Re‑irradiation plus hyperthermia for recurrent pediatric sarcoma; a simulation study to investigate feasibility

  • Authors:
    • H. Petra Kok
    • Irma W.E.M. Van Dijk
    • Koen F. Crama
    • Nicolaas A.P. Franken
    • Coen R.N. Rasch
    • Johannes H.M. Merks
    • Johannes Crezee
    • Brian V. Balgobind
    • Arjan Bel
  • View Affiliations

  • Published online on: November 2, 2018     https://doi.org/10.3892/ijo.2018.4622
  • Pages: 209-218
Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Recurrent pediatric tumors pose a challenge since treatment options may be limited, particularly after previous irradiation. Positive results have been reported for chemotherapy and hyperthermia, but the combination of re‑irradiation and hyperthermia has not been investigated thus far, although it is a proven treatment strategy in adults. The theoretical feasibility of re‑irradiation plus hyperthermia was investigated for infield recurrent pediatric sarcoma in the pelvic region and the extremities. A total of 46 recurrent pediatric sarcoma cases diagnosed at the Academic Medical Center (Amsterdam, The Netherlands) between 2002 and 2017 were evaluated. Patients not previously irradiated, outfield recurrences and locations other than the pelvis and extremities were excluded, ultimately yielding four eligible patients: Two with sarcomas in the pelvis and two in an extremity. Re‑irradiation and hyperthermia treatment plans were simulated for 23x2 Gy treatment schedules and weekly hyperthermia. The radiosensitizing effect of hyperthermia was quantified using biological modelling with a temperature‑dependent change in the parameters of the linear‑quadratic model. The possible effectiveness of re‑irradiation plus hyperthermia was estimated by calculating the equivalent radiotherapy dose distribution. Treatment planning revealed that tumors located in the pelvis and the extremities can be effectively heated in children. Equivalent dose distributions indicated that hyperthermic radiosensitization can be quantified as a target‑selective additional D95% of typically 10 Gy, thereby delivering a possibly curative dose of 54 Gy, without substantially increasing the equivalent dose to the organs at risk. Therefore, re‑irradiation plus hyperthermia is a theoretically feasible and possibly effective treatment option for recurrent pediatric sarcoma in the pelvic region and the extremities, and its clinical feasibility is worthy of evaluation.

References

1 

Kaatsch P: Epidemiology of childhood cancer. Cancer Treat Rev. 36:277–285. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Gatta G, Zigon G, Capocaccia R, Coebergh JW, Desandes E, Kaatsch P, Pastore G, Peris-Bonet R, Stiller CA and Group EW; EUROCARE Working Group: Survival of European children and young adults with cancer diagnosed 1995-2002. Eur J Cancer. 45:992–1005. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Magnani C, Pastore G, Coebergh JW, Viscomi S, Spix C and Steliarova-Foucher E: Trends in survival after childhood cancer in Europe, 1978-1997: Report from the Automated Childhood Cancer Information System project (ACCIS). Eur J Cancer. 42:1981–2005. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Hawkins DS, Spunt SL and Skapek SX: Children's Oncology Group's 2013 blueprint for research: Soft tissue sarcomas. Pediatr Blood Cancer. 60:1001–1008. 2013. View Article : Google Scholar

5 

Gorlick R, Janeway K, Lessnick S, Randall RL and Marina N: Children's Oncology Group's 2013 blueprint for research: Bone tumors. Pediatr Blood Cancer. 60:1009–1015. 2013. View Article : Google Scholar

6 

Chisholm JC, Marandet J, Rey A, Scopinaro M, de Toledo JS, Merks JH, O'Meara A, Stevens MC and Oberlin O: Prognostic factors after relapse in nonmetastatic rhabdomyosarcoma: A nomogram to better define patients who can be salvaged with further therapy. J Clin Oncol. 29:1319–1325. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, Friedman DL, Marina N, Hobbie W, Kadan-Lottick NS, et al Childhood Cancer Survivor Study: Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 355:1572–1582. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Geenen MM, Cardous-Ubbink MC, Kremer LC, van den Bos C, van der Pal HJ, Heinen RC, Jaspers MW, Koning CC, Oldenburger F, Langeveld NE, et al: Medical assessment of adverse health outcomes in long-term survivors of childhood cancer. JAMA. 297:2705–2715. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R and Schlag PM: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3:487–497. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Peeken JC, Vaupel P and Combs SE: Integrating hyperthermia into modern radiation oncology: What Evidence Is Necessary? Front Oncol. 7:1322017. View Article : Google Scholar : PubMed/NCBI

11 

Cihoric N, Tsikkinis A, van Rhoon G, Crezee H, Aebersold DM, Bodis S, Beck M, Nadobny J, Budach V, Wust P, et al: Hyperthermia-related clinical trials on cancer treatment within the http://ClinicalTrials.govurisimpleClinicalTrials.gov registry. Int J Hyperthermia. 31:609–614. 2015. View Article : Google Scholar

12 

van der Zee J, González González D, van Rhoon GC, van Dijk JD, van Putten WL and Hart AA; Dutch Deep Hyperthermia Group: Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: A prospective, randomised, multicentre trial. Lancet. 355:1119–1125. 2000. View Article : Google Scholar : PubMed/NCBI

13 

Vernon CC, Hand JW, Field SB, Machin D, Whaley JB, van der Zee J, van Putten WL, van Rhoon GC, van Dijk JD, González González D, et al International Collaborative Hyperthermia Group: Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials. Int J Radiat Oncol Biol Phys. 35:731–744. 1996. View Article : Google Scholar : PubMed/NCBI

14 

Huilgol NG, Gupta S and Sridhar CR: Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: A report of randomized trial. J Cancer Res Ther. 6:492–496. 2010. View Article : Google Scholar

15 

Issels RD, Lindner LH, Verweij J, Wessalowski R, Reichardt P, Wust P, Ghadjar P, Hohenberger P, Angele M, Salat C, et al European Organization for the Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group and the European Society for Hyperthermic Oncology: Effect of Neoadjuvant Chemotherapy Plus Regional Hyperthermia on Long-term Outcomes Among Patients With Localized High-Risk Soft Tissue Sarcoma: The EORTC 62961-ESHO 95 Randomized Clinical Trial. JAMA Oncol. 4:483–492. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Datta NR, Puric E, Klingbiel D, Gomez S and Bodis S: Hyperthermia and radiation therapy in locoregional recurrent breast cancers: A systematic review and meta-analysis. Int J Radiat Oncol Biol Phys. 94:1073–1087. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Datta NR, Rogers S, Ordóñez SG, Puric E and Bodis S: Hyperthermia and radiotherapy in the management of head and neck cancers: A systematic review and meta-analysis. Int J Hyperthermia. 32:31–40. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Seifert G, Budach V, Keilholz U, Wust P, Eggert A and Ghadjar P: Regional hyperthermia combined with chemotherapy in paediatric, adolescent and young adult patients: Current and future perspectives. Radiat Oncol. 11:652016. View Article : Google Scholar : PubMed/NCBI

19 

Wessalowski R, Schneider DT, Mils O, Hannen M, Calaminus G, Engelbrecht V, Pape H, Willers R, Engert J, Harms D, et al: An approach for cure: PEI-chemotherapy and regional deep hyperthermia in children and adolescents with unresectable malignant tumors. Klin Padiatr. 215:303–309. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Wessalowski R, Schneider DT, Mils O, Friemann V, Kyrillopoulou O, Schaper J, Matuschek C, Rothe K, Leuschner I, Willers R, et al MAKEI study group: Regional deep hyperthermia for salvage treatment of children and adolescents with refractory or recurrent non-testicular malignant germ-cell tumours: An open-label, non-randomised, single-institution, phase 2 study. Lancet Oncol. 14:843–852. 2013. View Article : Google Scholar : PubMed/NCBI

21 

de Jong MA, Oldenborg S, Bing Oei S, Griesdoorn V, Kolff MW, Koning CC and van Tienhoven G: Reirradiation and hyperthermia for radiation-associated sarcoma. Cancer. 118:180–187. 2012. View Article : Google Scholar

22 

Myerson RJ, Roti Roti JL, Moros EG, Straube WL and Xu M: Modelling heat-induced radiosensitization: Clinical implications. Int J Hyperthermia. 20:201–212. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Franken NA, Oei AL, Kok HP, Rodermond HM, Sminia P, Crezee J, Stalpers LJ and Barendsen GW: Cell survival and radiosensitisation: Modulation of the linear and quadratic parameters of the LQ model (Review). Int J Oncol. 42:1501–1515. 2013.Review. View Article : Google Scholar : PubMed/NCBI

24 

Kok HP, Crezee J, Franken NAP, Stalpers LJA, Barendsen GW and Bel A: Quantifying the combined effect of radiation therapy and hyperthermia in terms of equivalent dose distributions. Int J Radiat Oncol Biol Phys. 88:739–745. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Crezee J, van Leeuwen CM, Oei AL, van Heerden LE, Bel A, Stalpers LJ, Ghadjar P, Franken NA and Kok HP: Biological modelling of the radiation dose escalation effect of regional hyperthermia in cervical cancer. Radiat Oncol. 11:142016. View Article : Google Scholar : PubMed/NCBI

26 

van Leeuwen CM, Crezee J, Oei AL, Franken NA, Stalpers LJ, Bel A and Kok HP: 3D radiobiological evaluation of combined radiotherapy and hyperthermia treatments. Int J Hyperthermia. 33:160–169. 2017. View Article : Google Scholar

27 

International Commission on Radiation Units and Measurements: ICRU Report 50 Prescribing, recording, and reporting photon beam therapy. ICRU; Bethesda, MD: 1993

28 

van Dijk JDP, Schneider C, van Os R, Blank LE and Gonzalez DG: Results of deep body hyperthermia with large waveguide radiators. Adv Exp Med Biol. 267:315–319. 1990. View Article : Google Scholar : PubMed/NCBI

29 

van Stam G, Kok HP, Hulshof MCCM, Kolff MW, van Tienhoven G, Sijbrands J, Bakker A, Zum Vörde Sive Vörding PJ, Oldenborg S, de Greef M, et al: A flexible 70 MHz phase-controlled double waveguide system for hyperthermia treatment of superficial tumours with deep infiltration. Int J Hyperthermia. 33:796–809. 2017.PubMed/NCBI

30 

Kok HP, Kotte ANTJ and Crezee J: Planning, optimisation and evaluation of hyperthermia treatments. Int J Hyperthermia. 33:593–607. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Taflove A and Hagness SC: Computational Electrodynamics. 2nd edition. Artech House; Boston, London: 2000

32 

Das SK, Clegg ST and Samulski TV: Computational techniques for fast hyperthermia temperature optimization. Med Phys. 26:319–328. 1999. View Article : Google Scholar : PubMed/NCBI

33 

Stoll AM and Greene LC: Relationship between pain and tissue damage due to thermal radiation. J Appl Physiol. 14:373–382. 1959. View Article : Google Scholar : PubMed/NCBI

34 

van Leeuwen CM, Oei AL, Ten Cate R, Franken NA, Bel A, Stalpers LJ, Crezee J and Kok HP: Measurement and analysis of the impact of time-interval, temperature and radiation dose on tumour cell survival and its application in thermoradiotherapy plan evaluation. Int J Hyperthermia. 34:30–38. 2018. View Article : Google Scholar

35 

Bruggmoser G, Bauchowitz S, Canters R, Crezee H, Ehmann M, Gellermann J, Lamprecht U, Lomax N, Messmer MB, Ott O, et al Atzelsberg Research Group; European Society for Hyperthermic Oncology: Guideline for the clinical application, documentation and analysis of clinical studies for regional deep hyperthermia: Quality management in regional deep hyperthermia. Strahlenther Onkol. 188(Suppl 2): 198–211. 2012. View Article : Google Scholar : PubMed/NCBI

36 

International Commission on Radiation Units Measurements: ICRU report 83 Prescribing, Recording, and Reporting Intensity-Modulated Photon-Beam Therapy (IMRT). ICRU; Bethesda, MD: 2010

37 

van Leeuwen CM, Oei AL, Crezee J, Bel A, Franken NA, Stalpers LJ and Kok HP: The alfa and beta of tumours: A review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol. 13:962018. View Article : Google Scholar : PubMed/NCBI

38 

van Dijk IW, van Os RM, van de Kamer JB, Franken NA, van der Pal HJ, Koning CC, Caron HN, Ronckers CM and Kremer LC: The use of equivalent radiation dose in the evaluation of late effects after childhood cancer treatment. J Cancer Surviv. 8:638–646. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Brahme A: Individualizing cancer treatment: Biological optimization models in treatment planning and delivery. Int J Radiat Oncol Biol Phys. 49:327–337. 2001. View Article : Google Scholar : PubMed/NCBI

40 

Kaidar-Person O, Oldenborg S and Poortmans P: Re-irradiation and Hyperthermia in Breast Cancer. Clin Oncol (R Coll Radiol). 30:73–84. 2018. View Article : Google Scholar

41 

Overgaard J: Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo. Int J Radiat Oncol Biol Phys. 6:1507–1517. 1980. View Article : Google Scholar : PubMed/NCBI

42 

van Leeuwen CM, Crezee J, Oei AL, Franken NA, Stalpers LJ, Bel A and Kok HP: The effect of time interval between radiotherapy and hyperthermia on planned equivalent radiation dose. Int J Hyperthermia. 34:901–909. 2018. View Article : Google Scholar : PubMed/NCBI

43 

ESHO Taskgroup Committee: ‘Treatment Planning and Modelling in Hyperthermia, a Task Group Report of the European Society for Hyperthermic Oncology. Tor Vergata, Rome. 1992.

44 

de Greef M, Kok HP, Correia D, Borsboom PP, Bel A and Crezee J: Uncertainty in hyperthermia treatment planning: The need for robust system design. Phys Med Biol. 56:3233–3250. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Dewhirst MW, Vujaskovic Z, Jones E and Thrall D: Re-setting the biologic rationale for thermal therapy. Int J Hyperthermia. 21:779–790. 2005. View Article : Google Scholar : PubMed/NCBI

46 

Sreenivasa G, Gellermann J, Rau B, Nadobny J, Schlag P, Deuflhard P, Felix R and Wust P: Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity. Int J Radiat Oncol Biol Phys. 55:407–419. 2003. View Article : Google Scholar : PubMed/NCBI

47 

Willnow U, Lindner H, Brock D, Wild L, Diestelhorst C, Greiner C and Eichstädt H: Treatment of otherwise incurable tumor diseases in childhood using whole-body hyperthermia and chemotherapy. Dtsch Med Wochenschr. 114:208–213. 1989.In German. View Article : Google Scholar : PubMed/NCBI

48 

Lindner H and Tillig B: Treatment of recurrent neuroblastoma in childhood with whole body thermochemotherapy. Padiatr Grenzgeb. 31:187–194. 1993.In German.

49 

Ismail-Zade RS, Zhavrid EA and Potapnev MP: Whole body hyperthermia in adjuvant therapy of children with renal cell carcinoma. Pediatr Blood Cancer. 44:679–681. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Geijsen ED, de Reijke TM, Koning CCE, Zum Vörde Sive Vörding PJ, de la Rosette JJ, Rasch CRN, van Os RM and Crezee J: Combining Mitomycin C and Regional 70 MHz Hyperthermia in Patients with Nonmuscle Invasive Bladder Cancer: A Pilot Study. J Urol. 194:1202–1208. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Hulshof MC, Van Haaren PM, Van Lanschot JJ, Richel DJ, Fockens P, Oldenborg S, Geijsen ED, Van Berge Henegouwen MI and Crezee J: Preoperative chemoradiation combined with regional hyperthermia for patients with resectable esophageal cancer. Int J Hyperthermia. 25:79–85. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Turner PF, Tumeh A and Schaefermeyer T: BSD-2000 approach for deep local and regional hyperthermia: Physics and technology. Strahlenther Onkol. 165:738–741. 1989.PubMed/NCBI

53 

Horsman MR and Overgaard J: Hyperthermia: A potent enhancer of radiotherapy. Clin Oncol (R Coll Radiol). 19:418–426. 2007. View Article : Google Scholar

54 

Sapareto SA and Dewey WC: Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 10:787–800. 1984. View Article : Google Scholar : PubMed/NCBI

55 

Dewey WC, Hopwood LE, Sapareto SA and Gerweck LE: Cellular responses to combinations of hyperthermia and radiation. Radiology. 123:463–474. 1977. View Article : Google Scholar : PubMed/NCBI

56 

Sapareto SA, Hopwood LE and Dewey WC: Combined effects of X irradiation and hyperthermia on CHO cells for various temperatures and orders of application. Radiat Res. 73:221–233. 1978. View Article : Google Scholar : PubMed/NCBI

57 

Crezee H, van Leeuwen CM, Oei AL, Stalpers LJ, Bel A, Franken NA and Kok HP: Thermoradiotherapy planning: Integration in routine clinical practice. Int J Hyperthermia. 32:41–49. 2016. View Article : Google Scholar

58 

Wijsman R, Kaanders JH, Oyen WJ and Bussink J: Hypoxia and tumor metabolism in radiation oncology: Targets visualized by positron emission tomography. Q J Nucl Med Mol Imaging. 57:244–256. 2013.PubMed/NCBI

59 

Niendorf T, Pohlmann A, Arakelyan K, Flemming B, Cantow K, Hentschel J, Grosenick D, Ladwig M, Reimann H, Klix S, et al: How bold is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions Acta Physiol (Oxf). 213:19–38. 2015.

60 

Kok HP, Korshuize-van Straten L, Bakker A, De Kroon-Oldenhof R, Geijsen ED, Stalpers LJA and Crezee J: On-line adaptive hyperthermia treatment planning during locoregional heating to suppress treatment limiting hot spots. Int J Radiat Oncol Biol Phys. 99:1039–1047. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Balzer S, Schneider DT, Bernbeck MB, Jäger M, Mils O, Schaper J, Willers R, Krauspe R, Göbel U and Wessalowski R: Avascular osteonecrosis after hyperthermia in children and adolescents with pelvic malignancies: A retrospective analysis of potential risk factors. Int J Hyperthermia. 22:451–461. 2006. View Article : Google Scholar : PubMed/NCBI

62 

Jäger M, Balzer S, Wessalowski R, Schaper J, Göbel U, Li X and Krauspe R: Hyperthermia associated osteonecrosis in young patients with pelvic malignancies. Anticancer Agents Med Chem. 8:571–575. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Paulino AC: Late effects of radiotherapy for pediatric extremity sarcomas. Int J Radiat Oncol Biol Phys. 60:265–274. 2004. View Article : Google Scholar : PubMed/NCBI

64 

DeLaney TF and Haas RL: Innovative radiotherapy of sarcoma: Proton beam radiation. Eur J Cancer. 62:112–123. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

January 2019
Volume 54 Issue 1

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Kok, H., Van Dijk, I.W., Crama, K.F., Franken, N.A., Rasch, C.R., Merks, J.H. ... Bel, A. (2019). Re‑irradiation plus hyperthermia for recurrent pediatric sarcoma; a simulation study to investigate feasibility. International Journal of Oncology, 54, 209-218. https://doi.org/10.3892/ijo.2018.4622
MLA
Kok, H., Van Dijk, I. W., Crama, K. F., Franken, N. A., Rasch, C. R., Merks, J. H., Crezee, J., Balgobind, B. V., Bel, A."Re‑irradiation plus hyperthermia for recurrent pediatric sarcoma; a simulation study to investigate feasibility". International Journal of Oncology 54.1 (2019): 209-218.
Chicago
Kok, H., Van Dijk, I. W., Crama, K. F., Franken, N. A., Rasch, C. R., Merks, J. H., Crezee, J., Balgobind, B. V., Bel, A."Re‑irradiation plus hyperthermia for recurrent pediatric sarcoma; a simulation study to investigate feasibility". International Journal of Oncology 54, no. 1 (2019): 209-218. https://doi.org/10.3892/ijo.2018.4622