|
1
|
Dhabhar FS and McEwen BS: Acute stress
enhances while chronic stress suppresses cell-mediated immunity in
vivo: A potential role for leukocyte trafficking. Brain Behav
Immun. 11:286–306. 1997. View Article : Google Scholar
|
|
2
|
Amin SN, El-Aidi AA, Ali MM, Attia YM and
Rashed LA: Modification of hippocampal markers of synaptic
plasticity by memantine in animal models of acute and repeated
restraint stress: Implications for memory and behavior.
Neuromolecular Med. 17:121–136. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Charmandari E, Tsigos C and Chrousos G:
Endocrinology of the stress response. Annu Rev Physiol. 67:259–284.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gunnar M and Quevedo K: The neurobiology
of stress and development. Annu Rev Psychol. 58:145–173. 2007.
View Article : Google Scholar
|
|
5
|
Krizanova O, Babula P and Pacak K: Stress,
catecholaminergic system and cancer. Stress. 19:419–428. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hering D, Lachowska K and Schlaich M: Role
of the sympathetic nervous system in stress-mediated cardiovascular
disease. Curr Hypertens Rep. 17:802015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Dhabhar FS, McEwen BS and Spencer RL:
Stress response, adrenal steroid receptor levels and
corticosteroid-binding globulin levels - a comparison between
Sprague-Dawley, Fischer 344 and Lewis rats. Brain Res. 616:89–98.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Dhabhar FS, McEwen BS and Spencer RL:
Adaptation to prolonged or repeated stress - comparison between rat
strains showing intrinsic differences in reactivity to acute
stress. Neuroendocrinology. 65:360–368. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ambarish V, Chandrashekara S and Suresh
KP: Moderate regular exercises reduce inflammatory response for
physical stress. Indian J Physiol Pharmacol. 56:7–14.
2012.PubMed/NCBI
|
|
10
|
Clague J and Bernstein L: Physical
activity and cancer. Curr Oncol Rep. 14:550–558. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Dhabhar FS: Effects of stress on immune
function: The good, the bad, and the beautiful. Immunol Res.
58:193–210. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lagraauw HM, Kuiper J and Bot I: Acute and
chronic psychological stress as risk factors for cardiovascular
disease: Insights gained from epidemiological, clinical and
experimental studies. Brain Behav Immun. 50:18–30. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Muffly LS, Hlubocky FJ, Khan N, Wroblewski
K, Breitenbach K, Gomez J, McNeer JL, Stock W and Daugherty CK:
Psychological morbidities in adolescent and young adult blood
cancer patients during curative-intent therapy and early
survivorship. Cancer. 122:954–961. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Cohen L, Cole SW, Sood AK, Prinsloo S,
Kirschbaum C, Arevalo JM, Jennings NB, Scott S, Vence L, Wei Q, et
al: Depressive symptoms and cortisol rhythmicity predict survival
in patients with renal cell carcinoma: Role of inflammatory
signaling. PLoS One. 7:e423242012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shan T, Ma J, Ma Q, Guo K, Guo J, Li X, Li
W, Liu J, Huang C, Wang F, et al: β2-AR-HIF-1α: A novel regulatory
axis for stress-induced pancreatic tumor growth and angiogenesis.
Curr Mol Med. 13:1023–1034. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Iwata M, Ota KT, Li XY, Sakaue F, Li N,
Dutheil S, Banasr M, Duric V, Yamanashi T, Kaneko K, et al:
Psychological stress activates the inflammasome via release of
adenosine triphosphate and stimulation of the purinergic type 2X7
receptor. Biol Psychiatry. 80:12–22. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Agarwal SK and Marshall GD Jr: Stress
effects on immunity and its application to clinical immunology.
Clin Exp Allergy. 31:25–31. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yin X, Guven N and Dietis N: Stress-based
animal models of depression: Do we actually know what we are doing?
Brain Res. 1652:30–42. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Heinrichs SC and Koob GF: Application of
experimental stressors in laboratory rodents. Curr Protoc Neurosci.
Chapter 8: Unit8.4. 2006. View Article : Google Scholar
|
|
20
|
Zorzet S, Perissin L, Rapozzi V and
Giraldi T: Restraint stress reduces the antitumor efficacy of
cyclophosphamide in tumor-bearing mice. Brain Behav Immun.
12:23–33. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nukina H, Sudo N, Aiba Y, Oyama N, Koga Y
and Kubo C: Restraint stress elevates the plasma interleukin-6
levels in germ-free mice. J Neuroimmunol. 115:46–52. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Willner P: The validity of animal models
of predisposition to depression. Behav Pharmacol. 13:169–188. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Glaser R and Kiecolt-Glaser JK:
Stress-induced immune dysfunction: Implications for health. Nat Rev
Immunol. 5:243–251. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
24
|
Dhabhar FS, Saul AN, Daugherty C, Holmes
TH, Bouley DM and Oberyszyn TM: Short-term stress enhances cellular
immunity and increases early resistance to squamous cell carcinoma.
Brain Behav Immun. 24:127–137. 2010. View Article : Google Scholar
|
|
25
|
Eng JW, Kokolus KM, Reed CB, Hylander BL,
Ma WW and Repasky EA: A nervous tumor microenvironment: The impact
of adrenergic stress on cancer cells, immunosuppression, and
immunotherapeutic response. Cancer Immunol Immunother.
63:1115–1128. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Frick LR, Rapanelli M, Bussmann UA, Klecha
AJ, Arcos ML, Genaro AM and Cremaschi GA: Involvement of thyroid
hormones in the alterations of T-cell immunity and tumor
progression induced by chronic stress. Biol Psychiatry. 65:935–942.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Volpi S, Rabadan-Diehl C and Aguilera G:
Vasopressinergic regulation of the hypothalamic pituitary adrenal
axis and stress adaptation. Stress. 7:75–83. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Meltzer HY, Lowy MT and Koenig JI: The
hypothalamic-pituitary-adrenal axis in depression. Adv Biochem
Psychopharmacol. 43:165–182. 1987.PubMed/NCBI
|
|
29
|
Chrousos GP: Ultradian, circadian, and
stress-related hypothalamic-pituitary-adrenal axis activity - a
dynamic digital-to-analog modulation. Endocrinology. 139:437–440.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sephton S and Spiegel D: Circadian
disruption in cancer: A neuroendocrine-immune pathway from stress
to disease? Brain Behav Immun. 17:321–328. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
McEwen BS: Physiology and neurobiology of
stress and adaptation: Central role of the brain. Physiol Rev.
87:873–904. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Moreno-Smith M, Lutgendorf SK and Sood AK:
Impact of stress on cancer metastasis. Future Oncol. 6:1863–1881.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gündisch S, Boeckeler E, Behrends U,
Amtmann E, Ehrhardt H and Jeremias I: Glucocorticoids augment
survival and proliferation of tumor cells. Anticancer Res.
32:4251–4261. 2012.PubMed/NCBI
|
|
34
|
Wang HM, Liao ZX, Komaki R, Welsh JW,
O’Reilly MS, Chang JY, Zhuang Y, Levy LB, Lu C and Gomez DR:
Improved survival outcomes with the incidental use of beta-blockers
among patients with non-small-cell lung cancer treated with
definitive radiation therapy. Ann Oncol. 24:1312–1319. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wulsin AC, Wick-Carlson D, Packard BA,
Morano R and Herman JP: Adolescent chronic stress causes
hypothalamo-pituitary-adrenocortical hypo-responsiveness and
depression-like behavior in adult female rats.
Psychoneuroendocrinology. 65:109–117. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Bortolato B, Hyphantis TN, Valpione S,
Perini G, Maes M, Morris G, Kubera M, Köhler CA, Fernandes BS,
Stubbs B, et al: Depression in cancer: The many biobehavioral
pathways driving tumor progression. Cancer Treat Rev. 52:58–70.
2017. View Article : Google Scholar
|
|
37
|
Zhao L, Xu J, Liang F, Li A, Zhang Y and
Sun J: Effect of chronic psychological stress on liver metastasis
of colon cancer in mice. PLoS One. 10:e01399782015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Xie H, Li C, He Y, Griffin R, Ye Q and Li
L: Chronic stress promotes oral cancer growth and angiogenesis with
increased circulating catecholamine and glucocorticoid levels in a
mouse model. Oral Oncol. 51:991–997. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu J, Deng GH, Zhang J, Wang Y, Xia XY,
Luo XM, Deng YT, He SS, Mao YY, Peng XC, et al: The effect of
chronic stress on anti-angiogenesis of sunitinib in colorectal
cancer models. Psychoneuroendocrinology. 52:130–142. 2015.
View Article : Google Scholar
|
|
40
|
Elefteriou F: Chronic stress, sympathetic
activation and skeletal metastasis of breast cancer cells. Bonekey
Rep. 4:6932015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Moreno-Smith M, Lu C, Shahzad MM, Pena GN,
Allen JK, Stone RL, Mangala LS, Han HD, Kim HS, Farley D, et al:
Dopamine blocks stress-mediated ovarian carcinoma growth. Clin
Cancer Res. 17:3649–3659. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Moreno-Smith M, Lee SJ, Lu C, Nagaraja AS,
He G, Rupaimoole R, Han HD, Jennings NB, Roh JW, Nishimura M, et
al: Biologic effects of dopamine on tumor vasculature in ovarian
carcinoma. Neoplasia. 15:502–510. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Borcherding DC, Tong W, Hugo ER, Barnard
DF, Fox S, LaSance K, Shaughnessy E and Ben-Jonathan N: Expression
and therapeutic targeting of dopamine receptor-1 (D1R) in breast
cancer. Oncogene. 35:3103–3113. 2016. View Article : Google Scholar
|
|
44
|
Peters MA, Walenkamp AM, Kema IP, Meijer
C, de Vries EG and Oosting SF: Dopamine and serotonin regulate
tumor behavior by affecting angiogenesis. Drug Resist Updat.
17:96–104. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Barbieri A, Palma G, Rosati A, Giudice A,
Falco A, Petrillo A, Petrillo M, Bimonte S, Di Benedetto M,
Esposito G, et al: Role of endothelial nitric oxide synthase (eNOS)
in chronic stress-promoted tumour growth. J Cell Mol Med.
16:920–926. 2012. View Article : Google Scholar
|
|
46
|
Partecke LI, Speerforck S, Käding A,
Seubert F, Kühn S, Lorenz E, Schwandke S, Sendler M, Kessler W,
Trung DN, et al: Chronic stress increases experimental pancreatic
cancer growth, reduces survival and can be antagonised by
beta-adrenergic receptor blockade. Pancreatology. 16:423–433. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Feng Z, Liu L, Zhang C, Zheng T, Wang J,
Lin M, Zhao Y, Wang X, Levine AJ and Hu W: Chronic restraint stress
attenuates p53 function and promotes tumorigenesis. Proc Natl Acad
Sci USA. 109:7013–7018. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gao J, Gao G, Zhang Y and Wang F:
Proteomic analysis of human epithelial ovarian cancer xenografts in
immunodeficient mice exposed to chronic psychological stress. Sci
China Life Sci. 54:112–120. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Turnbull AV and Rivier CL: Regulation of
the hypothalamic-pituitary-adrenal axis by cytokines: Actions and
mechanisms of action. Physiol Rev. 79:1–71. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Schwab CL, Fan R, Zheng Q, Myers LP,
Hebert P and Pruett SB: Modeling and predicting stress-induced
immunosuppression in mice using blood parameters. Toxicol Sci.
83:101–113. 2005. View Article : Google Scholar
|
|
51
|
Dhabhar FS, Malarkey WB, Neri E and McEwen
BS: Stress-induced redistribution of immune cells - from barracks
to boulevards to battlefields: A tale of three hormones - Curt
Richter Award winner. Psychoneuroendocrinology. 37:1345–1368. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Barbieri A, Bimonte S, Palma G, Luciano A,
Rea D, Giudice A, Scognamiglio G, La Mantia E, Franco R, Perdonà S,
et al: The stress hormone norepinephrine increases migration of
prostate cancer cells in vitro and in vivo. Int J Oncol.
47:527–534. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Nilsson MB, Sun H, Diao L, Tong P, Liu D,
Li L, Fan Y, Poteete A, Lim SO, Howells K, et al: Stress hormones
promote EGFR inhibitor resistance in NSCLC: Implications for
combinations with β-blockers. Sci Transl Med. 9:92017. View Article : Google Scholar
|
|
54
|
Kim-Fuchs C, Le CP, Pimentel MA,
Shackleford D, Ferrari D, Angst E, Hollande F and Sloan EK: Chronic
stress accelerates pancreatic cancer growth and invasion: A
critical role for beta-adrenergic signaling in the pancreatic
microenvironment. Brain Behav Immun. 40:40–47. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Nagaraja AS, Sadaoui NC, Dorniak PL,
Lutgendorf SK and Sood AK: SnapShot: Stress and Disease. Cell
Metab. 23:388–388.e1. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Dhabhar FS: Enhancing versus suppressive
effects of stress on immune function: Implications for
immunoprotection and immunopathology. Neuroimmunomodulation.
16:300–317. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Glaser R, MacCallum RC, Laskowski BF,
Malarkey WB, Sheridan JF and Kiecolt-Glaser JK: Evidence for a
shift in the Th-1 to Th-2 cytokine response associated with chronic
stress and aging. J Gerontol A Biol Sci Med Sci. 56:M477–M482.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ochoa CE, Mirabolfathinejad SG, Ruiz VA,
Evans SE, Gagea M, Evans CM, Dickey BF and Moghaddam SJ:
Interleukin 6, but not T helper 2 cytokines, promotes lung
carcinogenesis. Cancer Prev Res (Phila). 4:51–64. 2011. View Article : Google Scholar
|
|
59
|
Divyashree S, Sarjan HN and Yajurvedi HN:
Effects of long-term chronic stress on the lymphoid organs and
blood l. Can J Zool. 94:137–143. 2015. View Article : Google Scholar
|
|
60
|
Frick LR, Arcos ML, Rapanelli M, Zappia
MP, Brocco M, Mongini C, Genaro AM and Cremaschi GA: Chronic
restraint stress impairs T-cell immunity and promotes tumor
progression in mice. Stress. 12:134–143. 2009. View Article : Google Scholar
|
|
61
|
Li H, Zhao J, Chen M, Tan Y, Yang X,
Caudle Y and Yin D: Toll-like receptor 9 is required for chronic
stress-induced immune suppression. Neuroimmunomodulation. 21:1–7.
2014. View Article : Google Scholar :
|
|
62
|
Lakshmi Narendra B, Eshvendar Reddy K,
Shantikumar S and Ramakrishna S: Immune system: a double-edged
sword in cancer. Inflamm Res. 62:823–834. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hunzeker JT, Elftman MD, Mellinger JC,
Princiotta MF, Bonneau RH, Truckenmiller ME and Norbury CC: A
marked reduction in priming of cytotoxic CD8+ T cells
mediated by stress-induced glucocorticoids involves multiple
deficiencies in cross-presentation by dendritic cells. J Immunol.
186:183–194. 2011. View Article : Google Scholar
|
|
64
|
Kour K and Bani S: Augmentation of immune
response by chicoric acid through the modulation of CD28/CTLA-4 and
Th1 pathway in chronically stressed mice. Neuropharmacology.
60:852–860. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lutgendorf SK, Sood AK, Anderson B, McGinn
S, Maiseri H, Dao M, Sorosky JI, De Geest K, Ritchie J and Lubaroff
DM: Social support, psychological distress, and natural killer cell
activity in ovarian cancer. J Clin Oncol. 23:7105–7113. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Reiche EM, Nunes SO and Morimoto HK:
Stress, depression, the immune system, and cancer. Lancet Oncol.
5:617–625. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Nakatani Y, Amano T and Takeda H:
Corticosterone suppresses the proliferation of RAW264.7 macrophage
cells via glucocor-ticoid, but not mineralocorticoid, receptor.
Biol Pharm Bull. 36:592–601. 2013. View Article : Google Scholar
|
|
68
|
Sloan EK, Priceman SJ, Cox BF, Yu S,
Pimentel MA, Tangkanangnukul V, Arevalo JM, Morizono K, Karanikolas
BD, Wu L, et al: The sympathetic nervous system induces a
metastatic switch in primary breast cancer. Cancer Res.
70:7042–7052. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Schmieder A, Michel J, Schönhaar K, Goerdt
S and Schledzewski K: Differentiation and gene expression profile
of tumor-associated macrophages. Semin Cancer Biol. 22:289–297.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Armaiz-Pena GN, Gonzalez-Villasana V,
Nagaraja AS, Rodriguez-Aguayo C, Sadaoui NC, Stone RL, Matsuo K,
Dalton HJ, Previs RA, Jennings NB, et al: Adrenergic regulation of
monocyte chemotactic protein 1 leads to enhanced macrophage
recruitment and ovarian carcinoma growth. Oncotarget. 6:4266–4273.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Roberts DD, Miller TW, Rogers NM, Yao M
and Isenberg JS: The matricellular protein thrombospondin-1
globally regulates cardiovascular function and responses to stress
via CD47. Matrix Biol. 31:162–169. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Barkal AA, Weiskopf K, Kao KS, Gordon SR,
Rosental B, Yiu YY, George BM, Markovic M, Ring NG, Tsai JM, et al:
Engagement of MHC class I by the inhibitory receptor LILRB1
suppresses macrophages and is a target of cancer immunotherapy. Nat
Immunol. 19:76–84. 2018. View Article : Google Scholar :
|
|
73
|
Hanke N, Alizadeh D, Katsanis E and
Larmonier N: Dendritic cell tumor killing activity and its
potential applications in cancer immunotherapy. Crit Rev Immunol.
33:1–21. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wu W, Sun M, Zhang HP, Chen T, Wu R, Liu
C, Yang G, Geng XR, Feng BS, Liu Z, et al: Prolactin mediates
psychological stress-induced dysfunction of regulatory T cells to
facilitate intestinal inflammation. Gut. 63:1883–1892. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Dhabhar FS, Satoskar AR, Bluethmann H,
David JR and McEwen BS: Stress-induced enhancement of skin immune
function: A role for gamma interferon. Proc Natl Acad Sci USA.
97:2846–2851. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Dhabhar FS and Viswanathan K: Short-term
stress experienced at time of immunization induces a long-lasting
increase in immunologic memory. Am J Physiol Regul Integr Comp
Physiol. 289:R738–R744. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Levi B, Benish M, Goldfarb Y, Sorski L,
Melamed R, Rosenne E and Ben-Eliyahu S: Continuous stress disrupts
immunostimulatory effects of IL-12. Brain Behav Immun. 25:727–735.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lopes RP, Grassi-Oliveira R, de Almeida
LR, Stein LM, Luz C, Teixeira AL and Bauer ME: Neuroimmunoendocrine
interactions in patients with recurrent major depression, increased
early life stress and long-standing posttraumatic stress disorder
symptoms. Neuroimmunomodulation. 19:33–42. 2012. View Article : Google Scholar
|
|
79
|
Dhabhar FS and McEwen BS: Stress-induced
enhancement of antigen-specific cell-mediated immunity. J Immunol.
156:2608–2615. 1996.PubMed/NCBI
|
|
80
|
Stacker SA, Williams SP, Karnezis T,
Shayan R, Fox SB and Achen MG: Lymphangiogenesis and lymphatic
vessel remodelling in cancer. Nat Rev Cancer. 14:159–172. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Le CP, Nowell CJ, Kim-Fuchs C, Botteri E,
Hiller JG, Ismail H, Pimentel MA, Chai MG, Karnezis T, Rotmensz N,
et al: Chronic stress in mice remodels lymph vasculature to promote
tumour cell dissemination. Nat Commun. 7:106342016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Boleij A and Tjalsma H: Gut bacteria in
health and disease: A survey on the interface between intestinal
microbiology and colorectal cancer. Biol Rev Camb Philos Soc.
87:701–730. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
O’Toole PW: Gut microbiota and aging.
Science. 350:1214–1215. 2015. View Article : Google Scholar
|
|
84
|
Rook GAW, Raison CL and Lowry CA:
Microbiota, immuno-regulatory old friends and psychiatric
disorders. Adv Exp Med Biol. 817:319–356. 2014. View Article : Google Scholar
|
|
85
|
Penders J, Gerhold K, Stobberingh EE,
Thijs C, Zimmermann K, Lau S and Hamelmann E: Establishment of the
intestinal microbiota and its role for atopic dermatitis in early
childhood. J Allergy Clin Immunol. 132:601–607.e8. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Gagnière J, Raisch J, Veziant J, Barnich
N, Bonnet R, Buc E, Bringer MA, Pezet D and Bonnet M: Gut
microbiota imbalance and colorectal cancer. World J Gastroenterol.
22:501–518. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Paul B, Barnes S, Demark-Wahnefried W,
Morrow C, Salvador C, Skibola C and Tollefsbol TO: Influences of
diet and the gut microbiome on epigenetic modulation in cancer and
other diseases. Clin Epigenetics. 7:1122015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Berni Canani R, Di Costanzo M and Leone L:
The epigenetic effects of butyrate: Potential therapeutic
implications for clinical practice. Clin Epigenetics. 4:42012.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yamamoto ML, Maier I, Dang AT, Berry D,
Liu J, Ruegger PM, Yang JI, Soto PA, Presley LL, Reliene R, et al:
Intestinal bacteria modify lymphoma incidence and latency by
affecting systemic inflammatory state, oxidative stress, and
leukocyte genotoxicity. Cancer Res. 73:4222–4232. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Maslowski KM, Vieira AT, Ng A, Kranich J,
Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, et al:
Regulation of inflammatory responses by gut microbiota and
chemoattractant receptor GPR43. Nature. 461:1282–1286. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Garrett WS: Cancer and the microbiota.
Science. 348:80–86. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Iida N, Dzutsev A, Stewart CA, Smith L,
Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S,
et al: Commensal bacteria control cancer response to therapy by
modulating the tumor microenvironment. Science. 342:967–970. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Vétizou M, Pitt JM, Daillère R, Lepage P,
Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong
CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on
the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama
N, Yu XN, Kubo C and Koga Y: Postnatal microbial colonization
programs the hypothalamic-pituitary-adrenal system for stress
response in mice. J Physiol. 558:263–275. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Luna RA and Foster JA: Gut brain axis:
Diet microbiota interactions and implications for modulation of
anxiety and depression. Curr Opin Biotechnol. 32:35–41. 2015.
View Article : Google Scholar
|
|
96
|
Naseribafrouei A, Hestad K, Avershina E,
Sekelja M, Linløkken A, Wilson R and Rudi K: Correlation between
the human fecal microbiota and depression. Neurogastroenterol
Motil. 26:1155–1162. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Crumeyrolle-Arias M, Jaglin M, Bruneau A,
Vancassel S, Cardona A, Daugé V, Naudon L and Rabot S: Absence of
the gut microbiota enhances anxiety-like behavior and
neuroendocrine response to acute stress in rats.
Psychoneuroendocrinology. 42:207–217. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Liang S, Wang T, Hu X, Luo J, Li W, Wu X,
Duan Y and Jin F: Administration of Lactobacillus helveticus NS8
improves behavioral, cognitive, and biochemical aberrations caused
by chronic restraint stress. Neuroscience. 310:561–577. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Xu D, Gao J, Gillilland M III, Wu X, Song
I, Kao JY and Owyang C: Rifaximin alters intestinal bacteria and
prevents stress-induced gut inflammation and visceral hyperalgesia
in rats. Gastroenterology. 146:484–96.e4. 2014. View Article : Google Scholar :
|
|
100
|
Ait-Belgnaoui A, Durand H, Cartier C,
Chaumaz G, Eutamene H, Ferrier L, Houdeau E, Fioramonti J, Bueno L
and Theodorou V: Prevention of gut leakiness by a probiotic
treatment leads to attenuated HPA response to an acute
psychological stress in rats. Psychoneuroendocrinology.
37:1885–1895. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Seidel DV, Azcárate-Peril MA, Chapkin RS
and Turner ND: Shaping functional gut microbiota using dietary
bioactives to reduce colon cancer risk. Semin Cancer Biol.
46:191–204. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Gopalakrishnan V, Spencer CN, Nezi L,
Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman
K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1
immunotherapy in melanoma patients. Science. 359:97–103. 2018.
View Article : Google Scholar
|
|
103
|
Balkwill FR and Mantovani A:
Cancer-related inflammation: Common themes and therapeutic
opportunities. Semin Cancer Biol. 22:33–40. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Elinav E, Nowarski R, Thaiss CA, Hu B, Jin
C and Flavell RA: Inflammation-induced cancer: Crosstalk between
tumours, immune cells and microorganisms. Nat Rev Cancer.
13:759–771. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Aggarwal BB, Vijayalekshmi RV and Sung B:
Targeting inflammatory pathways for prevention and therapy of
cancer: short-term friend, long-term foe. Clin Cancer Res.
15:425–430. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Thaker PH, Han LY, Kamat AA, Arevalo JM,
Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori
M, et al: Chronic stress promotes tumor growth and angiogenesis in
a mouse model of ovarian carcinoma. Nat Med. 12:939–944. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Armaiz-Pena GN, Cole SW, Lutgendorf SK and
Sood AK: Neuroendocrine influences on cancer progression. Brain
Behav Immun. 30(Suppl): S19–S25. 2013. View Article : Google Scholar
|
|
109
|
Kyrou I, Tsigos C, Seedorf K and Ferré P:
Stress hormones: Physiological stress and regulation of metabolism.
Curr Opin Pharmacol. 9:787–793. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lu XT, Liu YF, Zhao L, Li WJ, Yang RX, Yan
FF, Zhao YX and Jiang F: Chronic psychological stress induces
vascular inflammation in rabbits. Stress. 16:87–98. 2013.
View Article : Google Scholar
|
|
111
|
Ahmad SF, Zoheir KM, Ansari MA, Korashy
HM, Bakheet SA, Ashour AE and Attia SM: Stimulation of the
histamine 4 receptor with 4-methylhistamine modulates the effects
of chronic stress on the Th1/Th2 cytokine balance. Immunobiology.
220:341–349. 2015. View Article : Google Scholar
|
|
112
|
Powell ND, Tarr AJ and Sheridan JF:
Psychosocial stress and inflammation in cancer. Brain Behav Immun.
30(Suppl): S41–S47. 2013. View Article : Google Scholar
|
|
113
|
Zitvogel L, Kepp O, Galluzzi L and Kroemer
G: Inflammasomes in carcinogenesis and anticancer immune responses.
Nat Immunol. 13:343–351. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Müzes G and Sipos F: Inflammasome,
inflammation and cancer: An interrelated pathobiological triad.
Curr Drug Targets. 16:249–257. 2015. View Article : Google Scholar
|
|
115
|
Dunn JH, Ellis LZ and Fujita M:
Inflammasomes as molecular mediators of inflammation and cancer:
Potential role in melanoma. Cancer Lett. 314:24–33. 2012.
View Article : Google Scholar
|
|
116
|
Shahzad MM, Arevalo JM, Armaiz-Pena GN, Lu
C, Stone RL, Moreno-Smith M, Nishimura M, Lee JW, Jennings NB,
Bottsford-Miller J, et al: Stress effects on FosB- and
interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. J
Biol Chem. 285:35462–35470. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Cosci F, Fava GA and Sonino N: Mood and
anxiety disorders as early manifestations of medical illness: A
systematic review. Psychother Psychosom. 84:22–29. 2015. View Article : Google Scholar
|
|
118
|
Casorelli I, Bossa C and Bignami M: DNA
damage and repair in human cancer: Molecular mechanisms and
contribution to therapy-related leukemias. Int J Environ Res Public
Health. 9:2636–2657. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Higgins CF: Multiple molecular mechanisms
for multidrug resistance transporters. Nature. 446:749–757. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Abraham J, Salama NN and Azab AK: The role
of P-glycoprotein in drug resistance in multiple myeloma. Leuk
Lymphoma. 56:26–33. 2015. View Article : Google Scholar
|
|
121
|
Su F, Ouyang N, Zhu P, Ouyang N, Jia W,
Gong C, Ma X, Xu H and Song E: Psychological stress induces
chemoresistance in breast cancer by upregulating mdr1. Biochem
Biophys Res Commun. 329:888–897. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Reeder A, Attar M, Nazario L, Bathula C,
Zhang A, Hochbaum D, Roy E, Cooper KL, Oesterreich S, Davidson NE,
et al: Stress hormones reduce the efficacy of paclitaxel in triple
negative breast cancer through induction of DNA damage. Br J
Cancer. 112:1461–1470. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Yao H, Duan Z, Wang M, Awonuga AO,
Rappolee D and Xie Y: Adrenaline induces chemoresistance in HT-29
colon adenocar-cinoma cells. Cancer Genet Cytogenet. 190:81–87.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Pu J, Bai D, Yang X, Lu X, Xu L and Lu J:
Adrenaline promotes cell proliferation and increases
chemoresistance in colon cancer HT29 cells through induction of
miR-155. Biochem Biophys Res Commun. 428:210–215. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Kong W, He L, Coppola M, Guo J, Esposito
NN, Coppola D and Cheng JQ: MicroRNA-155 regulates cell survival,
growth, and chemosensitivity by targeting FOXO3a in breast cancer.
J Biol Chem. 285:17869–17879. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Hassan S, Karpova Y, Baiz D, Yancey D,
Pullikuth A, Flores A, Register T, Cline JM, D’Agostino R Jr,
Danial N, et al: Behavioral stress accelerates prostate cancer
development in mice. J Clin Invest. 123:874–886. 2013.PubMed/NCBI
|
|
127
|
Sun X, Bao J, Nelson KC, Li KC, Kulik G
and Zhou X: Systems modeling of anti-apoptotic pathways in prostate
cancer: Psychological stress triggers a synergism pattern switch in
drug combination therapy. PLOS Comput Biol. 9:e10033582013.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Geller LT, Barzily-Rokni M, Danino T,
Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee
K, et al: Potential role of intratumor bacteria in mediating tumor
resistance to the chemotherapeutic drug gemcitabine. Science.
357:1156–1160. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
van Bodegom M, Homberg JR and Henckens
MJAG: Modulation of the hypothalamic-pituitary-adrenal axis by
early life stress exposure. Front Cell Neurosci. 11:872017.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Antoni MH: Psychosocial intervention
effects on adaptation, disease course and biobehavioral processes
in cancer. Brain Behav Immun. 30(Suppl): S88–S98. 2013. View Article : Google Scholar
|
|
131
|
Saxton JM, Scott EJ, Daley AJ, Woodroofe
M, Mutrie N, Crank H, Powers HJ and Coleman RE: Effects of an
exercise and hypocaloric healthy eating intervention on indices of
psychological health status, hypothalamic-pituitary-adrenal axis
regulation and immune function after early-stage breast cancer: A
randomised controlled trial. Breast Cancer Res. 16:R392014.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Chida Y, Hamer M, Wardle J and Steptoe A:
Do stress-related psychosocial factors contribute to cancer
incidence and survival? Nat Clin Pract Oncol. 5:466–475. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Dieli-Conwright CM and Orozco BZ: Exercise
after breast cancer treatment: Current perspectives. Breast Cancer
(Dove Med Press). 7:353–362. 2015.
|
|
134
|
Nota JA and Coles ME: Shorter sleep
duration and longer sleep onset latency are related to difficulty
disengaging attention from negative emotional images in individuals
with elevated transdiagnostic repetitive negative thinking. J Behav
Ther Exp Psychiatry. 58:114–122. 2018. View Article : Google Scholar
|
|
135
|
Guzman-Marin R and Avidan AY: Sleep
disorders in patients with cancer. J Community Support Oncol.
13:148–155. 2015. View Article : Google Scholar : PubMed/NCBI
|