Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December-2018 Volume 53 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2018 Volume 53 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Downregulation of microRNA‑182 inhibits cell viability, invasion and angiogenesis in retinoblastoma through inhibition of the PI3K/AKT pathway and CADM2 upregulation

  • Authors:
    • Yan‑Xia Huang
    • Xin‑Gang Nie
    • Guang‑Da Li
    • Dong‑Sheng Fan
    • Li‑Li Song
    • Xin‑Lin Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, Luoyang Central Hospital, Luoyang, Henan 471009, P.R. China, Department of Ophthalmology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
  • Pages: 2615-2626
    |
    Published online on: October 9, 2018
       https://doi.org/10.3892/ijo.2018.4587
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Retinoblastoma (RB) is a well‑vascularized tumor dependent on angiogenesis. The present study aimed to explore whether microRNA (miR)‑182 regulates cell viability, invasion and angiogenesis in RB via the phosphatidylinositol‑3‑OH kinase (PI3K)/protein kinase B (AKT) signaling pathway and by targeting cell adhesion molecule 2 (CADM2). The expression levels of miR‑182 and CADM2 were initially detected in RB tissues from patients with RB who underwent ophthalmectomy, and normal retinal tissues collected from other trauma patients who underwent eye enucleation. To determine whether CADM2 was targeted by miR‑182, a dual luciferase reporter assay was conducted. Subsequently, Y79 and WERI‑Rb‑1 RB cells were transfected with a miR‑182 mimic or miR‑182 inhibitor, or small interfering RNA against CADM2, in order to investigate the effects of miR‑182 on viability and invasion, which were detected using MTT and Transwell assays, respectively. In addition, to determine whether the regulatory mechanism underlying the effects of miR‑182 was associated with the PI3K/AKT signaling pathway, the expression levels of associated genes were detected by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. A xenograft tumor model in nude mice was also established, in order to evaluate the effects of miR‑182 on tumor growth and angiogenesis. The results indicated that miR‑182 expression was increased and CADM2 expression was reduced in RB tissues; CADM2 was confirmed to be targeted and negatively regulated by miR‑182. When the expression of miR‑182 was downregulated, cell viability, invasion, tumor volume and angiogenesis were significantly decreased. Furthermore, the expression levels of PI3K/AKT signaling pathway‑associated genes were increased in response to miR‑182 overexpression or CADM2 silencing. Taken together, these results suggested that inhibition of miR‑182 may suppress cell viability, invasion and angiogenesis in RB through inactivation of the PI3K/AKT pathway and CADM2 upregulation. This mechanism may reveal a novel potential therapeutic target.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Carvalho IN, Reis AH, Cabello PH and Vargas FR: Polymorphisms of CDKN1A gene and risk of retinoblastoma. Carcinogenesis. 34:2774–2777. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Wong JR, Tucker MA, Kleinerman RA and Devesa SS: Retinoblastoma incidence patterns in the US Surveillance, Epidemiology, and End Results program. JAMA Ophthalmol. 132:478–483. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Reis AH, Vargas FR and Lemos B: More epigenetic hits than meets the eye: microRNAs and genes associated with the tumorigenesis of retinoblastoma. Front Genet. 3:2842012. View Article : Google Scholar : PubMed/NCBI

4 

Yun J, Li Y, Xu CT and Pan BR: Epidemiology and Rb1 gene of retinoblastoma. Int J Ophthalmol. 4:103–109. 2011.PubMed/NCBI

5 

Song HB, Park KD and Kim JH, Kim DH, Yu YS and Kim JH: Tissue factor regulates tumor angiogenesis of retinoblastoma via the extracellular signal-regulated kinase pathway. Oncol Rep. 28:2057–2062. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Wang J, Wang X, Li Z, Liu H and Teng Y: MicroRNA-183 suppresses retinoblastoma cell growth, invasion and migration by targeting LRP6. FEBS J. 281:1355–1365. 2014. View Article : Google Scholar

7 

Xu X, Ge S, Jia R, Zhou Y, Song X, Zhang H and Fan X: Hypoxia-induced miR-181b enhances angiogenesis of retinoblastoma cells by targeting PDCD10 and GATA6. Oncol Rep. 33:2789–2796. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Liu SS, Wang YS, Sun YF, Miao LX, Wang J, Li YS, Liu HY and Liu QL: Plasma microRNA-320, microRNA-let-7e and microRNA-21 as novel potential biomarkers for the detection of retinoblastoma. Biomed Rep. 2:424–428. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Jiang L, Mao P, Song L, Wu J, Huang J, Lin C, Yuan J, Qu L, Cheng SY and Li J: miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol. 177:29–38. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Chiang CH, Hou MF and Hung WC: Up-regulation of miR-182 by β-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor RECK. Biochim Biophys Acta. 1830:3067–3076. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Liu Z, Liu J, Segura MF, Shao C, Lee P, Gong Y, Hernando E and Wei JJ: MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J Pathol. 228:204–215. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Huang M, Xia Z, Wang Y, Huang L, Ma Q, Chen X, Wang H, Lu B and Guo Y: Generation of a monoclonal antibody specific to a new candidate tumor suppressor, cell adhesion molecule 2. Tumour Biol. 35:7415–7422. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Kandalam MM, Beta M, Maheswari UK, Swaminathan S and Krishnakumar S: Oncogenic microRNA 17-92 cluster is regulated by epithelial cell adhesion molecule and could be a potential therapeutic target in retinoblastoma. Mol Vis. 18:2279–2287. 2012.PubMed/NCBI

14 

Brunet A, Datta SR and Greenberg ME: Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol. 11:297–305. 2001. View Article : Google Scholar : PubMed/NCBI

15 

De Luca A, Maiello MR, D’Alessio A, Pergameno M and Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 16(Suppl 2): S17–S27. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Liu D, Hou P, Liu Z, Wu G and Xing M: Genetic alterations in the phosphoinositide 3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic targeting of Akt and mammalian target of rapamycin. Cancer Res. 69:7311–7319. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Cohen Y, Merhavi-Shoham E, Avraham-Lubin BC, Savetsky M, Frenkel S, Pe’er J and Goldenberg-Cohen N: PI3K/Akt pathway mutations in retinoblastoma. Invest Ophthalmol Vis Sci. 50:5054–5056. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Wang B, Shen J and Wang J: UNBS5162 inhibits proliferation of human retinoblastoma cells by promoting cell apoptosis. OncoTargets Ther. 10:5303–5309. 2017. View Article : Google Scholar

19 

Qi D and Scholthof KB: A one-step PCR-based method for rapid and efficient site-directed fragment deletion, insertion, and substitution mutagenesis. J Virol Methods. 149:85–90. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Ayuk SM, Abrahamse H and Houreld NN: The role of photo-biomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro. J Photochem Photobiol B. 161:368–374. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar

22 

Moreno F, Sinaki B, Fandiño A, Dussel V, Orellana L and Chantada G: A population-based study of retinoblastoma incidence and survival in Argentine children. Pediatr Blood Cancer. 61:1610–1615. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Beta M, Khetan V, Chatterjee N, Suganeswari G, Rishi P, Biswas J and Krishnakumar S: EpCAM knockdown alters microRNA expression in retinoblastoma--functional implication of EpCAM regulated miRNA in tumor progression. PLoS One. 9:e1148002014. View Article : Google Scholar : PubMed/NCBI

24 

Ning FL, Wang F, Li ML, Yu ZS, Hao YZ and Chen SS: MicroRNA-182 modulates chemosensitivity of human non-small cell lung cancer to cisplatin by targeting PDCD4. Diagn Pathol. 9:1432014. View Article : Google Scholar : PubMed/NCBI

25 

Li N, Hwangbo C, Jaba IM, Zhang J, Papangeli I, Han J, Mikush N, Larrivée B, Eichmann A, Chun HJ, et al: miR-182 modulates myocardial hypertrophic response induced by angiogenesis in heart. Sci Rep. 6:212282016. View Article : Google Scholar : PubMed/NCBI

26 

Du C, Weng X, Hu W, Lv Z, Xiao H, Ding C, Gyabaah OA, Xie H, Zhou L, Wu J, et al: Hypoxia-inducible MiR-182 promotes angiogenesis by targeting RASA1 in hepatocellular carcinoma. J Exp Clin Cancer Res. 34:672015. View Article : Google Scholar : PubMed/NCBI

27 

Liu Y, Bailey JC, Helwa I, Dismuke WM, Cai J, Drewry M, Brilliant MH, Budenz DL, Christen WG, Chasman DI, et al: A common variant in MIR182 is associated with primary open-angle glaucoma in the NEIGHBORHOOD consortium. Invest Ophthalmol Vis Sci. 57:3974–3981. 2016. View Article : Google Scholar : PubMed/NCBI

28 

He W, Li X, Xu S, Ai J, Gong Y, Gregg JL, Guan R, Qiu W, Xin D, Gingrich JR, et al: Aberrant methylation and loss of CADM2 tumor suppressor expression is associated with human renal cell carcinoma tumor progression. Biochem Biophys Res Commun. 435:526–532. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Yang S, Yan HL, Tao QF, Yuan SX, Tang GN, Yang Y, Wang LL, Zhang YL, Sun SH and Zhou WP: Low CADM2 expression predicts high recurrence risk of hepatocellular carcinoma patients after hepatectomy. J Cancer Res Clin Oncol. 140:109–116. 2014. View Article : Google Scholar

30 

Mao Y, Xi L, Li Q, Cai Z, Lai Y, Zhang X and Yu C: Regulation of cell apoptosis and proliferation in pancreatic cancer through PI3K/Akt pathway via Polo-like kinase 1. Oncol Rep. 36:49–56. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Liu B, Liu Y, Zhao L, Pan Y, Shan Y, Li Y and Jia L: Upregulation of microRNA-135b and microRNA-182 promotes chemoresistance of colorectal cancer by targeting ST6GALNAC2 via PI3K/AKT pathway. Mol Carcinog. 56:2669–2680. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Chen MS, Kim H, Jagot-Lacoussiere L and Maurel P: Cadm3 (Necl-1) interferes with the activation of the PI3 kinase/Akt signaling cascade and inhibits Schwann cell myelination in vitro. Glia. 64:2247–2262. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Kim KH, Lee KY, Lee JB, Yang KS, Hwang J, Je BK and Park HJ: Radiologic factors related to double-bar insertion in minimal invasive repair of pectus excavatum. World J Pediatr. 11:148–153. 2015. View Article : Google Scholar

34 

Akiyama H, Tanaka T, Maeno T, Kanai H, Kimura Y, Kishi S and Kurabayashi M: Induction of VEGF gene expression by retinoic acid through Sp1-binding sites in retinoblastoma Y79 cells. Invest Ophthalmol Vis Sci. 43:1367–1374. 2002.PubMed/NCBI

35 

Areán C, Orellana ME, Abourbih D, Abreu C, Pifano I and Burnier MN Jr: Expression of vascular endothelial growth factor in retinoblastoma. Arch Ophthalmol. 128:223–229. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Chiang CH, Chu PY, Hou MF and Hung WC: MiR-182 promotes proliferation and invasion and elevates the HIF-1α-VEGF-A axis in breast cancer cells by targeting FBXW7. Am J Cancer Res. 6:1785–1798. 2016.

37 

Foote RL, Weidner N, Harris J, Hammond E, Lewis JE, Vuong T, Ang KK and Fu KK: Evaluation of tumor angiogenesis measured with microvessel density (MVD) as a prognostic indicator in nasopharyngeal carcinoma: Results of RTOG 9505. Int J Radiat Oncol Biol Phys. 61:745–753. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Yu B, Qian T, Wang Y, Zhou S, Ding G, Ding F and Gu X: miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res. 40:10356–10365. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Spitschak A, Meier C, Kowtharapu B, Engelmann D and Pützer BM: MiR-182 promotes cancer invasion by linking RET oncogene activated NF-κB to loss of the HES1/Notch1 regulatory circuit. Mol Cancer. 16:242017. View Article : Google Scholar

40 

Liu Y, Yang K, Sun X, Fang P, Shi H, Xu J, Xie M and Li M: MiR-138 suppresses airway smooth muscle cell proliferation through the PI3K/AKT signaling pathway by targeting PDK1. Exp Lung Res. 41:363–369. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Shukla S, Maclennan GT, Hartman DJ, Fu P, Resnick MI and Gupta S: Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int J Cancer. 121:1424–1432. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Jia L, Luo S, Ren X, Li Y, Hu J, Liu B, Zhao L, Shan Y and Zhou H: miR-182 and miR-135b mediate the tumorigenesis and invasiveness of colorectal cancer cells via targeting ST6GALNAC2 and PI3K/AKT pathway. Dig Dis Sci. 62:3447–3459. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang YX, Nie XG, Li GD, Fan DS, Song LL and Zhang XL: Downregulation of microRNA‑182 inhibits cell viability, invasion and angiogenesis in retinoblastoma through inhibition of the PI3K/AKT pathway and CADM2 upregulation. Int J Oncol 53: 2615-2626, 2018.
APA
Huang, Y., Nie, X., Li, G., Fan, D., Song, L., & Zhang, X. (2018). Downregulation of microRNA‑182 inhibits cell viability, invasion and angiogenesis in retinoblastoma through inhibition of the PI3K/AKT pathway and CADM2 upregulation. International Journal of Oncology, 53, 2615-2626. https://doi.org/10.3892/ijo.2018.4587
MLA
Huang, Y., Nie, X., Li, G., Fan, D., Song, L., Zhang, X."Downregulation of microRNA‑182 inhibits cell viability, invasion and angiogenesis in retinoblastoma through inhibition of the PI3K/AKT pathway and CADM2 upregulation". International Journal of Oncology 53.6 (2018): 2615-2626.
Chicago
Huang, Y., Nie, X., Li, G., Fan, D., Song, L., Zhang, X."Downregulation of microRNA‑182 inhibits cell viability, invasion and angiogenesis in retinoblastoma through inhibition of the PI3K/AKT pathway and CADM2 upregulation". International Journal of Oncology 53, no. 6 (2018): 2615-2626. https://doi.org/10.3892/ijo.2018.4587
Copy and paste a formatted citation
x
Spandidos Publications style
Huang YX, Nie XG, Li GD, Fan DS, Song LL and Zhang XL: Downregulation of microRNA‑182 inhibits cell viability, invasion and angiogenesis in retinoblastoma through inhibition of the PI3K/AKT pathway and CADM2 upregulation. Int J Oncol 53: 2615-2626, 2018.
APA
Huang, Y., Nie, X., Li, G., Fan, D., Song, L., & Zhang, X. (2018). Downregulation of microRNA‑182 inhibits cell viability, invasion and angiogenesis in retinoblastoma through inhibition of the PI3K/AKT pathway and CADM2 upregulation. International Journal of Oncology, 53, 2615-2626. https://doi.org/10.3892/ijo.2018.4587
MLA
Huang, Y., Nie, X., Li, G., Fan, D., Song, L., Zhang, X."Downregulation of microRNA‑182 inhibits cell viability, invasion and angiogenesis in retinoblastoma through inhibition of the PI3K/AKT pathway and CADM2 upregulation". International Journal of Oncology 53.6 (2018): 2615-2626.
Chicago
Huang, Y., Nie, X., Li, G., Fan, D., Song, L., Zhang, X."Downregulation of microRNA‑182 inhibits cell viability, invasion and angiogenesis in retinoblastoma through inhibition of the PI3K/AKT pathway and CADM2 upregulation". International Journal of Oncology 53, no. 6 (2018): 2615-2626. https://doi.org/10.3892/ijo.2018.4587
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team