You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
|
Mukherjee S: The Emperor of All Maladies. Scribner publisher; 2010 | |
|
National Cancer Institute (NCI): https://www.cancer.gov. | |
|
Willers H, Azzoli CG, Santivasi WL and Xia F: Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer. Cancer J. 19:200–207. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Barker HE, Paget JT, Khan AA and Harrington KJ: The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat Rev Cancer. 15:409–425. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, Bashir AH, Mohammed OY, Elhassan GO, Harguindey S, et al: Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 15:712015. View Article : Google Scholar : PubMed/NCBI | |
|
Raguz S and Yagüe E: Resistance to chemotherapy: New treatments and novel insights into an old problem. Br J Cancer. 99:387–391. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H and Haga N: Molecular targeting therapy of cancer: Drug resistance, apoptosis and survival signal. Cancer Sci. 94:15–21. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: The hallmarks of cancer: The next generation. Cell. 5:646–674. 2011. View Article : Google Scholar | |
|
Lee S and Margolin K: Cytokines in cancer immunotherapy. Cancers (Basel). 3:3856–3893. 2011. View Article : Google Scholar | |
|
Levitzki A and Klein S: Signal transduction therapy of cancer. Mol Aspects Med. 31:287–329. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lawler SE, Speranza MC, Cho CF and Chiocca EA: Oncolytic viruses in cancer treatment: A Review. JAMA Oncol. 3:841–849. 2017. View Article : Google Scholar | |
|
Rajabi M and Mousa SA: The role of angiogenesis in cancer treatment. Biomedicines. 5:E342017. View Article : Google Scholar : PubMed/NCBI | |
|
Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ and Schreiber RD: IFN-gamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 410:1107–1111. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Dunn GP, Bruce AT, Ikeda H, Old LJ and Schreiber RD: Cancer immunoediting: From immunosurveillance to tumor escape. Nat Immunol. 3:991–998. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Mittal D, Gubin MM, Schreiber RD and Smyth MJ: New insights into cancer immunoediting and its three component phases - elimination, equilibrium and escape. Curr Opin Immunol. 27:16–25. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Vesely MD and Schreiber RD: Cancer immunoediting: Antigens, mechanisms, and implications to cancer immunotherapy. Ann NY Acad Sci. 1284:1–5. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Dunn GP, Old LJ and Schreiber RD: The three Es of cancer immunoediting. Annu Rev Immunol. 22:329–360. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Dunn GP, Koebel CM and Schreiber RD: Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 6:836–848. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Baxevanis CN, Perez SA and Papamichail M: Cancer immunotherapy. Crit Rev Clin Lab Sci. 46:167–189. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Cancer Research Institute (CRI): https://www.cancerresearch.org. | |
|
Immunotherapy MD Anderson Cancer Center (MDACC): https://www.mdanderson.org/treatment-options/immunotherapy.html. | |
|
Sathyanarayanan V and Neelapu SS: Cancer immunotherapy: Strategies for personalization and combinatorial approaches. Mol Oncol. 9:2043–2053. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Farkona S, Diamandis EP and Blasutig IM: Cancer immunotherapy: The beginning of the end of cancer. BMC Med. 14:732016. View Article : Google Scholar | |
|
Newick K, O'Brien S, Moon E and Albelda SM: CAR T cell therapy for solid tumors. Annu Rev Med. 68:139–152. 2017. View Article : Google Scholar | |
|
Romero D: Immunotherapy: A CAR T-cell recipe for success. Nat Rev Clin Oncol. 14:3302017. View Article : Google Scholar : PubMed/NCBI | |
|
Couzin-Frankel J: Breakthrough of the year 2013. Cancer immunotherapy. Science. 342:1432–1433. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Buchbinder EI and Desai A: CTLA-4 and PD-1 Pathways: Similarities, differences, and implications of their inhibition. Am J Clin Oncol. 39:98–106. 2016. View Article : Google Scholar : | |
|
Leach DR, Krummel MF and Allison JP: Enhancement of antitumor immunity by CTLA-4 blockade. Science. 271:1734–1736. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA and Sharpe AH: Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 3:541–547. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H and Mak TW: Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 270:985–988. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Curran MA, Montalvo W, Yagita H and Allison JP: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 107:4275–4280. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M and Korman AJ: Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res. 1:32–42. 2013. View Article : Google Scholar | |
|
Thomas LJ, He LZ, Marsh H and Keler T: Targeting human CD27 with an agonist antibody stimulates T-cell activation and antitumor immunity. Oncoimmunology. 3:e272552014. View Article : Google Scholar : PubMed/NCBI | |
|
He LZ, Prostak N, Thomas LJ, Vitale L, Weidlick J, Crocker A, Pilsmaker CD, Round SM, Tutt A, Glennie MJ, et al: Agonist anti-human CD27 monoclonal antibody induces T cell activation and tumor immunity in human CD27-transgenic mice. J Immunol. 191:4174–4183. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Emens LA, Butterfield LH, Hodi FS Jr, Marincola FM and Kaufman HL: Cancer immunotherapy trials: Leading a paradigm shift in drug development. J Immunother Cancer. 4:422016. View Article : Google Scholar : PubMed/NCBI | |
|
Bartkowiak T and Curran MA: 4-1BB agonists: Multi-potent potentiators of tumor immunity. Front Oncol. 5:1172015. View Article : Google Scholar : PubMed/NCBI | |
|
Chester C, Ambulkar S and Kohrt HE: 4-1BB agonism: Adding the accelerator to cancer immunotherapy. Cancer Immunol Immunother. 65:1243–1248. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bartkowiak T, Singh S, Yang G, Galvan G, Haria D, Ai M, Allison JP, Sastry KJ and Curran MA: Unique potential of 4-1BB agonist antibody to promote durable regression of HPV+ tumors when combined with an E6/E7 peptide vaccine. Proc Natl Acad Sci USA. 112:E5290–E5299. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Knee DA, Hewes B and Brogdon JL: Rationale for anti-GITR cancer immunotherapy. Eur J Cancer. 67:1–10. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Linch SN, McNamara MJ and Redmond WL: OX40 agonists and combination immunotherapy: Putting the pedal to the metal. Front Oncol. 5:342015. View Article : Google Scholar : PubMed/NCBI | |
|
Lipson EJ and Drake CG: Ipilimumab: An anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res. 17:6958–6962. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hellman MD, Ott PA, Zugazagoitia J, Ready NE, Hann CL and De Braud FG: Nivolumab (Nivo) + Ipilimumab (Ipi) in advanced small-cell lung cancer (SCLC): First report of a randomized expansion cohort from checkmate 032. J Clin Oncol. 35:85032017. | |
|
Govindan R, Szczesna A, Ahn MJ, Schneider CP, Gonzalez Mella PF, Barlesi F, Han B, Ganea DE, Von Pawel J, Vladimirov V, et al: Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non-small-cell lung cancer. J Clin Oncol. 35:3449–3457. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Relationship Between Tumor Mutation Burden and Predicted Neo-antigen Burden in Patients With Advanced Melanoma or Bladder Cancer Treated With Nivolumab or Nivolumab Plus Ipilimumab (CA209-260). NCT: 02553642. Available at http://ClinicalTrial.govurisimpleClinical Trial.gov. | |
|
Neo-Adjuvant Bladder Urothelial Carcinoma COmbination-immunotherapy (NABUCCO. NCT:03387761). Available at http://ClinicalTrial.govurisimpleClinicalTrial.gov. | |
|
Ipilimumab + Androgen Deprivation Therapy in Prostate Cancer. NCT:01377389. Available at http://ClinicalTrial.govurisimpleClinicalTrial.gov. | |
|
Reddy SM, Amaria RN and Spencer CN: Neoadjuvant nivolumab versus combination ipilimumab and nivolumab followed by adjuvant nivolumab in patients with resectable stage III and oligometastatic stage IV melanoma: Preliminary findings. Presented at: 32nd SITC Annual Meeting; Nov 8–12, 2017; National Harbor, MD. Abstract O15. | |
|
Mazza C, Escudier B and Albiges L: Nivolumab in renal cell carcinoma: Latest evidence and clinical potential. Ther Adv Med Oncol. 9:171–181. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sorensen SF, Zhou W, Dolled-Filhart M, Georgsen JB, Wang Z, Emancipator K, Wu D, Busch-Sørensen M, Meldgaard P and Hager H: PD-L1 expression and survival among patients with advanced non-small cell lung cancer treated with chemotherapy. Transl Oncol. 9:64–69. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sheng Z, Zhu X, Sun Y and Zhang Y: The efficacy of anti-PD-1/PD-L1 therapy and its comparison with EGFR-TKIs for advanced non-small-cell lung cancer. Oncotarget. 8:57826–57835. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Byun DJ, Wolchok JD, Rosenberg LM and Girotra M: Cancer immunotherapy - immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol. 13:195–207. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Immunotherapy strategies. Extracted from Society for Immunotherapy for Cancer. https://www.sitcancer.org/home. | |
|
Goc J, Germain C, Vo-Bourgais TK, Lupo A, Klein C, Knockaert S, de Chaisemartin L, Ouakrim H, Becht E, Alifano M, et al: Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res. 74:705–715. 2014. View Article : Google Scholar | |
|
Scott DW, Chan FC, Hong F, Rogic S, Tan KL, Meissner B, Ben-Neriah S, Boyle M, Kridel R, Telenius A, et al: Gene expression-based model using formalin-fixed paraffin-embedded biopsies predicts overall survival in advanced-stage classical Hodgkin lymphoma. J Clin Oncol. 31:692–700. 2013. View Article : Google Scholar | |
|
Muris JJ, Meijer CJ, Cillessen SA, Vos W, Kummer JA, Bladergroen BA, Bogman MJ, MacKenzie MA, Jiwa NM, Siegenbeek van Heukelom LH, et al: Prognostic significance of activated cytotoxic T-lymphocytes in primary nodal diffuse large B-cell lymphomas. Leukemia. 18:589–596. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, Suzuki Y, Shintaku I, Nagura H and Ohtani H: Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: Clinicopathologic demonstration of antitumor immunity. Cancer Res. 61:5132–5136. 2001.PubMed/NCBI | |
|
Remark R, Alifano M, Cremer I, Lupo A, Dieu-Nosjean MC, Riquet M, Crozet L, Ouakrim H, Goc J, Cazes A, et al: Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: Influence of tumor origin. Clin Cancer Res. 19:4079–4091. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Mori M, Ohtani H, Naito Y, Sagawa M, Sato M, Fujimura S and Nagura H: Infiltration of CD8+ T cells in non-small cell lung cancer is associated with dedifferentiation of cancer cells, but not with prognosis. Tohoku J Exp Med. 191:113–118. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Sharpe AH: Introduction to checkpoint inhibitors and cancer immunotherapy. Immunol Rev. 276:5–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chongsathidkiet P, Farber SH, Woroniecka K, Elsamadicy AA, Cui X and Fecci P: IMST-11: Downregulation of sphin-gosine-1-phosphate receptor type 1 mediates bone marrow T-cell sequestration in patients and mice with glioblastoma. Neuro Oncol. 18(Suppl 6): vi882016. View Article : Google Scholar | |
|
Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC, Qiao J, Pytel P, et al: CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76:5671–5682. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mitsuka K, Kawataki T, Satoh E, Asahara T, Horikoshi T and Kinouchi H: Expression of indoleamine 2.3-dioxygenase and correlation with pathological malignancy in gliomas. Neurosurgery. 72:1031–1039. 2013. View Article : Google Scholar | |
|
Komori T: The 2016 WHO classification of tumors of the central nervous system: The major points of revision. Neurol Med Chir (Tokyo). 57:301–311. 2017. View Article : Google Scholar | |
|
Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, Miller JP, Bassett RL, Gopalakrishnan V, Wani K, et al: Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6:827–837. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Freeman CR and Farmer JP: Pediatric brain stem gliomas: A review. Int J Radiat Oncol Biol Phys. 40:265–271. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Rubin G, Michowitz S, Horev G, Herscovici Z, Cohen IJ, Shuper A and Rappaport ZH: Pediatric brain stem gliomas: An update. Childs Nerv Syst. 14:167–173. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Epstein FJ and Farmer JP: Brain-stem glioma growth patterns. J Neurosurg. 78:408–412. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Epstein F and Constantini S: Practical decisions in the treatment of pediatric brain stem tumors. Pediatr Neurosurg. 24:24–34. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Robertson PL, Allen JC, Abbott IR, Miller DC, Fidel J and Epstein FJ: Cervicomedullary tumors in children: A distinct subset of brainstem gliomas. Neurology. 44:1798–1803. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Pollack IF, Hoffman HJ, Humphreys RP and Becker L: The long-term outcome after surgical treatment of dorsally exophytic brain-stem gliomas. J Neurosurg. 78:859–863. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Fisher PG, Breiter SN, Carson BS, Wharam MD, Williams JA, Weingart JD, Foer DR, Goldthwaite PT, Tihan T and Burger PC: A clinicopathologic reappraisal of brain stem tumor classification. Identification of pilocystic astrocytoma and fibrillary astrocytoma as distinct entities. Cancer. 89:1569–1576. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Warren K: DIPG: Poised for progress. Front Oncol. 2:2052012. | |
|
Vanan MI and Eisenstat DD: DIPG in children - what can we learn from the past. Front Oncol. 5:2372015. View Article : Google Scholar | |
|
Ridler C: Neuro-oncology: New therapeutic targets for diffuse intrinsic pontine glioma. Nat Rev Neurol. 13:1962017. View Article : Google Scholar : PubMed/NCBI | |
|
Schroeder KM, Hoeman CM and Becher OJ: Children are not just little adults: Recent advances in understanding of diffuse intrinsic pontine glioma biology. Pediatr Res. 75:205–209. 2014. View Article : Google Scholar | |
|
Disis ML: Immune regulation of cancer. J Clin Oncol. 28:4531–4538. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ and Allis CD: Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 340:857–861. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Chen LH, Wan H, Yang R, Wang Z, Feng J, Yang S, Jones S, Wang S, Zhou W, et al: Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas. Nat Genet. 46:726–730. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Gwak HS and Park HJ: Developing chemotherapy for diffuse pontine intrinsic gliomas (DIPG). Crit Rev Oncol Hematol. 120:111–119. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al: Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med. 8:793–800. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Wang ZJ, Rao L, Bhambhani K, Miller K, Poulik J, Altinok D and Sood S: Diffuse intrinsic pontine glioma biopsy: A single institution experience. Pediatr Blood Cancer. 62:163–165. 2015. View Article : Google Scholar | |
|
Anderson RC, Kennedy B, Yanes CL, Garvin J, Needle M, Canoll P, Feldstein NA and Bruce JN: Convection-enhanced delivery of topotecan into diffuse intrinsic brainstem tumors in children. J Neurosurg Pediatr. 11:289–295. 2013. View Article : Google Scholar | |
|
Monje M, Mitra SS, Freret ME, Raveh TB, Kim J, Masek M, Attema JL, Li G, Haddix T, Edwards MS, et al: Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci USA. 108:4453–4458. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Morales La, Madrid A, Hashizume R and Kieran MW: Future clinical trials in DIPG: Bringing epigenetics to the clinic. Front Oncol. 5:1482015. | |
|
Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L, Debily MA, Quist MJ, Davis LE, Huang EC, Woo PJ, et al: Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med. 21:555–559. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Murakami T, Sato A, Chun NA, Hara M, Naito Y, Kobayashi Y, Kano Y, Ohtsuki M, Furukawa Y and Kobayashi E: Transcriptional modulation using HDACi depsipeptide promotes immune cell-mediated tumor destruction of murine B16 melanoma. J Invest Dermatol. 128:1506–1516. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C, Keiser N, Santaniello F and Tomasi TB: Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol. 165:7017–7024. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, Kaiser S, Jobst J, Smirnow I, Wagner A, et al: Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 65:6321–6329. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Kroesen M, Gielen P, Brok IC, Armandari I, Hoogerbrugge PM and Adema GJ: HDAC inhibitors and immunotherapy; a double edged sword. Oncotarget. 5:6558–6572. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Schläger C, Körner H, Krueger M, Vidoli S, Haberl M, Mielke D, Brylla E, Issekutz T, Cabañas C, Nelson PJ, et al: Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 530:349–353. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, et al: Structural and functional features of central nervous system lymphatic vessels. Nature. 523:337–341. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H and Alitalo K: A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 212:991–999. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sampson JH, Maus MV and June CH: Immunotherapy for brain tumors. J Clin Oncol. 35:2450–2456. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Frazier JL, Lee J, Thomale UW, Noggle JC, Cohen KJ and Jallo GI: Treatment of diffuse intrinsic brainstem gliomas: Failed approaches and future strategies. J Neurosurg Pediatr. 3:259–269. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Z and Qian Q, Jin H and Qian Q: Cancer vaccine: Learning lessons from immune checkpoint inhibitors. J Cancer. 9:263–268. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mellman I, Coukos G and Dranoff G: Cancer immunotherapy comes of age. Nature. 480:480–489. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wainwright DA, Nigam P, Thaci B, Dey M and Lesniak MS: Recent developments on immunotherapy for brain cancer. Expert Opin Emerg Drugs. 17:181–202. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Sonabend AM, Ogden AT, Maier LM, Anderson DE, Canoll P, Bruce JN and Anderson RC: Medulloblasoma: Challenges for effective immunotherapy. J Neurooncol. 108:1–10. 2012. View Article : Google Scholar | |
|
Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D, Wölfel C, Huber C and Wölfel T: The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA. 102:16013–16018. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Dudley ME, Rosenberg SA and Robbins PF: Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother. 28:53–62. 2005. View Article : Google Scholar | |
|
Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, Kvistborg P, Maccalli C, Maecker HT, Page DB, et al: Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer. 4:32016. View Article : Google Scholar : PubMed/NCBI | |
|
Bobisse S, Foukas PG, Coukos G and Harari A: Neoantigen-based cancer immunotherapy. Ann Transl Med. 4:2622016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang RF and Wang HY: Immune targets and neoantigens for cancer immunotherapy and precision medicine. Cell Res. 27:11–37. 2017. View Article : Google Scholar : | |
|
Segal NH, Parsons DW, Peggs KS, Velculescu V, Kinzler KW, Vogelstein B and Allison JP: Epitope landscape in breast and colorectal cancer. Cancer Res. 68:889–892. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Joyce JA and Fearon DT: T cell exclusion, immune privilege, and the tumor microenvironment. Science. 348:74–80. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Schumacher TN and Schreiber RD: Neoantigens in cancer immunotherapy. Science. 348:69–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Potter DM, Connelly AK, Dibridge SA, Whiteside TL and Okada H: Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J Clin Oncol. 32:2050–2058. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Normolle DP, Connelly AK, Dibridge S, Mason G, Whiteside TL, et al: Immune responses and outcome after vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study for pediatric recurrent low-grade gliomas. Neuro Oncol. 18:1157–1168. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chheda ZS, Kohanbash G, Okada K, Jahan N, Sidney J, Pecoraro M, Yang X, Carrera DA, Downey KM, Shrivastav S, et al: Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. J Exp Med. 215:141–157. 2018. View Article : Google Scholar | |
|
Ochs K, Ott M, Bunse T, Sahm F, Bunse L, Deumelandt K, Sonner JK, Keil M, von Deimling A, Wick W, et al: K27M-mutant histone-3 as a novel target for glioma immunotherapy. Oncoimmunology. 6:e13283402017. View Article : Google Scholar : PubMed/NCBI | |
|
Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, Zhang T, Adleff V, Phallen J, Wali N, et al: Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7:264–276. 2017. View Article : Google Scholar : | |
|
Riaz N, Morris L, Havel JJ, Makarov V, Desrichard A and Chan TA: The role of neoantigens in response to immune checkpoint blockade. Int Immunol. 28:411–419. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, et al: Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 515:577–581. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al: An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 547:217–221. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Luther N, Ibrahim GM, Hawkins C, Vibhakar R, Handler MH and Souweidane MM: B7-H3, a potential therapeutic target, is expressed in diffuse intrinsic pontine glioma. J Neurooncol. 111:257–264. 2013. View Article : Google Scholar | |
|
Zang X, Thompson RH, Al-Ahmadie HA, Serio AM, Reuter VE, Eastham JA, Scardino PT, Sharma P and Allison JP: B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc Natl Acad Sci USA. 104:19458–19463. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Lee H, Kim JH, Yang SY, Kong J, Oh M, Jeong DH, Chung JI, Bae KB, Shin JY, Hong KH, et al: Peripheral blood gene expression of B7 and CD28 family members associated with tumor progression and microscopic lymphovascular invasion in colon cancer patients. J Cancer Res Clin Oncol. 136:1445–1452. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yamato I, Sho M, Nomi T, Akahori T, Shimada K, Hotta K, Kanehiro H, Konishi N, Yagita H and Nakajima Y: Clinical importance of B7-H3 expression in human pancreatic cancer. Br J Cancer. 101:1709–1716. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Crispen PL, Sheinin Y, Roth TJ, Lohse CM, Kuntz SM, Frigola X, Thompson RH, Boorjian SA, Dong H, Leibovich BC, et al: Tumor cell and tumor vasculature expression of B7-H3 predict survival in clear cell renal cell carcinoma. Clin Cancer Res. 14:5150–5157. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zang X, Sullivan PS, Soslow RA, Waitz R, Reuter VE, Wilton A, Thaler HT, Arul M, Slovin SF, Wei J, et al: Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Mod Pathol. 23:1104–1112. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Boorjian SA, Sheinin Y, Crispen PL, Farmer SA, Lohse CM, Kuntz SM, Leibovich BC, Kwon ED and Frank I: T-cell coregulatory molecule expression in urothelial cell carcinoma: Clinicopathologic correlations and association with survival. Clin Cancer Res. 14:4800–4808. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Griesinger AM, Birks DK, Donson AM, Amani V, Hoffman LM, Waziri A, Wang M, Handler MH and Foreman NK: Characterization of distinct immunophenotypes across pediatric brain tumor types. J Immunol. 191:4880–4888. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu D, Song L, Brawley VS, Robison N, Wei J, Gao X, Tian G, Margol A, Ahmed N, Asgharzadeh S, et al: Medulloblastoma expresses CD1d and can be targeted for immunotherapy with NKT cells. Clin Immunol. 149:55–64. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmed N, Ratnayake M, Savoldo B, Perlaky L, Dotti G, Wels WS, Bhattacharjee MB, Gilbertson RJ, Shine HD, Weiss HL, et al: Regression of experimental medulloblastoma following transfer of HER2-specific T cells. Cancer Res. 67:5957–5964. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hussain SF, Yang D, Suki D, Aldape K, Grimm E and Heimberger AB: The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol. 8:261–279. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, Durham N, Meyer C, Harris TJ, Albesiano E, et al: Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 86:343–349. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE, Cummings T, Allison JP, Bigner DD and Sampson JH: Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res. 13:2158–2167. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wöhrer A, Dieckmann K, Filipits M, Brandstetter A, Weller M, et al: Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 17:1064–1075. 2015. View Article : Google Scholar : | |
|
Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM and van Hall T: The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 39:44–51. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Warren K, Bent R, Wolters PL, Prager A, Hanson R, Packer R, Shih J and Camphausen K: A phase 2 study of pegylated interferon α-2b (PEG-Intron(®)) in children with diffuse intrinsic pontine glioma. Cancer. 118:3607–3613. 2012. View Article : Google Scholar | |
|
Greil R, Hutterer E, Hartmann TN and Pleyer L: Reactivation of dormant anti-tumor immunity - a clinical perspective of therapeutic immune checkpoint modulation. Cell Commun Signal. 15:52017. View Article : Google Scholar : PubMed/NCBI | |
|
Khanna R: Tumour surveillance: Missing peptides and MHC molecules. Immunol Cell Biol. 76:20–26. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Campoli M and Ferrone S: HLA antigen changes in malignant cells: Epigenetic mechanisms and biologic significance. Oncogene. 27:5869–5885. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HG, Wang J, Yang X, Hsu HC and Mountz JD: Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene. 23:2009–2015. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Ozören N and El-Deiry WS: Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol. 13:135–147. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Chen M, Wu P, Chen C, Xu ZP and Gu W: Increased PD-L1 expression in breast and colon cancer stem cells. Clin Exp Pharmacol Physiol. 44:602–604. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zitvogel L and Kroemer G: Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology. 1:1223–1225. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
He J, Hu Y, Hu M and Li B: Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep. 5:131102015. View Article : Google Scholar : PubMed/NCBI | |
|
Dolan DE and Gupta S: PD-1 pathway inhibitors: Changing the landscape of cancer immunotherapy. Cancer Contr. 21:231–237. 2014. View Article : Google Scholar | |
|
Picarda E, Ohaegbulam KC and Zang X: Molecular pathways: Targeting B7-H3 (CD276) for human cancer immunotherapy. Clin Cancer Res. 22:3425–3431. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang B, Liu F, Liu Z, Zhang T and Hua D: B7-H3 increases thymidylate synthase expression via the PI3k-Akt pathway. Tumour Biol. 37:9465–9472. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Silva TG, Crispim JC, Miranda FA, Hassumi MK, de Mello JM, Simões RT, Souto F, Soares EG, Donadi EA and Soares CP: Expression of the nonclassical HLA-G and HLA-E molecules in laryngeal lesions as biomarkers of tumor invasiveness. Histol Histopathol. 26:1487–1497. 2011.PubMed/NCBI | |
|
Zang X, Loke P, Kim J, Murphy K, Waitz R and Allison JP: B7x: a widely expressed B7 family member that inhibits T cell activation. Proc Natl Acad Sci USA. 100:10388–10392. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Mahoney KM, Rennert PD and Freeman GJ: Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 14:561–584. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hou J, Greten TF and Xia Q: Immunosuppressive cell death in cancer. Nat Rev Immunol. 17:4012017. View Article : Google Scholar : PubMed/NCBI | |
|
Joshi BH, Plautz GE and Puri RK: Interleukin-13 receptor alpha chain: A novel tumor-associated transmembrane protein in primary explants of human malignant gliomas. Cancer Res. 60:1168–1172. 2000.PubMed/NCBI | |
|
Okano F, Storkus WJ, Chambers WH, Pollack IF and Okada H: Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor alpha2 chain. Clin Cancer Res. 8:2851–2855. 2002.PubMed/NCBI | |
|
Tsuda N, Nonaka Y, Shichijo S, Yamada A, Ito M, Maeda Y, Harada M, Kamura T and Itoh K: UDP-Gal: betaGlcNAc beta1, 3-galactosyltransferase, polypeptide 3 (GALT3) is a tumour antigen recognised by HLA-A2-restricted cytotoxic T lymphocytes from patients with brain tumour. Br J Cancer. 87:1006–1012. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Schmitz M, Temme A, Senner V, Ebner R, Schwind S, Stevanovic S, Wehner R, Schackert G, Schackert HK, Fussel M, et al: Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. Br J Cancer. 96:1293–1301. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M, Sawaya R and Aldape K: Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res. 11:1462–1466. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Ueda R, Iizuka Y, Yoshida K, Kawase T, Kawakami Y and Toda M: Identification of a human glioma antigen, SOX6, recognized by patients' sera. Oncogene. 23:1420–1427. 2004. View Article : Google Scholar | |
|
Pallasch CP, Struss AK, Munnia A, König J, Steudel WI, Fischer U and Meese E: Autoantibodies against GLEA2 and PHF3 in glioblastoma: Tumor-associated autoantibodies correlated with prolonged survival. Int J Cancer. 117:456–459. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Arnon TI, Markel G and Mandelboim O: Tumor and viral recognition by natural killer cells receptors. Semin Cancer Biol. 16:348–358. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Wu A, Wiesner S, Xiao J, Ericson K, Chen W, Hall WA, Low WC and Ohlfest JR: Expression of MHC I and NK ligands on human CD133+ glioma cells: Possible targets of immunotherapy. J Neurooncol. 83:121–131. 2007. View Article : Google Scholar | |
|
Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, Steinle A, Weller M and Friese MA: TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain. 129:2416–2425. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Groh V, Bahram S, Bauer S, Herman A, Beauchamp M and Spies T: Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA. 93:12445–12450. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Hatano M, Eguchi J, Tatsumi T, Kuwashima N, Dusak JE, Kinch MS, Pollack IF, Hamilton RL, Storkus WJ and Okada H: EphA2 as a glioma-associated antigen: A novel target for glioma vaccines. Neoplasia. 7:717–722. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang JG, Eguchi J, Kruse CA, Gomez GG, Fakhrai H, Schroter S, Ma W, Hoa N, Minev B, Delgado C, et al: Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clin Cancer Res. 13:566–575. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Jin M, Komohara Y, Shichijo S, Harada M, Yamanaka R, Miyamoto S, Nikawa J, Itoh K and Yamada A: Identification of EphB6 variant-derived epitope peptides recognized by cytotoxic T-lymphocytes from HLA-A24+ malignant glioma patients. Oncol Rep. 19:1277–1283. 2008.PubMed/NCBI | |
|
Liu G, Yu JS, Zeng G, Yin D, Xie D, Black KL and Ying H: AIM-2: A novel tumor antigen is expressed and presented by human glioma cells. J Immunother. 27:220–226. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Imaizumi T, Kuramoto T, Matsunaga K, Shichijo S, Yutani S, Shigemori M, Oizumi K and Itoh K: Expression of the tumor-rejection antigen SART1 in brain tumors. Int J Cancer. 83:760–764. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Murayama K, Kobayashi T, Imaizumi T, Matsunaga K, Kuramoto T, Shigemori M, Shichijo S and Itoh K: Expression of the SART3 tumor-rejection antigen in brain tumors and induction of cytotoxic T lymphocytes by its peptides. J Immunother. 23:511–518. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Liu G, Ying H, Zeng G, Wheeler CJ, Black KL and Yu JS: HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res. 64:4980–4986. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Saikali S, Avril T, Collet B, Hamlat A, Bansard JY, Drenou B, Guegan Y and Quillien V: Expression of nine tumour antigens in a series of human glioblastoma multiforme: Interest of EGFRvIII, IL-13Ralpha2, gp100 and TRP-2 for immunotherapy. J Neurooncol. 81:139–148. 2007. View Article : Google Scholar | |
|
Liu G, Khong HT, Wheeler CJ, Yu JS, Black KL and Ying H: Molecular and functional analysis of tyrosinase-related protein (TRP)-2 as a cytotoxic T lymphocyte target in patients with malignant glioma. J Immunother. 26:301–312. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Chi DD, Merchant RE, Rand R, Conrad AJ, Garrison D, Turner R, Morton DL and Hoon DS: Molecular detection of tumor-associated antigens shared by human cutaneous melanomas and gliomas. Am J Pathol. 150:2143–2152. 1997.PubMed/NCBI | |
|
Facoetti A, Nano R, Zelini P, Morbini P, Benericetti E, Ceroni M, Campoli M and Ferrone S: Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res. 11:8304–8311. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, Gilbert MR, Herndon JE II, McLendon RE, Mitchell DA, et al: Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 28:4722–4729. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zagzag D, Salnikow K, Chiriboga L, Yee H, Lan L, Ali MA, Garcia R, Demaria S and Newcomb EW: Downregulation of major histocompatibility complex antigens in invading glioma cells: Stealth invasion of the brain. Lab Invest. 85:328–341. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Mehling M, Simon P, Mittelbronn M, Meyermann R, Ferrone S, Weller M and Wiendl H: WHO grade associated downregulation of MHC class I antigen-processing machinery components in human astrocytomas: Does it reflect a potential immune escape mechanism. Acta Neuropathol. 114:111–119. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier LL and Parsa AT: TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro Oncol. 12:7–13. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Groh V, Wu J, Yee C and Spies T: Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 419:734–738. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Bodmer S, Strommer K, Frei K, Siepl C, de Tribolet N, Heid I and Fontana A: Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol. 143:3222–3229. 1989.PubMed/NCBI | |
|
Wrann M, Bodmer S, de Martin R, Siepl C, Hofer-Warbinek R, Frei K, Hofer E and Fontana A: T cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-beta. EMBO J. 6:1633–1636. 1987.PubMed/NCBI | |
|
Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Priebe W, et al: Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther. 9:67–78. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
de Martin R, Haendler B, Hofer-Warbinek R, Gaugitsch H, Wrann M, Schlüsener H, Seifert JM, Bodmer S, Fontana A and Hofer E: Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-beta gene family. EMBO J. 6:3673–3677. 1987.PubMed/NCBI | |
|
Gide TN, Wilmott JS, Scolyer RA and Long GV: Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma. Clin Cancer Res. Nov 10–2017.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
|
Miao D, De Velasco G, Adeegbe D, Norton C, Martini D, Mullane S, Moreira R, Signoretti S, Wong KK, Choueiri T and Van Allen E: Genomic and neoantigen evolution and resistance to immune checkpoint blockade in metastatic renal cell carcinoma. Cancer Immunol Res. 5:32017. View Article : Google Scholar | |
|
Gao X, Zhu Y, Li G, Huang H, Zhang G, Wang F, Sun J, Yang Q, Zhang X and Lu B: TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One. 7:e306762012. View Article : Google Scholar : PubMed/NCBI | |
|
Yang ZZ, Grote DM, Ziesmer SC, Niki T, Hirashima M, Novak AJ, Witzig TE and Ansell SM: IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Invest. 122:1271–1282. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Andrews LP, Marciscano AE, Drake CG and Vignali DA: LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 276:80–96. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Śledzińska A, Menger L, Bergerhoff K, Peggs KS and Quezada SA: Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol. 9:1936–1965. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant P, et al: Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA. 107:7875–7880. 2010. View Article : Google Scholar | |
|
Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, et al: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72:917–927. 2012. View Article : Google Scholar | |
|
Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, et al: The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 10:48–57. 2009. View Article : Google Scholar | |
|
Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, Manning S, Greenfield EA, Coyle AJ, Sobel RA, et al: Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 415:536–541. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK and Anderson AC: Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 207:2187–2194. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O'Connell S, Ceeraz S, Suriawinata AA, Yan S, Ernstoff MS, et al: VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 74:1924–1932. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Beard RE, Abate-Daga D, Rosati SF, Zheng Z, Wunderlich JR, Rosenberg SA and Morgan RA: Gene expression profiling using nanostring digital RNA counting to identify potential target antigens for melanoma immunotherapy. Clin Cancer Res. 19:4941–4950. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ryall S, Arnoldo A, Krishnatry R, Mistry M, Khor K, Sheth J, Ling C, Leung S, Zapotocky M, Guerreiro Stucklin A, et al: Multiplex detection of pediatric low-grade glioma signature fusion transcripts and duplications using the NanoString nCounter system. J Neuropathol Exp Neurol. 76:562–570. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Judkins J, Thomas C, Wu M, Khoury L, Benjamin CG, Pacione D, Golfinos JG, Kumthekar P, Ghamsari F, et al: Mutant IDH1 and seizures in patients with glioma. Neurology. 88:1805–1813. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bassoy EY, Kasahara A, Chiusolo V, Jacquemin G, Boydell E, Zamorano S, Riccadonna C, Pellegatta S, Hulo N, Dutoit V, et al: ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells. EMBO J. 36:1493–1512. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wells E, Kambhampati M, Damsker JM, Gordish-Dressman H, Yadavilli S, Becher OJ, Gittens J, Stampar M, Packer RJ, Nazarian J, et al: Vamorolone, a dissociative steroidal compound, reduces pro-inflammatory cytokine expression in glioma cells and increases activity and survival in a murine model of cortical tumor. Oncotarget. 8:9366–9374. 2017. View Article : Google Scholar : | |
|
Rusiecki D, Lach B, Manoranjan B, Fleming A, Ajani O and Singh SK: Progression of atypical extraventricular neurocytoma to anaplastic ganglioglioma. Hum Pathol. 59:125–130. 2017. View Article : Google Scholar | |
|
Ryall S, Krishnatry R, Arnoldo A, Buczkowicz P, Mistry M, Siddaway R, Ling C, Pajovic S, Yu M, Rubin JB, et al: Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun. 4:932016. View Article : Google Scholar : PubMed/NCBI | |
|
Lassaletta A, Scheinemann K, Zelcer SM, Hukin J, Wilson BA, Jabado N, Carret AS, Lafay-Cousin L, Larouche V, Hawkins CE, et al: Phase II weekly vinblastine for chemotherapy-naïve children with progressive low-grade glioma: A Canadian Pediatric Brain Tumor Consortium Study. J Clin Oncol. 34:3537–3543. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Antonios JP, Soto H, Everson RG, Orpilla J, Moughon D, Shin N, Sedighim S, Yong WH, Li G, Cloughesy TF, et al: PD-1 blockade enhances the vaccination-induced immune response in glioma. JCI Insight. 1:e870592016. View Article : Google Scholar : PubMed/NCBI | |
|
Nazarian J, Mason GE, Ho CY, Panditharatna E, Kambhampati M, Vezina LG, Packer RJ and Hwang EI: Histological and molecular analysis of a progressive diffuse intrinsic pontine glioma and synchronous metastatic lesions: A case report. Oncotarget. 7:42837–42842. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT, Holland EC, Sutton JC and Joyce JA: The tumor micro-environment underlies acquired resistance to CSF-1R inhibition in gliomas. Science. 352:aad30182016. View Article : Google Scholar | |
|
Flynn A, Dwight T, Harris J, Benn D, Zhou L, Hogg A, Catchpoole D, James P, Duncan EL, Trainer A, et al: Pheotype: A diagnostic gene-expression assay for the classification of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 101:1034–1043. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nevo I, Woolard K, Cam M, Li A, Webster JD, Kotliarov Y, Kim HS, Ahn S, Walling J, Kotliarova S, et al: Identification of molecular pathways facilitating glioma cell invasion in situ. PLoS One. 9:e1117832014. View Article : Google Scholar : PubMed/NCBI | |
|
Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, et al: CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 19:1264–1272. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Peruzzi P, Bronisz A, Nowicki MO, Wang Y, Ogawa D, Price R, Nakano I, Kwon CH, Hayes J, Lawler SE, et al: MicroRNA-128 coordinately targets Polycomb Repressor Complexes in glioma stem cells. Neuro Oncol. 15:1212–1224. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kannan K, Inagaki A, Silber J, Gorovets D, Zhang J, Kastenhuber ER, Heguy A, Petrini JH, Chan TA and Huse JT: Whole exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget. 3:1194–1203. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Sharpe AH and Freeman GJ: The B7-CD28 superfamily. Nat Rev Immunol. 2:116–126. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR, Greenfield EA and Freeman GJ: Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 170:1257–1266. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Francisco LM, Sage PT and Sharpe AH: The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 236:219–242. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Nassar AF, Ogura H and Wisnewski AV: Impact of recent innovations in the use of mass cytometry in support of drug development. Drug Discov Today. 20:1169–1175. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bendall SC, Simonds EF, Qiu P, Amir AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, et al: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 332:687–696. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, Gherardini PF, Prestwood TR, Chabon J, Bendall SC, et al: Systemic immunity is required for effective cancer immunotherapy. Cell. 168:487–502.e15. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NA, Andrews MC, Sharma P, Wang J, Wargo JA, Pe'er D, et al: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 170:1120–1133.e17. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Omuro A, Chan TA, Abrey LE, Khasraw M, Reiner AS, Kaley TJ, Deangelis LM, Lassman AB, Nolan CP, Gavrilovic IT, et al: Phase II trial of continuous low-dose temozolomide for patients with recurrent malignant glioma. Neuro Oncol. 15:242–250. 2013. View Article : Google Scholar : | |
|
Johung TB and Monje M: Diffuse Intrinsic Pontine Glioma: New pathophysiological insights and emerging therapeutics targets. Curr Neuropharmacol. 15:88–97. 2017. View Article : Google Scholar : | |
|
Bast RC Jr, Croce CM, Hait WN, Hong WK, Kufe DW, Piccart-Gebhart M, Pollock RE, Weichselbaum RR, Wang H and Holland JF: Holland Frei Cancer Medicine. 9th. Wiley Blackwell; pp. 20082017 | |
|
Fan X, Quezada SA, Sepulveda MA, Sharma P and Allison JP: Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med. 211:715–725. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liakou CI, Kamat A, Tang DN, Chen H, Sun J, Troncoso P, Logothetis C and Sharma P: CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci USA. 105:14987–14992. 2008. View Article : Google Scholar | |
|
Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, Chen T, Roszik J, Bernatchez C, Woodman SE, et al: Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 167:397–404.e9. 2016. View Article : Google Scholar | |
|
O'Donnell JS, Smyth MJ and Teng MW: Acquired resistance to anti-PD1 therapy: Checkmate to checkpoint blockade? Genome Med. 8:111–116. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, et al: Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 375:819–829. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Morris VK, Salem ME, Nimeiri H, Iqbal S, Singh P, Ciombor K, Polite B, Deming D, Chan E, Wade JL, et al: Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): A multicentre, single-arm, phase 2 study. Lancet Oncol. 18:446–453. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, et al: Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015. View Article : Google Scholar | |
|
Meng X, Huang Z, Teng F, Xing L and Yu J: Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev. 41:868–876. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM, Zhao H, Chen J, Chen H, Efstathiou E, et al: VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 23:551–555. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, et al: Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 7:105012016. View Article : Google Scholar : PubMed/NCBI |