FLVCR1 promotes the proliferation and tumorigenicity of synovial sarcoma through inhibiting apoptosis and autophagy

  • Authors:
    • Changliang Peng
    • Yan Song
    • Wei Chen
    • Xiaoying Wang
    • Xiaoli Liu
    • Fang Wang
    • Dongjin Wu
    • Shengzhong Ma
    • Xiuwen Wang
    • Chunzheng Gao
  • View Affiliations

  • Published online on: March 8, 2018     https://doi.org/10.3892/ijo.2018.4312
  • Pages: 1559-1568
Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Feline leukemia virus subgroup C receptor 1 (FLVCR1) has been reported to have a crucial role in variety of biological processes, including cell proliferation, cell death, apoptosis, oxidative stress response, cellular differentiation and metabolism. However, little is known about its role in synovial sarcoma (SS). In the current study, FLVCR1 expression was analyzed in two SS cell lines (SW982 and HS-SY-II), and in eight SS tissues and paired adjacent non-tumor tissues using reverse transcription-quantitative polymerase chain reaction, western blot analysis and immunohistochemistry. Lentivirus-mediated short hairpin RNAs were used to knock down FLVCR1 expression in SW982 and HS-SY-II cells. The effects of FLVCR1 knockdown on the cell proliferation, clonogenicity, cell cycle and apoptosis in SS cells were evaluated by MTT, colony formation assay, flow cytometry analysis, western blotting and in vivo tumorigenesis in nude mice. In the current study, gene expression of FLVCR1 was upregulated in SS cell lines (SW982 and HS-SY-II) and SS tissues from patients. The protein levels of FLVCR1 in SS tissues were also significantly higher than in adjacent non-tumor tissues. Furthermore, suppressing the expression of FLVCR1 in SS cells using short hairpin RNA effectively attenuated cell proliferation, colony formation and impaired the cell cycle, and also significantly induced apoptosis and autophagy. In accordance with this, an in vivo tumorigenicity assay in mice demonstrated that suppression of FLVCR1 expression inhibited the growth of SS tumors implanted subcutaneously. Collectively, these results demonstrated that FLVCR1 may act as an oncoprotein, and have key roles in promoting proliferation and tumorigenicity of SS, and this may shed new light on finding novel therapeutic strategies against SS.

References

1 

Haldar M, Hancock JD, Coffin CM, Lessnick SL and Capecchi MR: A conditional mouse model of synovial sarcoma: Insights into a myogenic origin. Cancer Cell. 11:375–388. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Trautmann M, Sievers E, Aretz S, Kindler D, Michels S, Friedrichs N, Renner M, Kirfel J, Steiner S, Huss S, et al: SS18-SSX fusion protein-induced Wnt/β-catenin signaling is a therapeutic target in synovial sarcoma. Oncogene. 33:5006–5016. 2014. View Article : Google Scholar

3 

Herzog CE: Overview of sarcomas in the adolescent and young adult population. J Pediatr Hematol Oncol. 27:215–218. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Lewis JJ, Antonescu CR, Leung DH, Blumberg D, Healey JH, Woodruff JM and Brennan MF: Synovial sarcoma: A multivariate analysis of prognostic factors in 112 patients with primary localized tumors of the extremity. J Clin Oncol. 18:2087–2094. 2000. View Article : Google Scholar : PubMed/NCBI

5 

Ladanyi M, Antonescu CR, Leung DH, Woodruff JM, Kawai A, Healey JH, Brennan MF, Bridge JA, Neff JR, Barr FG, et al: Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: A multi-institutional retrospective study of 243 patients. Cancer Res. 62:135–140. 2002.PubMed/NCBI

6 

Palmerini E, Staals EL, Alberghini M, Zanella L, Ferrari C, Benassi MS, Picci P, Mercuri M, Bacci G and Ferrari S: Synovial sarcoma: Retrospective analysis of 250 patients treated at a single institution. Cancer. 115:2988–2998. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Peng C, Zhao H, Chen W, Song Y, Wang X, Li J, Qiao Y, Wu D, Ma S, Wang X, et al: Identification of SHCBP1 as a novel downstream target gene of SS18-SSX1 and its functional analysis in progression of synovial sarcoma. Oncotarget. 7:66822–66834. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Qi Y, Wang N, He Y, Zhang J, Zou H, Zhang W, Gu W, Huang Y, Lian X, Hu J, et al: Transforming growth factor-β1 signaling promotes epithelial-mesenchymal transition-like phenomena, cell motility, and cell invasion in synovial sarcoma cells. PLoS One. 12:e01826802017. View Article : Google Scholar

9 

Przybyl J, Jurkowska M, Rutkowski P, Debiec-Rychter M and Siedlecki JA: Downstream and intermediate interactions of synovial sarcoma-associated fusion oncoproteins and their implication for targeted therapy. Sarcoma. 2012:2492192012. View Article : Google Scholar : PubMed/NCBI

10 

Chiabrando D, Marro S, Mercurio S, Giorgi C, Petrillo S, Vinchi F, Fiorito V, Fagoonee S, Camporeale A, Turco E, et al: The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. J Clin Invest. 122:4569–4579. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Keel SB, Doty RT, Yang Z, Quigley JG, Chen J, Knoblaugh S, Kingsley PD, De Domenico I, Vaughn MB, Kaplan J, et al: A heme export protein is required for red blood cell differentiation and iron homeostasis. Science. 319:825–828. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Quigley JG, Yang Z, Worthington MT, Phillips JD, Sabo KM, Sabath DE, Berg CL, Sassa S, Wood BL and Abkowitz JL: Identification of a human heme exporter that is essential for erythropoiesis. Cell. 118:757–766. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Fiorito V, Neri F, Pala V, Silengo L, Oliviero S, Altruda F and Tolosano E: Hypoxia controls Flvcr1 gene expression in Caco2 cells through HIF2α and ETS1. Biochim Biophys Acta. 1839:259–264. 2014. View Article : Google Scholar

14 

Mercurio S, Petrillo S, Chiabrando D, Bassi ZI, Gays D, Camporeale A, Vacaru A, Miniscalco B, Valperga G, Silengo L, et al: The heme exporter Flvcr1 regulates expansion and differentiation of committed erythroid progenitors by controlling intracellular heme accumulation. Haematologica. 100:720–729. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Chiabrando D, Castori M, di Rocco M, Ungelenk M, Giesselmann S, Di Capua M, Madeo A, Grammatico P, Bartsch S, Hübner CA, et al: Mutations in the heme exporter FLVCR1 cause sensory neurodegeneration with loss of pain perception. PLoS Genet. 12:e10064612016. View Article : Google Scholar : PubMed/NCBI

16 

Rajadhyaksha AM, Elemento O, Puffenberger EG, Schierberl KC, Xiang JZ, Putorti ML, Berciano J, Poulin C, Brais B, Michaelides M, et al: Mutations in FLVCR1 cause posterior column ataxia and retinitis pigmentosa. Am J Hum Genet. 87:643–654. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Vinchi F, Ingoglia G, Chiabrando D, Mercurio S, Turco E, Silengo L, Altruda F and Tolosano E: Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450. Gastroenterology. 146:1325–1338. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Fiorito V, Forni M, Silengo L, Altruda F and Tolosano E: Crucial role of FLVCR1a in the maintenance of intestinal heme homeostasis. Antioxid Redox Signal. 23:1410–1423. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Mercurio S, Aspesi A, Silengo L, Altruda F, Dianzani I and Chiabrando D: Alteration of heme metabolism in a cellular model of Diamond-Blackfan anemia. Eur J Haematol. 96:367–374. 2016. View Article : Google Scholar

20 

Zeng Z, Lin H, Zhao X, Liu G, Wang X, Xu R, Chen K, Li J and Song L: Overexpression of GOLPH3 promotes proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. Clin Cancer Res. 18:4059–4069. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Jiao G, Guo W, Ren T, Lu Q, Sun Y, Liang W, Ren C, Yang K and Sun K: BMPR2 inhibition induced apoptosis and autophagy via destabilization of XIAP in human chondrosarcoma cells. Cell Death Dis. 5:e15712014. View Article : Google Scholar : PubMed/NCBI

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

23 

Peng C, Zhao H, Song Y, Chen W, Wang X, Liu X, Zhang C, Zhao J, Li J, Cheng G, et al: SHCBP1 promotes synovial sarcoma cell metastasis via targeting TGF-β1/Smad signaling pathway and is associated with poor prognosis. J Exp Clin Cancer Res. 36:1412017. View Article : Google Scholar

24 

Han RL, Wang FP, Zhang PA, Zhou XY and Li Y: miR-383 inhibits ovarian cancer cell proliferation, invasion and aerobic glycolysis by targeting LDHA. Neoplasma. 64:244–252. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Peng C, Guo W, Yang Y and Zhao H: Downregulation of SS18-SSX1 expression by small interfering RNA inhibits growth and induces apoptosis in human synovial sarcoma cell line HS-SY-II in vitro. Eur J Cancer Prev. 17:392–398. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Wang S, Liu H, Ren L, Pan Y and Zhang Y: Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference. Neoplasia. 10:399–407. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Brown KD and Robertson KD: DNMT1 knockout delivers a strong blow to genome stability and cell viability. Nat Genet. 39:289–290. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB and Tsujimoto Y: Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol. 6:1221–1228. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Sun Y, Guo W, Ren T, Liang W, Zhou W, Lu Q, Jiao G and Yan T: Gli1 inhibition suppressed cell growth and cell cycle progression and induced apoptosis as well as autophagy depending on ERK1/2 activity in human chondrosarcoma cells. Cell Death Dis. 5:e9792014. View Article : Google Scholar : PubMed/NCBI

30 

Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, et al: Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 26:9220–9231. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Maiuri MC, Zalckvar E, Kimchi A and Kroemer G: Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Vangamudi B, Paul TA, Shah PK, Kost-Alimova M, Nottebaum L, Shi X, Zhan Y, Leo E, Mahadeshwar HS, Protopopov A, et al: The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF-mutant cancers: Insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res. 75:3865–3878. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Fang Y, Tan J and Zhang Q: Signaling pathways and mechanisms of hypoxia-induced autophagy in the animal cells. Cell Biol Int. 39:891–898. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Petrillo S, Chiabrando D, Genova T, Fiorito V, Ingoglia G, Vinchi F, Mussano F, Carossa S, Silengo L, Altruda F, et al: Heme accumulation in endothelial cells impairs angiogenesis by triggering paraptosis. Cell Death Differ. Dec 11–2017.Epub ahead of print. PubMed/NCBI

35 

Wang L, Jin Z, Wang J, Chen S, Dai L, Lin D, Wu L and Gao W: Detrimental effect of hypoxia-inducible factor-1α-induced autophagy on multiterritory perforator flap survival in rats. Sci Rep. 7:117912017. View Article : Google Scholar

36 

Michels S, Trautmann M, Sievers E, Kindler D, Huss S, Renner M, Friedrichs N, Kirfel J, Steiner S, Endl E, et al: SRC signaling is crucial in the growth of synovial sarcoma cells. Cancer Res. 73:2518–2528. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May 2018
Volume 52 Issue 5

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Peng, C., Song, Y., Chen, W., Wang, X., Liu, X., Wang, F. ... Gao, C. (2018). FLVCR1 promotes the proliferation and tumorigenicity of synovial sarcoma through inhibiting apoptosis and autophagy. International Journal of Oncology, 52, 1559-1568. https://doi.org/10.3892/ijo.2018.4312
MLA
Peng, C., Song, Y., Chen, W., Wang, X., Liu, X., Wang, F., Wu, D., Ma, S., Wang, X., Gao, C."FLVCR1 promotes the proliferation and tumorigenicity of synovial sarcoma through inhibiting apoptosis and autophagy". International Journal of Oncology 52.5 (2018): 1559-1568.
Chicago
Peng, C., Song, Y., Chen, W., Wang, X., Liu, X., Wang, F., Wu, D., Ma, S., Wang, X., Gao, C."FLVCR1 promotes the proliferation and tumorigenicity of synovial sarcoma through inhibiting apoptosis and autophagy". International Journal of Oncology 52, no. 5 (2018): 1559-1568. https://doi.org/10.3892/ijo.2018.4312