Chem. 286:4718–4726. 2011. View Article : Google Scholar :

197 

Antico Arciuch VG, Tedesco L, Fuertes M and Arzt E: Role of RSUME in inflammation and cancer. FEBS Lett. 589:3330–3335. 2015. View Article : Google Scholar : PubMed/NCBI

198 

Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F and Arzt E: RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell. 131:309–323. 2007. View Article : Google Scholar : PubMed/NCBI

199 

Xu Y, Zuo Y, Zhang H, Kang X, Yue F, Yi Z, Liu M, Yeh ET, Chen G and Cheng J: Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angio-genesis. J Biol Chem. 285:36682–36688. 2010. View Article : Google Scholar : PubMed/NCBI

200 

Childs BG, Baker DJ, Kirkland JL, Campisi J and van Deursen JM: Senescence and apoptosis: Dueling or complementary cell fates. EMBO Rep. 15:1139–1153. 2014. View Article : Google Scholar : PubMed/NCBI

201 

Davalos AR, Coppe JP, Campisi J and Desprez PY: Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 29:273–283. 2010. View Article : Google Scholar : PubMed/NCBI

202 

Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V, et al: Non-cell-autonomous tumor suppression by p53. Cell. 153:449–460. 2013. View Article : Google Scholar : PubMed/NCBI

203 

Ivanschitz L, Takahashi Y, Jollivet F, Ayrault O, Le Bras M and de Thé H: PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proc Natl Acad Sci USA. 112:14278–14283. 2015. View Article : Google Scholar : PubMed/NCBI

204 

Neyret-Kahn H, Benhamed M, Ye T, Le Gras S, Cossec JC, Lapaquette P, Bischof O, Ouspenskaia M, Dasso M, Seeler J, et al: Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation. Genome Res. 23:1563–1579. 2013. View Article : Google Scholar : PubMed/NCBI

205 

Jiang Z, Fan Q, Zhang Z, Zou Y, Cai R, Wang Q, Zuo Y and Cheng J: SENP1 deficiency promotes ER stress-induced apoptosis by increasing XBP1 SUMOylation. Cell Cycle. 11:1118–1122. 2012. View Article : Google Scholar : PubMed/NCBI

206 

Xia W, Tian H, Cai X, Kong H, Fu W, Xing W, Wang Y, Zou M, Hu Y and Xu D: Inhibition of SUMO-specific protease 1 induces apoptosis of astroglioma cells by regulating NF-κB/Akt pathways. Gene. 595:175–179. 2016. View Article : Google Scholar : PubMed/NCBI

207 

Sudharsan R and Azuma Y: The SUMO ligase PIAS1 regulates UV-induced apoptosis by recruiting Daxx to SUMOylated foci. J Cell Sci. 125:5819–5829. 2012. View Article : Google Scholar : PubMed/NCBI

208 

Zhou Y, Ji C, Cao M, Guo M, Huang W, Ni W, Meng L, Yang H and Wei JF: Inhibitors targeting the SUMOylation pathway: A patent review 2012–2015 (Review). Int J Mol Med. 41:3–12. 2018.

209 

Scott DE, Bayly AR, Abell C and Skidmore J: Small molecules, big targets: Drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov. 15:533–550. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Han Z, Feng Y, Gu B, Li Y and Chen H: The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol 52: 1081-1094, 2018.
APA
Han, Z., Feng, Y., Gu, B., Li, Y., & Chen, H. (2018). The post-translational modification, SUMOylation, and cancer (Review). International Journal of Oncology, 52, 1081-1094. https://doi.org/10.3892/ijo.2018.4280
MLA
Han, Z., Feng, Y., Gu, B., Li, Y., Chen, H."The post-translational modification, SUMOylation, and cancer (Review)". International Journal of Oncology 52.4 (2018): 1081-1094.
Chicago
Han, Z., Feng, Y., Gu, B., Li, Y., Chen, H."The post-translational modification, SUMOylation, and cancer (Review)". International Journal of Oncology 52, no. 4 (2018): 1081-1094. https://doi.org/10.3892/ijo.2018.4280
Copy and paste a formatted citation
x
Spandidos Publications style
Han Z, Feng Y, Gu B, Li Y and Chen H: The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol 52: 1081-1094, 2018.
APA
Han, Z., Feng, Y., Gu, B., Li, Y., & Chen, H. (2018). The post-translational modification, SUMOylation, and cancer (Review). International Journal of Oncology, 52, 1081-1094. https://doi.org/10.3892/ijo.2018.4280
MLA
Han, Z., Feng, Y., Gu, B., Li, Y., Chen, H."The post-translational modification, SUMOylation, and cancer (Review)". International Journal of Oncology 52.4 (2018): 1081-1094.
Chicago
Han, Z., Feng, Y., Gu, B., Li, Y., Chen, H."The post-translational modification, SUMOylation, and cancer (Review)". International Journal of Oncology 52, no. 4 (2018): 1081-1094. https://doi.org/10.3892/ijo.2018.4280
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team