Mechanisms underlying the effects of stress on tumorigenesis and metastasis (Review)
- Authors:
- Zhaozhou Zhang
- Yan Wang
- Qi Li
-
Affiliations: Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China - Published online on: September 24, 2018 https://doi.org/10.3892/ijo.2018.4570
- Pages: 2332-2342
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Dhabhar FS and McEwen BS: Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: A potential role for leukocyte trafficking. Brain Behav Immun. 11:286–306. 1997. View Article : Google Scholar | |
Amin SN, El-Aidi AA, Ali MM, Attia YM and Rashed LA: Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: Implications for memory and behavior. Neuromolecular Med. 17:121–136. 2015. View Article : Google Scholar : PubMed/NCBI | |
Charmandari E, Tsigos C and Chrousos G: Endocrinology of the stress response. Annu Rev Physiol. 67:259–284. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gunnar M and Quevedo K: The neurobiology of stress and development. Annu Rev Psychol. 58:145–173. 2007. View Article : Google Scholar | |
Krizanova O, Babula P and Pacak K: Stress, catecholaminergic system and cancer. Stress. 19:419–428. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hering D, Lachowska K and Schlaich M: Role of the sympathetic nervous system in stress-mediated cardiovascular disease. Curr Hypertens Rep. 17:802015. View Article : Google Scholar : PubMed/NCBI | |
Dhabhar FS, McEwen BS and Spencer RL: Stress response, adrenal steroid receptor levels and corticosteroid-binding globulin levels - a comparison between Sprague-Dawley, Fischer 344 and Lewis rats. Brain Res. 616:89–98. 1993. View Article : Google Scholar : PubMed/NCBI | |
Dhabhar FS, McEwen BS and Spencer RL: Adaptation to prolonged or repeated stress - comparison between rat strains showing intrinsic differences in reactivity to acute stress. Neuroendocrinology. 65:360–368. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ambarish V, Chandrashekara S and Suresh KP: Moderate regular exercises reduce inflammatory response for physical stress. Indian J Physiol Pharmacol. 56:7–14. 2012.PubMed/NCBI | |
Clague J and Bernstein L: Physical activity and cancer. Curr Oncol Rep. 14:550–558. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dhabhar FS: Effects of stress on immune function: The good, the bad, and the beautiful. Immunol Res. 58:193–210. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lagraauw HM, Kuiper J and Bot I: Acute and chronic psychological stress as risk factors for cardiovascular disease: Insights gained from epidemiological, clinical and experimental studies. Brain Behav Immun. 50:18–30. 2015. View Article : Google Scholar : PubMed/NCBI | |
Muffly LS, Hlubocky FJ, Khan N, Wroblewski K, Breitenbach K, Gomez J, McNeer JL, Stock W and Daugherty CK: Psychological morbidities in adolescent and young adult blood cancer patients during curative-intent therapy and early survivorship. Cancer. 122:954–961. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cohen L, Cole SW, Sood AK, Prinsloo S, Kirschbaum C, Arevalo JM, Jennings NB, Scott S, Vence L, Wei Q, et al: Depressive symptoms and cortisol rhythmicity predict survival in patients with renal cell carcinoma: Role of inflammatory signaling. PLoS One. 7:e423242012. View Article : Google Scholar : PubMed/NCBI | |
Shan T, Ma J, Ma Q, Guo K, Guo J, Li X, Li W, Liu J, Huang C, Wang F, et al: β2-AR-HIF-1α: A novel regulatory axis for stress-induced pancreatic tumor growth and angiogenesis. Curr Mol Med. 13:1023–1034. 2013. View Article : Google Scholar : PubMed/NCBI | |
Iwata M, Ota KT, Li XY, Sakaue F, Li N, Dutheil S, Banasr M, Duric V, Yamanashi T, Kaneko K, et al: Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry. 80:12–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Agarwal SK and Marshall GD Jr: Stress effects on immunity and its application to clinical immunology. Clin Exp Allergy. 31:25–31. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yin X, Guven N and Dietis N: Stress-based animal models of depression: Do we actually know what we are doing? Brain Res. 1652:30–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heinrichs SC and Koob GF: Application of experimental stressors in laboratory rodents. Curr Protoc Neurosci. Chapter 8: Unit8.4. 2006. View Article : Google Scholar | |
Zorzet S, Perissin L, Rapozzi V and Giraldi T: Restraint stress reduces the antitumor efficacy of cyclophosphamide in tumor-bearing mice. Brain Behav Immun. 12:23–33. 1998. View Article : Google Scholar : PubMed/NCBI | |
Nukina H, Sudo N, Aiba Y, Oyama N, Koga Y and Kubo C: Restraint stress elevates the plasma interleukin-6 levels in germ-free mice. J Neuroimmunol. 115:46–52. 2001. View Article : Google Scholar : PubMed/NCBI | |
Willner P: The validity of animal models of predisposition to depression. Behav Pharmacol. 13:169–188. 2002. View Article : Google Scholar : PubMed/NCBI | |
Glaser R and Kiecolt-Glaser JK: Stress-induced immune dysfunction: Implications for health. Nat Rev Immunol. 5:243–251. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dhabhar FS, Saul AN, Daugherty C, Holmes TH, Bouley DM and Oberyszyn TM: Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma. Brain Behav Immun. 24:127–137. 2010. View Article : Google Scholar | |
Eng JW, Kokolus KM, Reed CB, Hylander BL, Ma WW and Repasky EA: A nervous tumor microenvironment: The impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response. Cancer Immunol Immunother. 63:1115–1128. 2014. View Article : Google Scholar : PubMed/NCBI | |
Frick LR, Rapanelli M, Bussmann UA, Klecha AJ, Arcos ML, Genaro AM and Cremaschi GA: Involvement of thyroid hormones in the alterations of T-cell immunity and tumor progression induced by chronic stress. Biol Psychiatry. 65:935–942. 2009. View Article : Google Scholar : PubMed/NCBI | |
Volpi S, Rabadan-Diehl C and Aguilera G: Vasopressinergic regulation of the hypothalamic pituitary adrenal axis and stress adaptation. Stress. 7:75–83. 2004. View Article : Google Scholar : PubMed/NCBI | |
Meltzer HY, Lowy MT and Koenig JI: The hypothalamic-pituitary-adrenal axis in depression. Adv Biochem Psychopharmacol. 43:165–182. 1987.PubMed/NCBI | |
Chrousos GP: Ultradian, circadian, and stress-related hypothalamic-pituitary-adrenal axis activity - a dynamic digital-to-analog modulation. Endocrinology. 139:437–440. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sephton S and Spiegel D: Circadian disruption in cancer: A neuroendocrine-immune pathway from stress to disease? Brain Behav Immun. 17:321–328. 2003. View Article : Google Scholar : PubMed/NCBI | |
McEwen BS: Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol Rev. 87:873–904. 2007. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Smith M, Lutgendorf SK and Sood AK: Impact of stress on cancer metastasis. Future Oncol. 6:1863–1881. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gündisch S, Boeckeler E, Behrends U, Amtmann E, Ehrhardt H and Jeremias I: Glucocorticoids augment survival and proliferation of tumor cells. Anticancer Res. 32:4251–4261. 2012.PubMed/NCBI | |
Wang HM, Liao ZX, Komaki R, Welsh JW, O’Reilly MS, Chang JY, Zhuang Y, Levy LB, Lu C and Gomez DR: Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann Oncol. 24:1312–1319. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wulsin AC, Wick-Carlson D, Packard BA, Morano R and Herman JP: Adolescent chronic stress causes hypothalamo-pituitary-adrenocortical hypo-responsiveness and depression-like behavior in adult female rats. Psychoneuroendocrinology. 65:109–117. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bortolato B, Hyphantis TN, Valpione S, Perini G, Maes M, Morris G, Kubera M, Köhler CA, Fernandes BS, Stubbs B, et al: Depression in cancer: The many biobehavioral pathways driving tumor progression. Cancer Treat Rev. 52:58–70. 2017. View Article : Google Scholar | |
Zhao L, Xu J, Liang F, Li A, Zhang Y and Sun J: Effect of chronic psychological stress on liver metastasis of colon cancer in mice. PLoS One. 10:e01399782015. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Li C, He Y, Griffin R, Ye Q and Li L: Chronic stress promotes oral cancer growth and angiogenesis with increased circulating catecholamine and glucocorticoid levels in a mouse model. Oral Oncol. 51:991–997. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Deng GH, Zhang J, Wang Y, Xia XY, Luo XM, Deng YT, He SS, Mao YY, Peng XC, et al: The effect of chronic stress on anti-angiogenesis of sunitinib in colorectal cancer models. Psychoneuroendocrinology. 52:130–142. 2015. View Article : Google Scholar | |
Elefteriou F: Chronic stress, sympathetic activation and skeletal metastasis of breast cancer cells. Bonekey Rep. 4:6932015. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Smith M, Lu C, Shahzad MM, Pena GN, Allen JK, Stone RL, Mangala LS, Han HD, Kim HS, Farley D, et al: Dopamine blocks stress-mediated ovarian carcinoma growth. Clin Cancer Res. 17:3649–3659. 2011. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Smith M, Lee SJ, Lu C, Nagaraja AS, He G, Rupaimoole R, Han HD, Jennings NB, Roh JW, Nishimura M, et al: Biologic effects of dopamine on tumor vasculature in ovarian carcinoma. Neoplasia. 15:502–510. 2013. View Article : Google Scholar : PubMed/NCBI | |
Borcherding DC, Tong W, Hugo ER, Barnard DF, Fox S, LaSance K, Shaughnessy E and Ben-Jonathan N: Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer. Oncogene. 35:3103–3113. 2016. View Article : Google Scholar | |
Peters MA, Walenkamp AM, Kema IP, Meijer C, de Vries EG and Oosting SF: Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist Updat. 17:96–104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Barbieri A, Palma G, Rosati A, Giudice A, Falco A, Petrillo A, Petrillo M, Bimonte S, Di Benedetto M, Esposito G, et al: Role of endothelial nitric oxide synthase (eNOS) in chronic stress-promoted tumour growth. J Cell Mol Med. 16:920–926. 2012. View Article : Google Scholar | |
Partecke LI, Speerforck S, Käding A, Seubert F, Kühn S, Lorenz E, Schwandke S, Sendler M, Kessler W, Trung DN, et al: Chronic stress increases experimental pancreatic cancer growth, reduces survival and can be antagonised by beta-adrenergic receptor blockade. Pancreatology. 16:423–433. 2016. View Article : Google Scholar : PubMed/NCBI | |
Feng Z, Liu L, Zhang C, Zheng T, Wang J, Lin M, Zhao Y, Wang X, Levine AJ and Hu W: Chronic restraint stress attenuates p53 function and promotes tumorigenesis. Proc Natl Acad Sci USA. 109:7013–7018. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Gao G, Zhang Y and Wang F: Proteomic analysis of human epithelial ovarian cancer xenografts in immunodeficient mice exposed to chronic psychological stress. Sci China Life Sci. 54:112–120. 2011. View Article : Google Scholar : PubMed/NCBI | |
Turnbull AV and Rivier CL: Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: Actions and mechanisms of action. Physiol Rev. 79:1–71. 1999. View Article : Google Scholar : PubMed/NCBI | |
Schwab CL, Fan R, Zheng Q, Myers LP, Hebert P and Pruett SB: Modeling and predicting stress-induced immunosuppression in mice using blood parameters. Toxicol Sci. 83:101–113. 2005. View Article : Google Scholar | |
Dhabhar FS, Malarkey WB, Neri E and McEwen BS: Stress-induced redistribution of immune cells - from barracks to boulevards to battlefields: A tale of three hormones - Curt Richter Award winner. Psychoneuroendocrinology. 37:1345–1368. 2012. View Article : Google Scholar : PubMed/NCBI | |
Barbieri A, Bimonte S, Palma G, Luciano A, Rea D, Giudice A, Scognamiglio G, La Mantia E, Franco R, Perdonà S, et al: The stress hormone norepinephrine increases migration of prostate cancer cells in vitro and in vivo. Int J Oncol. 47:527–534. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nilsson MB, Sun H, Diao L, Tong P, Liu D, Li L, Fan Y, Poteete A, Lim SO, Howells K, et al: Stress hormones promote EGFR inhibitor resistance in NSCLC: Implications for combinations with β-blockers. Sci Transl Med. 9:92017. View Article : Google Scholar | |
Kim-Fuchs C, Le CP, Pimentel MA, Shackleford D, Ferrari D, Angst E, Hollande F and Sloan EK: Chronic stress accelerates pancreatic cancer growth and invasion: A critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav Immun. 40:40–47. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nagaraja AS, Sadaoui NC, Dorniak PL, Lutgendorf SK and Sood AK: SnapShot: Stress and Disease. Cell Metab. 23:388–388.e1. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dhabhar FS: Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation. 16:300–317. 2009. View Article : Google Scholar : PubMed/NCBI | |
Glaser R, MacCallum RC, Laskowski BF, Malarkey WB, Sheridan JF and Kiecolt-Glaser JK: Evidence for a shift in the Th-1 to Th-2 cytokine response associated with chronic stress and aging. J Gerontol A Biol Sci Med Sci. 56:M477–M482. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ochoa CE, Mirabolfathinejad SG, Ruiz VA, Evans SE, Gagea M, Evans CM, Dickey BF and Moghaddam SJ: Interleukin 6, but not T helper 2 cytokines, promotes lung carcinogenesis. Cancer Prev Res (Phila). 4:51–64. 2011. View Article : Google Scholar | |
Divyashree S, Sarjan HN and Yajurvedi HN: Effects of long-term chronic stress on the lymphoid organs and blood l. Can J Zool. 94:137–143. 2015. View Article : Google Scholar | |
Frick LR, Arcos ML, Rapanelli M, Zappia MP, Brocco M, Mongini C, Genaro AM and Cremaschi GA: Chronic restraint stress impairs T-cell immunity and promotes tumor progression in mice. Stress. 12:134–143. 2009. View Article : Google Scholar | |
Li H, Zhao J, Chen M, Tan Y, Yang X, Caudle Y and Yin D: Toll-like receptor 9 is required for chronic stress-induced immune suppression. Neuroimmunomodulation. 21:1–7. 2014. View Article : Google Scholar : | |
Lakshmi Narendra B, Eshvendar Reddy K, Shantikumar S and Ramakrishna S: Immune system: a double-edged sword in cancer. Inflamm Res. 62:823–834. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hunzeker JT, Elftman MD, Mellinger JC, Princiotta MF, Bonneau RH, Truckenmiller ME and Norbury CC: A marked reduction in priming of cytotoxic CD8+ T cells mediated by stress-induced glucocorticoids involves multiple deficiencies in cross-presentation by dendritic cells. J Immunol. 186:183–194. 2011. View Article : Google Scholar | |
Kour K and Bani S: Augmentation of immune response by chicoric acid through the modulation of CD28/CTLA-4 and Th1 pathway in chronically stressed mice. Neuropharmacology. 60:852–860. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lutgendorf SK, Sood AK, Anderson B, McGinn S, Maiseri H, Dao M, Sorosky JI, De Geest K, Ritchie J and Lubaroff DM: Social support, psychological distress, and natural killer cell activity in ovarian cancer. J Clin Oncol. 23:7105–7113. 2005. View Article : Google Scholar : PubMed/NCBI | |
Reiche EM, Nunes SO and Morimoto HK: Stress, depression, the immune system, and cancer. Lancet Oncol. 5:617–625. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nakatani Y, Amano T and Takeda H: Corticosterone suppresses the proliferation of RAW264.7 macrophage cells via glucocor-ticoid, but not mineralocorticoid, receptor. Biol Pharm Bull. 36:592–601. 2013. View Article : Google Scholar | |
Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, Arevalo JM, Morizono K, Karanikolas BD, Wu L, et al: The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 70:7042–7052. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schmieder A, Michel J, Schönhaar K, Goerdt S and Schledzewski K: Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol. 22:289–297. 2012. View Article : Google Scholar : PubMed/NCBI | |
Armaiz-Pena GN, Gonzalez-Villasana V, Nagaraja AS, Rodriguez-Aguayo C, Sadaoui NC, Stone RL, Matsuo K, Dalton HJ, Previs RA, Jennings NB, et al: Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth. Oncotarget. 6:4266–4273. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roberts DD, Miller TW, Rogers NM, Yao M and Isenberg JS: The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47. Matrix Biol. 31:162–169. 2012. View Article : Google Scholar : PubMed/NCBI | |
Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY, George BM, Markovic M, Ring NG, Tsai JM, et al: Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol. 19:76–84. 2018. View Article : Google Scholar : | |
Hanke N, Alizadeh D, Katsanis E and Larmonier N: Dendritic cell tumor killing activity and its potential applications in cancer immunotherapy. Crit Rev Immunol. 33:1–21. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Sun M, Zhang HP, Chen T, Wu R, Liu C, Yang G, Geng XR, Feng BS, Liu Z, et al: Prolactin mediates psychological stress-induced dysfunction of regulatory T cells to facilitate intestinal inflammation. Gut. 63:1883–1892. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dhabhar FS, Satoskar AR, Bluethmann H, David JR and McEwen BS: Stress-induced enhancement of skin immune function: A role for gamma interferon. Proc Natl Acad Sci USA. 97:2846–2851. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dhabhar FS and Viswanathan K: Short-term stress experienced at time of immunization induces a long-lasting increase in immunologic memory. Am J Physiol Regul Integr Comp Physiol. 289:R738–R744. 2005. View Article : Google Scholar : PubMed/NCBI | |
Levi B, Benish M, Goldfarb Y, Sorski L, Melamed R, Rosenne E and Ben-Eliyahu S: Continuous stress disrupts immunostimulatory effects of IL-12. Brain Behav Immun. 25:727–735. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lopes RP, Grassi-Oliveira R, de Almeida LR, Stein LM, Luz C, Teixeira AL and Bauer ME: Neuroimmunoendocrine interactions in patients with recurrent major depression, increased early life stress and long-standing posttraumatic stress disorder symptoms. Neuroimmunomodulation. 19:33–42. 2012. View Article : Google Scholar | |
Dhabhar FS and McEwen BS: Stress-induced enhancement of antigen-specific cell-mediated immunity. J Immunol. 156:2608–2615. 1996.PubMed/NCBI | |
Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB and Achen MG: Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer. 14:159–172. 2014. View Article : Google Scholar : PubMed/NCBI | |
Le CP, Nowell CJ, Kim-Fuchs C, Botteri E, Hiller JG, Ismail H, Pimentel MA, Chai MG, Karnezis T, Rotmensz N, et al: Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun. 7:106342016. View Article : Google Scholar : PubMed/NCBI | |
Boleij A and Tjalsma H: Gut bacteria in health and disease: A survey on the interface between intestinal microbiology and colorectal cancer. Biol Rev Camb Philos Soc. 87:701–730. 2012. View Article : Google Scholar : PubMed/NCBI | |
O’Toole PW: Gut microbiota and aging. Science. 350:1214–1215. 2015. View Article : Google Scholar | |
Rook GAW, Raison CL and Lowry CA: Microbiota, immuno-regulatory old friends and psychiatric disorders. Adv Exp Med Biol. 817:319–356. 2014. View Article : Google Scholar | |
Penders J, Gerhold K, Stobberingh EE, Thijs C, Zimmermann K, Lau S and Hamelmann E: Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J Allergy Clin Immunol. 132:601–607.e8. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, Bringer MA, Pezet D and Bonnet M: Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 22:501–518. 2016. View Article : Google Scholar : PubMed/NCBI | |
Paul B, Barnes S, Demark-Wahnefried W, Morrow C, Salvador C, Skibola C and Tollefsbol TO: Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics. 7:1122015. View Article : Google Scholar : PubMed/NCBI | |
Berni Canani R, Di Costanzo M and Leone L: The epigenetic effects of butyrate: Potential therapeutic implications for clinical practice. Clin Epigenetics. 4:42012. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto ML, Maier I, Dang AT, Berry D, Liu J, Ruegger PM, Yang JI, Soto PA, Presley LL, Reliene R, et al: Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res. 73:4222–4232. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, et al: Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 461:1282–1286. 2009. View Article : Google Scholar : PubMed/NCBI | |
Garrett WS: Cancer and the microbiota. Science. 348:80–86. 2015. View Article : Google Scholar : PubMed/NCBI | |
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al: Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 342:967–970. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C and Koga Y: Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 558:263–275. 2004. View Article : Google Scholar : PubMed/NCBI | |
Luna RA and Foster JA: Gut brain axis: Diet microbiota interactions and implications for modulation of anxiety and depression. Curr Opin Biotechnol. 32:35–41. 2015. View Article : Google Scholar | |
Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R and Rudi K: Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 26:1155–1162. 2014. View Article : Google Scholar : PubMed/NCBI | |
Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, Naudon L and Rabot S: Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 42:207–217. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liang S, Wang T, Hu X, Luo J, Li W, Wu X, Duan Y and Jin F: Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience. 310:561–577. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Gao J, Gillilland M III, Wu X, Song I, Kao JY and Owyang C: Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology. 146:484–96.e4. 2014. View Article : Google Scholar : | |
Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, Houdeau E, Fioramonti J, Bueno L and Theodorou V: Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 37:1885–1895. 2012. View Article : Google Scholar : PubMed/NCBI | |
Seidel DV, Azcárate-Peril MA, Chapkin RS and Turner ND: Shaping functional gut microbiota using dietary bioactives to reduce colon cancer risk. Semin Cancer Biol. 46:191–204. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar | |
Balkwill FR and Mantovani A: Cancer-related inflammation: Common themes and therapeutic opportunities. Semin Cancer Biol. 22:33–40. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C and Flavell RA: Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 13:759–771. 2013. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal BB, Vijayalekshmi RV and Sung B: Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 15:425–430. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, et al: Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 12:939–944. 2006. View Article : Google Scholar : PubMed/NCBI | |
Armaiz-Pena GN, Cole SW, Lutgendorf SK and Sood AK: Neuroendocrine influences on cancer progression. Brain Behav Immun. 30(Suppl): S19–S25. 2013. View Article : Google Scholar | |
Kyrou I, Tsigos C, Seedorf K and Ferré P: Stress hormones: Physiological stress and regulation of metabolism. Curr Opin Pharmacol. 9:787–793. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu XT, Liu YF, Zhao L, Li WJ, Yang RX, Yan FF, Zhao YX and Jiang F: Chronic psychological stress induces vascular inflammation in rabbits. Stress. 16:87–98. 2013. View Article : Google Scholar | |
Ahmad SF, Zoheir KM, Ansari MA, Korashy HM, Bakheet SA, Ashour AE and Attia SM: Stimulation of the histamine 4 receptor with 4-methylhistamine modulates the effects of chronic stress on the Th1/Th2 cytokine balance. Immunobiology. 220:341–349. 2015. View Article : Google Scholar | |
Powell ND, Tarr AJ and Sheridan JF: Psychosocial stress and inflammation in cancer. Brain Behav Immun. 30(Suppl): S41–S47. 2013. View Article : Google Scholar | |
Zitvogel L, Kepp O, Galluzzi L and Kroemer G: Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol. 13:343–351. 2012. View Article : Google Scholar : PubMed/NCBI | |
Müzes G and Sipos F: Inflammasome, inflammation and cancer: An interrelated pathobiological triad. Curr Drug Targets. 16:249–257. 2015. View Article : Google Scholar | |
Dunn JH, Ellis LZ and Fujita M: Inflammasomes as molecular mediators of inflammation and cancer: Potential role in melanoma. Cancer Lett. 314:24–33. 2012. View Article : Google Scholar | |
Shahzad MM, Arevalo JM, Armaiz-Pena GN, Lu C, Stone RL, Moreno-Smith M, Nishimura M, Lee JW, Jennings NB, Bottsford-Miller J, et al: Stress effects on FosB- and interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. J Biol Chem. 285:35462–35470. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cosci F, Fava GA and Sonino N: Mood and anxiety disorders as early manifestations of medical illness: A systematic review. Psychother Psychosom. 84:22–29. 2015. View Article : Google Scholar | |
Casorelli I, Bossa C and Bignami M: DNA damage and repair in human cancer: Molecular mechanisms and contribution to therapy-related leukemias. Int J Environ Res Public Health. 9:2636–2657. 2012. View Article : Google Scholar : PubMed/NCBI | |
Higgins CF: Multiple molecular mechanisms for multidrug resistance transporters. Nature. 446:749–757. 2007. View Article : Google Scholar : PubMed/NCBI | |
Abraham J, Salama NN and Azab AK: The role of P-glycoprotein in drug resistance in multiple myeloma. Leuk Lymphoma. 56:26–33. 2015. View Article : Google Scholar | |
Su F, Ouyang N, Zhu P, Ouyang N, Jia W, Gong C, Ma X, Xu H and Song E: Psychological stress induces chemoresistance in breast cancer by upregulating mdr1. Biochem Biophys Res Commun. 329:888–897. 2005. View Article : Google Scholar : PubMed/NCBI | |
Reeder A, Attar M, Nazario L, Bathula C, Zhang A, Hochbaum D, Roy E, Cooper KL, Oesterreich S, Davidson NE, et al: Stress hormones reduce the efficacy of paclitaxel in triple negative breast cancer through induction of DNA damage. Br J Cancer. 112:1461–1470. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yao H, Duan Z, Wang M, Awonuga AO, Rappolee D and Xie Y: Adrenaline induces chemoresistance in HT-29 colon adenocar-cinoma cells. Cancer Genet Cytogenet. 190:81–87. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pu J, Bai D, Yang X, Lu X, Xu L and Lu J: Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155. Biochem Biophys Res Commun. 428:210–215. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola D and Cheng JQ: MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem. 285:17869–17879. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hassan S, Karpova Y, Baiz D, Yancey D, Pullikuth A, Flores A, Register T, Cline JM, D’Agostino R Jr, Danial N, et al: Behavioral stress accelerates prostate cancer development in mice. J Clin Invest. 123:874–886. 2013.PubMed/NCBI | |
Sun X, Bao J, Nelson KC, Li KC, Kulik G and Zhou X: Systems modeling of anti-apoptotic pathways in prostate cancer: Psychological stress triggers a synergism pattern switch in drug combination therapy. PLOS Comput Biol. 9:e10033582013. View Article : Google Scholar : PubMed/NCBI | |
Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee K, et al: Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 357:1156–1160. 2017. View Article : Google Scholar : PubMed/NCBI | |
van Bodegom M, Homberg JR and Henckens MJAG: Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front Cell Neurosci. 11:872017. View Article : Google Scholar : PubMed/NCBI | |
Antoni MH: Psychosocial intervention effects on adaptation, disease course and biobehavioral processes in cancer. Brain Behav Immun. 30(Suppl): S88–S98. 2013. View Article : Google Scholar | |
Saxton JM, Scott EJ, Daley AJ, Woodroofe M, Mutrie N, Crank H, Powers HJ and Coleman RE: Effects of an exercise and hypocaloric healthy eating intervention on indices of psychological health status, hypothalamic-pituitary-adrenal axis regulation and immune function after early-stage breast cancer: A randomised controlled trial. Breast Cancer Res. 16:R392014. View Article : Google Scholar : PubMed/NCBI | |
Chida Y, Hamer M, Wardle J and Steptoe A: Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol. 5:466–475. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dieli-Conwright CM and Orozco BZ: Exercise after breast cancer treatment: Current perspectives. Breast Cancer (Dove Med Press). 7:353–362. 2015. | |
Nota JA and Coles ME: Shorter sleep duration and longer sleep onset latency are related to difficulty disengaging attention from negative emotional images in individuals with elevated transdiagnostic repetitive negative thinking. J Behav Ther Exp Psychiatry. 58:114–122. 2018. View Article : Google Scholar | |
Guzman-Marin R and Avidan AY: Sleep disorders in patients with cancer. J Community Support Oncol. 13:148–155. 2015. View Article : Google Scholar : PubMed/NCBI |