Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
October-2019 Volume 55 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2019 Volume 55 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Oncological role of HMGA2 (Review)

  • Authors:
    • Shizhen Zhang
    • Qiuping Mo
    • Xiaochen Wang
  • View Affiliations / Copyright

    Affiliations: Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China, Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
  • Pages: 775-788
    |
    Published online on: August 13, 2019
       https://doi.org/10.3892/ijo.2019.4856
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The high mobility group A2 (HMGA2) protein is a non‑histone architectural transcription factor that modulates the transcription of several genes by binding to AT‑rich sequences in the minor groove of B‑form DNA and alters the chromatin structure. As a result, HMGA2 influences a variety of biological processes, including the cell cycle process, DNA damage repair process, apoptosis, senescence, epithelial‑mesenchymal transition and telomere restoration. In addition, the overexpression of HMGA2 is a feature of malignancy, and its elevated expression in human cancer predicts the efficacy of certain chemotherapeutic agents. Accumulating evidence has suggested that the detection of HMGA2 can be used as a routine procedure in clinical tumour analysis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Bustin M and Reeves R: High-mobility-group chromosomal proteins: Architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol. 54:35–100. 1996. View Article : Google Scholar : PubMed/NCBI

2 

Goodwin GH, Sanders C and Johns EW: A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem. 38:14–19. 1973. View Article : Google Scholar : PubMed/NCBI

3 

Bustin M: Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci. 26:152–153. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Wood LJ, Maher JF, Bunton TE and Resar LM: The oncogenic properties of the HMG-I gene family. Cancer Res. 60:4256–4261. 2000.PubMed/NCBI

5 

De Martino I, Visone R, Fedele M, Petrocca F, Palmieri D, Martinez Hoyos J, Forzati F, Croce CM and Fusco A: Regulation of microRNA expression by HMGA1 proteins. Oncogene. 28:1432–1442. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Martinez Hoyos J, Fedele M, Battista S, Pentimalli F, Kruhoffer M, Arra C, Orntoft TF, Croce CM and Fusco A: Identification of the genes up- and down-regulated by the high mobility group A1 (HMGA1) proteins: Tissue specificity of the HMGA1-dependent gene regulation. Cancer Res. 64:5728–5735. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Fusco A and Fedele M: Roles of HMGA proteins in cancer. Nat Rev Cancer. 7:899–910. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Fedele M, Battista S, Kenyon L, Baldassarre G, Fidanza V, Klein-Szanto AJ, Parlow AF, Visone R, Pierantoni GM, Outwater E, et al: Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene. 21:3190–3198. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Huth JR, Bewley CA, Nissen MS, Evans JN, Reeves R, Gronenborn AM and Clore GM: The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat Struct Biol. 4:657–665. 1997. View Article : Google Scholar : PubMed/NCBI

10 

Thanos D and Maniatis T: The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell. 71:777–789. 1992. View Article : Google Scholar : PubMed/NCBI

11 

Tallini G and Dal Cin P: HMGI(Y) and HMGI-C dysregulation: A common occurrence in human tumors. Adv Anat Pathol. 6:237–246. 1999. View Article : Google Scholar : PubMed/NCBI

12 

Rustighi A, Mantovani F, Fusco A, Giancotti V and Manfioletti G: Sp1 and CTF/NF-1 transcription factors are involved in the basal expression of the Hmgi-c proximal promoter. Biochem Biophys Res Commun. 265:439–447. 1999. View Article : Google Scholar : PubMed/NCBI

13 

Ayoubi TA, Jansen E, Meulemans SM and Van de Ven WJ: Regulation of HMGIC expression: An architectural transcription factor involved in growth control and development. Oncogene. 18:5076–5087. 1999. View Article : Google Scholar : PubMed/NCBI

14 

Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH and Moustakas A: Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol. 174:175–183. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Wend P, Runke S, Wend K, Anchondo B, Yesayan M, Jardon M, Hardie N, Loddenkemper C, Ulasov I, Lesniak MS, et al: WNT10B/β-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO Mol Med. 5:264–279. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Lam K, Muselman A, Du R, Harada Y, Scholl AG, Yan M, Matsuura S, Weng S, Harada H and Zhang DE: Hmga2 is a direct target gene of RUNX1 and regulates expansion of myeloid progenitors in mice. Blood. 124:2203–2212. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E and Peter ME: Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA. 104:11400–11405. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Lee WY, Tzeng CC and Chou CY: Uterine leiomyosarcomas coexistent with cellular and atypical leiomyomata in a young woman during the treatment with luteinizing hormone-releasing hormone agonist. Gynecol Oncol. 52:74–79. 1994. View Article : Google Scholar : PubMed/NCBI

20 

Guo L, Chen C, Shi M, Wang F, Chen X, Diao D, Hu M, Yu M, Qian L and Guo N: Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene. 32:5272–5282. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Newman MA, Thomson JM and Hammond SM: Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA. 14:1539–1549. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Dröge P and Davey CA: Do cells let-7 determine stemness? Cell Stem Cell. 2:8–9. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Copley MR, Babovic S, Benz C, Knapp DJ, Beer PA, Kent DG, Wohrer S, Treloar DQ, Day C, Rowe K, et al: The Lin28b-let-7-Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nat Cell Biol. 15:916–925. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ and Rosner MR: Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 28:347–358. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Sun M, Gomes S, Chen P, Frankenberger CA, Sankarasharma D, Chung CH, Chada KK and Rosner MR: RKIP and HMGA2 regulate breast tumor survival and metastasis through lysyl oxidase and syndecan-2. Oncogene. 33:3528–3537. 2014. View Article : Google Scholar :

26 

Lin Y, Liu AY, Fan C, Zheng H, Li Y, Zhang C, Wu S, Yu D, Huang Z, Liu F, et al: MicroRNA-33b inhibits breast cancer metastasis by targeting HMGA2, SALL4 and Twist1. Sci Rep. 5:99952015. View Article : Google Scholar : PubMed/NCBI

27 

Kim TH, Song JY, Park H, Jeong JY, Kwon AY, Heo JH, Kang H, Kim G and An HJ: miR-145, targeting high-mobility group A2, is a powerful predictor of patient outcome in ovarian carcinoma. Cancer Lett. 356B:937–945. 2015. View Article : Google Scholar

28 

Emmrich S, Katsman-Kuipers JE, Henke K, Khatib ME, Jammal R, Engeland F, Dasci F, Zwaan CM, den Boer ML, Verboon L, et al: miR-9 is a tumor suppressor in pediatric AML with t(8;21). Leukemia. 28:1022–1032. 2014. View Article : Google Scholar

29 

Liu S, Patel SH, Ginestier C, Ibarra I, Martin-Trevino R, Bai S, McDermott SP, Shang L, Ke J, Ou SJ, et al: MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet. 8:e10027512012. View Article : Google Scholar : PubMed/NCBI

30 

Ye ZH and Gui DW: miR-539 suppresses proliferation and induces apoptosis in renal cell carcinoma by targeting high mobility group A2. Mol Med Rep. 17:5611–5618. 2018.PubMed/NCBI

31 

Li T, Yang XD, Ye CX, Shen ZL, Yang Y, Wang B, Guo P, Gao ZD, Ye YJ, Jiang KW, et al: Long noncoding RNA HIT000218960 promotes papillary thyroid cancer oncogenesis and tumor progression by upregulating the expression of high mobility group AT-hook 2 (HMGA2) gene. Cell Cycle. 16:224–231. 2017. View Article : Google Scholar :

32 

Boque-Sastre R, Soler M, Oliveira-Mateos C, Portela A, Moutinho C, Sayols S, Villanueva A, Esteller M and Guil S: Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc Natl Acad Sci USA. 112:5785–5790. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Zhou X, Benson KF, Ashar HR and Chada K: Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature. 376:771–774. 1995. View Article : Google Scholar : PubMed/NCBI

34 

Weedon MN, Lettre G, Freathy RM, Lindgren CM, Voight BF, Perry JR, Elliott KS, Hackett R, Guiducci C, Shields B, et al Diabetes Genetics Initiative; Wellcome Trust Case Control Consortium: A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat Genet. 39:1245–1250. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Abi Habib W, Brioude F, Edouard T, Bennett JT, Lienhardt-Roussie A, Tixier F, Salem J, Yuen T, Azzi S, Le Bouc Y, et al: Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction. Genet Med. 20:250–258. 2018. View Article : Google Scholar

36 

Zaidi MR, Okada Y and Chada KK: Misexpression of full-length HMGA2 induces benign mesenchymal tumors in mice. Cancer Res. 66:7453–7459. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Efanov A, Zanesi N, Coppola V, Nuovo G, Bolon B, Wernicle-Jameson D, Lagana A, Hansjuerg A, Pichiorri F and Croce CM: Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia. Blood Cancer J. 4:e2272014. View Article : Google Scholar : PubMed/NCBI

38 

Schoenmakers EF, Wanschura S, Mols R, Bullerdiek J, Van den Berghe H and Van de Ven WJ: Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet. 10:436–444. 1995. View Article : Google Scholar : PubMed/NCBI

39 

Dreux N, Marty M, Chibon F, Vélasco V, Hostein I, Ranchère-Vince D, Terrier P and Coindre JM: Value and limitation of immunohistochemical expression of HMGA2 in mesenchymal tumors: about a series of 1052 cases. Mod Pathol. 23:1657–1666. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Marquis M, Beaubois C, Lavallée VP, Abrahamowicz M, Danieli C, Lemieux S, Ahmad I, Wei A, Ting SB, Fleming S, et al: High expression of HMGA2 independently predicts poor clinical outcomes in acute myeloid leukemia. Blood Cancer J. 8:682018. View Article : Google Scholar : PubMed/NCBI

41 

Wang X, Liu X, Li AY, Chen L, Lai L, Lin HH, Hu S, Yao L, Peng J, Loera S, et al: Overexpression of HMGA2 promotes metastasis and impacts survival of colorectal cancers. Clin Cancer Res. 17:2570–2580. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Malek A, Bakhidze E, Noske A, Sers C, Aigner A, Schäfer R and Tchernitsa O: HMGA2 gene is a promising target for ovarian cancer silencing therapy. Int J Cancer. 123:348–356. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Tan L, Wei X, Zheng L, Zeng J, Liu H, Yang S and Tan H: Amplified HMGA2 promotes cell growth by regulating Akt pathway in AML. J Cancer Res Clin Oncol. 142:389–399. 2016. View Article : Google Scholar

44 

Tessari MA, Gostissa M, Altamura S, Sgarra R, Rustighi A, Salvagno C, Caretti G, Imbriano C, Mantovani R, Del Sal G, et al: Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2. Mol Cell Biol. 23:9104–9116. 2003. View Article : Google Scholar : PubMed/NCBI

45 

Li Y, Peng L and Seto E: Histone deacetylase 10 regulates the cell cycle G2/M phase transition via a novel Let-7-HMGA2-cyclin A2 pathway. Mol Cell Biol. 35:3547–3565. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Shaulian E and Karin M: AP-1 as a regulator of cell life and death. Nat Cell Biol. 4:E131–E136. 2002. View Article : Google Scholar : PubMed/NCBI

47 

Vallone D, Battista S, Pierantoni GM, Fedele M, Casalino L, Santoro M, Viglietto G, Fusco A and Verde P: Neoplastic transformation of rat thyroid cells requires the junB and fra-1 gene induction which is dependent on the HMGI-C gene product. EMBO J. 16:5310–5321. 1997. View Article : Google Scholar : PubMed/NCBI

48 

Evan GI, Brown L, Whyte M and Harrington E: Apoptosis and the cell cycle. Curr Opin Cell Biol. 7:825–834. 1995. View Article : Google Scholar : PubMed/NCBI

49 

Seville LL, Shah N, Westwell AD and Chan WC: Modulation of pRB/E2F functions in the regulation of cell cycle and in cancer. Curr Cancer Drug Targets. 5:159–170. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Fedele M, Visone R, De Martino I, Troncone G, Palmieri D, Battista S, Ciarmiello A, Pallante P, Arra C, Melillo RM, et al: HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell. 9:459–471. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Yu KR, Park SB, Jung JW, Seo MS, Hong IS, Kim HS, Seo Y, Kang TW, Lee JY, Kurtz A, et al: HMGA2 regulates the in vitro aging and proliferation of human umbilical cord blood-derived stromal cells through the mTOR/p70S6K signaling pathway. Stem Cell Res (Amst). 10:156–165. 2013. View Article : Google Scholar

52 

Zhang H, Tang Z, Deng C, He Y, Wu F, Liu O and Hu C: HMGA2 is associated with the aggressiveness of tongue squamous cell carcinoma. Oral Dis. 23:255–264. 2017. View Article : Google Scholar

53 

Xie H, Wang J, Jiang L, Geng C, Li Q, Mei D, Zhao L and Cao J: ROS-dependent HMGA2 upregulation mediates Cd-induced proliferation in MRC-5 cells. Toxicol In Vitro. 34:146–152. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Minshull J, Blow JJ and Hunt T: Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell. 56:947–956. 1989. View Article : Google Scholar : PubMed/NCBI

55 

Liu WD, Tan L, Xiong XF, Liang YP and Tan H: The effects of lentivirus-mediated RNA interference silencing HMGA2 on proliferation and expressions of cyclin B2 and cyclin A2 in HL-60 cells. Zhonghua Xue Ye Xue Za Zhi. 33:448–452. 2012.in Chinese. PubMed/NCBI

56 

Branzei D and Foiani M: Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 11:208–219. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Masai H, Tanaka T and Kohda D: Stalled replication forks: Making ends meet for recognition and stabilization. BioEssays. 32:687–697. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Courcelle J, Donaldson JR, Chow KH and Courcelle CT: DNA damage-induced replication fork regression and processing in Escherichia coli. Science. 299:1064–1067. 2003. View Article : Google Scholar : PubMed/NCBI

59 

Yu H, Lim HH, Tjokro NO, Sathiyanathan P, Natarajan S, Chew TW, Klonisch T, Goodman SD, Surana U and Dröge P: Chaperoning HMGA2 protein protects stalled replication forks in stem and cancer cells. Cell Rep. 6:684–697. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Iyama T and Wilson DM III: DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst). 12:620–636. 2013. View Article : Google Scholar

61 

Bartkova J, Rajpert-De Meyts E, Skakkebaek NE, Lukas J and Bartek J: DNA damage response in human testes and testicular germ cell tumours: Biology and implications for therapy. Int J Androl. 30:282–291; discussion 291. 2007. View Article : Google Scholar : PubMed/NCBI

62 

Shrivastav M, De Haro LP and Nickoloff JA: Regulation of DNA double-strand break repair pathway choice. Cell Res. 18:134–147. 2008. View Article : Google Scholar

63 

Lieber MR: The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 79:181–211. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Arnoult N, Correia A, Ma J, Merlo A, Garcia-Gomez S, Maric M, Tognetti M, Benner CW, Boulton SJ, Saghatelian A, et al: Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature. 549:548–552. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Meek K, Dang V and Lees-Miller SP: DNA-PK: The means to justify the ends? Adv Immunol. 99:33–58. 2008. View Article : Google Scholar

66 

Uematsu N, Weterings E, Yano K, Morotomi-Yano K, Jakob B, Taucher-Scholz G, Mari PO, van Gent DC, Chen BP and Chen DJ: Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J Cell Biol. 177:219–229. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Downs JA, Lowndes NF and Jackson SP: A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature. 408:1001–1004. 2000. View Article : Google Scholar

68 

Nick McElhinny SA, Snowden CM, McCarville J and Ramsden DA: Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol Cell Biol. 20:2996–3003. 2000. View Article : Google Scholar : PubMed/NCBI

69 

Li AY, Boo LM, Wang SY, Lin HH, Wang CC, Yen Y, Chen BP, Chen DJ and Ann DK: Suppression of nonhomologous end joining repair by overexpression of HMGA2. Cancer Res. 69:5699–5706. 2009. View Article : Google Scholar : PubMed/NCBI

70 

Kühne C, Tjörnhammar ML, Pongor S, Banks L and Simoncsits A: Repair of a minimal DNA double-strand break by NHEJ requires DNA-PKcs and is controlled by the ATM/ATR checkpoint. Nucleic Acids Res. 31:7227–7237. 2003. View Article : Google Scholar : PubMed/NCBI

71 

Bullerdiek J and Rommel B: Comment re: HMGA2 is a negative regulator of DNA-PK pathway. Cancer Res. 70:1742author reply 1742. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Cleynen I and Van de Ven WJ: The HMGA proteins: A myriad of functions (Review). Int J Oncol. 32:289–305. 2008.PubMed/NCBI

73 

Boo LM, Lin HH, Chung V, Zhou B, Louie SG, O'Reilly MA, Yen Y and Ann DK: High mobility group A2 potentiates genotoxic stress in part through the modulation of basal and DNA damage-dependent phosphatidylinositol 3-kinase-related protein kinase activation. Cancer Res. 65:6622–6630. 2005. View Article : Google Scholar : PubMed/NCBI

74 

Palmieri D, Valentino T, D'Angelo D, De Martino I, Postiglione I, Pacelli R, Croce CM, Fedele M and Fusco A: HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene. 30:3024–3035. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Natarajan S, Hombach-Klonisch S, Dröge P and Klonisch T: HMGA2 inhibits apoptosis through interaction with ATR-CHK1 signaling complex in human cancer cells. Neoplasia. 15:263–280. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature. 461:1071–1078. 2009. View Article : Google Scholar : PubMed/NCBI

77 

Summer H, Li O, Bao Q, Zhan L, Peter S, Sathiyanathan P, Henderson D, Klonisch T, Goodman SD and Dröge P: HMGA2 exhibits dRP/AP site cleavage activity and protects cancer cells from DNA-damage-induced cytotoxicity during chemotherapy. Nucleic Acids Res. 37:4371–4384. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Hombach-Klonisch S, Kalantari F, Medapati MR, Natarajan S, Krishnan SN, Kumar-Kanojia A, Thanasupawat T, Begum F, Xu FY, Hatch GM, et al: HMGA2 as a functional antagonist of PARP1 inhibitors in tumor cells. Mol Oncol. 13:153–170. 2019. View Article : Google Scholar :

79 

Alekseev S and Coin F: Orchestral maneuvers at the damaged sites in nucleotide excision repair. Cell Mol Life Sci. 72:2177–2186. 2015. View Article : Google Scholar : PubMed/NCBI

80 

de Laat WL, Jaspers NG and Hoeijmakers JH: Molecular mechanism of nucleotide excision repair. Genes Dev. 13:768–785. 1999. View Article : Google Scholar : PubMed/NCBI

81 

Westerveld A, Hoeijmakers JH, van Duin M, de Wit J, Odijk H, Pastink A, Wood RD and Bootsma D: Molecular cloning of a human DNA repair gene. Nature. 310:425–429. 1984. View Article : Google Scholar : PubMed/NCBI

82 

Borrmann L, Schwanbeck R, Heyduk T, Seebeck B, Rogalla P, Bullerdiek J and Wisniewski JR: High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity. Nucleic Acids Res. 31:6841–6851. 2003. View Article : Google Scholar : PubMed/NCBI

83 

Cotter TG: Apoptosis and cancer: The genesis of a research field. Nat Rev Cancer. 9:501–507. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Taylor RC, Cullen SP and Martin SJ: Apoptosis: Controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 9:231–241. 2008. View Article : Google Scholar

85 

Ma C, Nong K, Zhu H, Wang W, Huang X, Yuan Z and Ai K: H19 promotes pancreatic cancer metastasis by derepressing let-7's suppression on its target HMGA2-mediated EMT. Tumour Biol. 35:9163–9169. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Jia J, Yang M, Chen Y, Yuan H, Li J, Cui X and Liu Z: Inducing apoptosis effect of caffeic acid 3,4-dihydroxy-phenethyl ester on the breast cancer cells. Tumour Biol. 35:11781–11789. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Sionov RV and Haupt Y: The cellular response to p53: The decision between life and death. Oncogene. 18:6145–6157. 1999. View Article : Google Scholar : PubMed/NCBI

88 

Meier P and Vousden KH: Lucifer's labyrinth - ten years of path finding in cell death. Mol Cell. 28:746–754. 2007. View Article : Google Scholar : PubMed/NCBI

89 

Pentimalli F, Dentice M, Fedele M, Pierantoni GM, Cito L, Pallante P, Santoro M, Viglietto G, Dal Cin P and Fusco A: Suppression of HMGA2 protein synthesis could be a tool for the therapy of well differentiated liposarcomas overexpressing HMGA2. Cancer Res. 63:7423–7427. 2003.PubMed/NCBI

90 

Kaur H, Hütt-Cabezas M, Weingart MF, Xu J, Kuwahara Y, Erdreich-Epstein A, Weissman BE, Eberhart CG and Raabe EH: The chromatin-modifying protein HMGA2 promotes atypical teratoid/rhabdoid cell tumorigenicity. J Neuropathol Exp Neurol. 74:177–185. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Mansoori B, Mohammadi A, Shirjang S and Baradaran B: HMGI-C suppressing induces P53/caspase-9 axis to regulate apoptosis in breast adenocarcinoma cells. Cell Cycle. 15:2585–2592. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Gao X, Dai M, Li Q, Wang Z, Lu Y and Song Z: HMGA2 regulates lung cancer proliferation and metastasis. Thorac Cancer. 8:Jul 28–2017.Epub ahead of print. View Article : Google Scholar

93 

Basolo F, Fiore L, Fusco A, Giannini R, Albini A, Merlo GR, Fontanini G, Conaldi PG and Toniolo A: Potentiation of the malignant phenotype of the undifferentiated ARO thyroid cell line by insertion of the bcl-2 gene. Int J Cancer. 81:956–962. 1999. View Article : Google Scholar : PubMed/NCBI

94 

Sos ML, Fischer S, Ullrich R, Peifer M, Heuckmann JM, Koker M, Heynck S, Stückrath I, Weiss J, Fischer F, et al: Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proc Natl Acad Sci USA. 106:18351–18356. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S and Reed JC: Regulation of cell death protease caspase-9 by phosphorylation. Science. 282:1318–1321. 1998. View Article : Google Scholar : PubMed/NCBI

96 

Wang XT, Pei DS, Xu J, Guan QH, Sun YF, Liu XM and Zhang GY: Opposing effects of Bad phosphorylation at two distinct sites by Akt1 and JNK1/2 on ischemic brain injury. Cell Signal. 19:1844–1856. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Wei CH, Wei LX, Lai MY, Chen JZ and Mo XJ: Effect of silencing of high mobility group A2 gene on gastric cancer MKN-45 cells. World J Gastroenterol. 19:1239–1246. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Danial NN and Korsmeyer SJ: Cell death: Critical control points. Cell. 116:205–219. 2004. View Article : Google Scholar : PubMed/NCBI

99 

Shi X, Tian B, Ma W, Zhang N, Qiao Y, Li X, Zhang Y, Huang B and Lu J: A novel anti-proliferative role of HMGA2 in induction of apoptosis through caspase 2 in primary human fibroblast cells. Biosci Rep. 35:e001692015. View Article : Google Scholar

100 

Fujikane R, Komori K, Sekiguchi M and Hidaka M: Function of high-mobility group A proteins in the DNA damage signaling for the induction of apoptosis. Sci Rep. 6:317142016. View Article : Google Scholar : PubMed/NCBI

101 

Wang WY, Cao YX, Zhou X, Wei B, Zhan L and Fu LT: HMGA2 gene silencing reduces epithelial-mesenchymal transition and lymph node metastasis in cervical cancer through inhibiting the ATR/Chk1 signaling pathway. Am J Transl Res. 10:3036–3052. 2018.PubMed/NCBI

102 

Haselmann V, Kurz A, Bertsch U, Hübner S, Olempska-Müller M, Fritsch J, Häsler R, Pickl A, Fritsche H, Annewanter F, et al: Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells. Gastroenterology. 146:278–290. 2014. View Article : Google Scholar

103 

Hayflick L: The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 37:614–636. 1965. View Article : Google Scholar : PubMed/NCBI

104 

d'Adda di Fagagna F: Living on a break: Cellular senescence as a DNA-damage response. Nat Rev Cancer. 8:512–522. 2008. View Article : Google Scholar : PubMed/NCBI

105 

Matsumura T, Zerrudo Z and Hayflick L: Senescent human diploid cells in culture: Survival, DNA synthesis and morphology. J Gerontol. 34:328–334. 1979. View Article : Google Scholar : PubMed/NCBI

106 

Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, et al: Programmed cell senescence during mammalian embryonic development. Cell. 155:1104–1118. 2013. View Article : Google Scholar : PubMed/NCBI

107 

Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J, et al: Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 155:1119–1130. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Artandi SE and DePinho RA: A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev. 10:39–46. 2000. View Article : Google Scholar : PubMed/NCBI

109 

Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ and Peeper DS: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 436:720–724. 2005. View Article : Google Scholar : PubMed/NCBI

110 

Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, et al: Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 436:725–730. 2005. View Article : Google Scholar : PubMed/NCBI

111 

Bringold F and Serrano M: Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol. 35:317–329. 2000. View Article : Google Scholar : PubMed/NCBI

112 

Dimri GP, Itahana K, Acosta M and Campisi J: Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol Cell Biol. 20:273–285. 2000. View Article : Google Scholar

113 

Sharpless NE: INK4a/ARF: A multifunctional tumor suppressor locus. Mutat Res. 576:22–38. 2005. View Article : Google Scholar : PubMed/NCBI

114 

Kim WY and Sharpless NE: The regulation of INK4/ARF in cancer and aging. Cell. 127:265–275. 2006. View Article : Google Scholar : PubMed/NCBI

115 

Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L and Sharpless NE: Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 114:1299–1307. 2004. View Article : Google Scholar : PubMed/NCBI

116 

Collado M and Serrano M: The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer. 6:472–476. 2006. View Article : Google Scholar : PubMed/NCBI

117 

Markowski DN, Bartnitzke S, Belge G, Drieschner N, Helmke BM and Bullerdiek J: Cell culture and senescence in uterine fibroids. Cancer Genet Cytogenet. 202:53–57. 2010. View Article : Google Scholar : PubMed/NCBI

118 

Nishino J, Kim I, Chada K and Morrison SJ: Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell. 135:227–239. 2008. View Article : Google Scholar : PubMed/NCBI

119 

Markowski DN, Winter N, Meyer F, von Ahsen I, Wenk H, Nolte I and Bullerdiek J: p14Arf acts as an antagonist of HMGA2 in senescence of mesenchymal stem cells-implications for benign tumorigenesis. Genes Chromosomes Cancer. 50:489–498. 2011. View Article : Google Scholar : PubMed/NCBI

120 

Zhu S, Deng S, Ma Q, Zhang T, Jia C, Zhuo D, Yang F, Wei J, Wang L, Dykxhoorn DM, et al: MicroRNA-10A* and microRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Circ Res. 112:152–164. 2013. View Article : Google Scholar

121 

Federico A, Forzati F, Esposito F, Arra C, Palma G, Barbieri A, Palmieri D, Fedele M, Pierantoni GM, De Martino I, et al: Hmga1/Hmga2 double knock-out mice display a 'superpygmy' phenotype. Biol Open. 3:372–378. 2014. View Article : Google Scholar : PubMed/NCBI

122 

Shi X, Tian B, Liu L, Gao Y, Ma C, Mwichie N, Ma W, Han L, Huang B, Lu J, et al: Rb protein is essential to the senescence-associated heterochromatic foci formation induced by HMGA2 in primary WI38 cells. J Genet Genomics. 40:391–398. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Narita M, Narita M, Krizhanovsky V, Nuñez S, Chicas A, Hearn SA, Myers MP and Lowe SW: A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell. 126:503–514. 2006. View Article : Google Scholar : PubMed/NCBI

124 

Yentrapalli R, Azimzadeh O, Sriharshan A, Malinowsky K, Merl J, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Becker KF, Haghdoost S, et al: The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation. PLoS One. 8:e700242013. View Article : Google Scholar : PubMed/NCBI

125 

Kennedy AL, Morton JP, Manoharan I, Nelson DM, Jamieson NB, Pawlikowski JS, McBryan T, Doyle B, McKay C, Oien KA, et al: Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis. Mol Cell. 42:36–49. 2011. View Article : Google Scholar : PubMed/NCBI

126 

Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M and Cichowski K: A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell. 10:459–472. 2006. View Article : Google Scholar : PubMed/NCBI

127 

Xu X, Lu Z, Qiang W, Vidimar V, Kong B, Kim JJ and Wei JJ: Inactivation of AKT induces cellular senescence in uterine leiomyoma. Endocrinology. 155:1510–1519. 2014. View Article : Google Scholar : PubMed/NCBI

128 

Kalluri R and Weinberg RA: The basics of epithelial-mesen-chymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI

129 

Barrallo-Gimeno A and Nieto MA: The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development. 132:3151–3161. 2005. View Article : Google Scholar : PubMed/NCBI

130 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

131 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial- mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

132 

Kirschmann DA, Seftor EA, Nieva DR, Mariano EA and Hendrix MJ: Differentially expressed genes associated with the metastatic phenotype in breast cancer. Breast Cancer Res Treat. 55:127–136. 1999. View Article : Google Scholar : PubMed/NCBI

133 

Wu J, Zhang S, Shan J, Hu Z, Liu X, Chen L, Ren X, Yao L, Sheng H, Li L, et al: Elevated HMGA2 expression is associated with cancer aggressiveness and predicts poor outcome in breast cancer. Cancer Lett. 376:284–292. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Liu Q, Liu T, Zheng S, Gao X, Lu M, Sheyhidin I and Lu X: HMGA2 is down-regulated by microRNA let-7 and associated with epithelial-mesenchymal transition in oesophageal squamous cell carcinomas of Kazakhs. Histopathology. 65:408–417. 2014. View Article : Google Scholar : PubMed/NCBI

135 

Watanabe S, Ueda Y, Akaboshi S, Hino Y, Sekita Y and Nakao M: HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am J Pathol. 174:854–868. 2009. View Article : Google Scholar : PubMed/NCBI

136 

Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH and Moustakas A: HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem. 283:33437–33446. 2008. View Article : Google Scholar : PubMed/NCBI

137 

Morishita A, Zaidi MR, Mitoro A, Sankarasharma D, Szabolcs M, Okada Y, D'Armiento J and Chada K: HMGA2 is a driver of tumor metastasis. Cancer Res. 73:4289–4299. 2013. View Article : Google Scholar : PubMed/NCBI

138 

Liu H, Wang X, Liu S and Li H, Yuan X, Feng B, Bai H, Zhao B, Chu Y and Li H: Effects and mechanism of miR-23b on glucose-mediated epithelial-to-mesenchymal transition in diabetic nephropathy. Int J Biochem Cell Biol. 70:149–160. 2016. View Article : Google Scholar

139 

Zha L, Zhang J, Tang W, Zhang N, He M, Guo Y and Wang Z: HMGA2 elicits EMT by activating the Wnt/β-catenin pathway in gastric cancer. Dig Dis Sci. 58:724–733. 2013. View Article : Google Scholar

140 

Sakai D, Suzuki T, Osumi N and Wakamatsu Y: Cooperative action of Sox9, Snail2 and PKA signaling in early neural crest development. Development. 133:1323–1333. 2006. View Article : Google Scholar : PubMed/NCBI

141 

Tan EJ, Kahata K, Idås O, Thuault S, Heldin CH and Moustakas A: The high mobility group A2 protein epigenetically silences the Cdh1 gene during epithelial-to-mesenchymal transition. Nucleic Acids Res. 43:162–178. 2015. View Article : Google Scholar :

142 

Huber MA, Kraut N and Beug H: Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 17:548–558. 2005. View Article : Google Scholar : PubMed/NCBI

143 

Singh I, Mehta A, Contreras A, Boettger T, Carraro G, Wheeler M, Cabrera-Fuentes HA, Bellusci S, Seeger W, Braun T, et al: Hmga2 is required for canonical WNT signaling during lung development. BMC Biol. 12:212014. View Article : Google Scholar : PubMed/NCBI

144 

Queimado L, Lopes CS and Reis AM: WIF1, an inhibitor of the Wnt pathway, is rearranged in salivary gland tumors. Genes Chromosomes Cancer. 46:215–225. 2007. View Article : Google Scholar

145 

Dong J, Wang R, Ren G, Li X, Wang J, Sun Y, Liang J, Nie Y, Wu K, Feng B, et al: HMGA2-FOXL2 Axis regulates metastases and epithelial-to-mesenchymal transition of chemoresistant gastric cancer. Clin Cancer Res. 23:3461–3473. 2017. View Article : Google Scholar : PubMed/NCBI

146 

Bodnar AG: Marine invertebrates as models for aging research. Exp Gerontol. 44:477–484. 2009. View Article : Google Scholar : PubMed/NCBI

147 

d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP and Jackson SP: A DNA damage checkpoint response in telomere-initiated senescence. Nature. 426:194–198. 2003. View Article : Google Scholar : PubMed/NCBI

148 

Harley CB: Telomerase and cancer therapeutics. Nat Rev Cancer. 8:167–179. 2008. View Article : Google Scholar : PubMed/NCBI

149 

Li AY, Lin HH, Kuo CY, Shih HM, Wang CC, Yen Y and Ann DK: High-mobility group A2 protein modulates hTERT transcription to promote tumorigenesis. Mol Cell Biol. 31:2605–2617. 2011. View Article : Google Scholar : PubMed/NCBI

150 

Natarajan S, Begum F, Gim J, Wark L, Henderson D, Davie JR, Hombach-Klonisch S and Klonisch T: High mobility group A2 protects cancer cells against telomere dysfunction. Oncotarget. 7:12761–12782. 2016. View Article : Google Scholar : PubMed/NCBI

151 

Qian YW, Gao JH, Lu F and Zheng XD: The differences between adipose tissue derived stem cells and lipoma mesen-chymal stem cells in characteristics. Zhonghua Zheng Xing Wai Ke Za Zhi. 26:125–132. 2010.In Chinese. PubMed/NCBI

152 

Okamoto K, Bartocci C, Ouzounov I, Diedrich JK, Yates JR III and Denchi EL: A two-step mechanism for TRF2-mediated chromosome-end protection. Nature. 494:502–505. 2013. View Article : Google Scholar : PubMed/NCBI

153 

Fojo T: Cancer, DNA repair mechanisms, and resistance to chemotherapy. J Natl Cancer Inst. 93:1434–1436. 2001. View Article : Google Scholar : PubMed/NCBI

154 

Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM and Lowe SW: A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell. 109:335–346. 2002. View Article : Google Scholar : PubMed/NCBI

155 

Marijon H, Dokmak S, Paradis V, Zappa M, Bieche I, Bouattour M, Raymond E and Faivre S: Epithelial-to-mesenchymal transition and acquired resistance to sunitinib in a patient with hepato-cellular carcinoma. J Hepatol. 54:1073–1078. 2011. View Article : Google Scholar

156 

Dangi-Garimella S, Krantz SB, Barron MR, Shields MA, Heiferman MJ, Grippo PJ, Bentrem DJ and Munshi HG: Three-dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP-mediated expression of HMGA2. Cancer Res. 71:1019–1028. 2011. View Article : Google Scholar

157 

Dangi-Garimella S, Sahai V, Ebine K, Kumar K and Munshi HG: Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression. PLoS One. 8:e645662013. View Article : Google Scholar : PubMed/NCBI

158 

Giannini G, Di Marcotullio L, Ristori E, Zani M, Crescenzi M, Scarpa S, Piaggio G, Vacca A, Peverali FA, Diana F, et al: HMGI(Y) and HMGI-C genes are expressed in neuroblastoma cell lines and tumors and affect retinoic acid responsiveness. Cancer Res. 59:2484–2492. 1999.PubMed/NCBI

159 

Xia YY, Yin L, Tian H, Guo WJ, Jiang N, Jiang XS, Wu J, Chen M, Wu JZ and He X: HMGA2 is associated with epithelial-mesenchymal transition and can predict poor prognosis in nasopharyngeal carcinoma. OncoTargets Ther. 8:169–176. 2015. View Article : Google Scholar

160 

Davidson B, Holth A, Hellesylt E, Tan TZ, Huang RY, Tropé C, Nesland JM and Thiery JP: The clinical role of epithelial-mesen-chymal transition and stem cell markers in advanced-stage ovarian serous carcinoma effusions. Hum Pathol. 46:1–8. 2015. View Article : Google Scholar

161 

Rogalla P, Drechsler K, Kazmierczak B, Rippe V, Bonk U and Bullerdiek J: Expression of HMGI-C, a member of the high mobility group protein family, in a subset of breast cancers: Relationship to histologic grade. Mol Carcinog. 19:153–156. 1997. View Article : Google Scholar : PubMed/NCBI

162 

Lee CT, Wu TT, Lohse CM and Zhang L: High-mobility group AT-hook 2: An independent marker of poor prognosis in intrahepatic cholangiocarcinoma. Hum Pathol. 45:2334–2340. 2014. View Article : Google Scholar : PubMed/NCBI

163 

Hristov AC, Cope L, Reyes MD, Singh M, Iacobuzio-Donahue C, Maitra A and Resar LM: HMGA2 protein expression correlates with lymph node metastasis and increased tumor grade in pancreatic ductal adenocarcinoma. Mod Pathol. 22:43–49. 2009. View Article : Google Scholar :

164 

Yang GL, Zhang LH, Bo JJ, Hou KL, Cai X, Chen YY, Li H, Liu DM and Huang YR: Overexpression of HMGA2 in bladder cancer and its association with clinicopathologic features and prognosis HMGA2 as a prognostic marker of bladder cancer. Eur J Surg Oncol. 37:265–271. 2011. View Article : Google Scholar : PubMed/NCBI

165 

Zou Q, Xiong L, Yang Z, Lv F, Yang L and Miao X: Expression levels of HMGA2 and CD9 and its clinicopathological signifi-cances in the benign and malignant lesions of the gallbladder. World J Surg Oncol. 10:922012. View Article : Google Scholar

166 

Lee CT, Zhang L, Mounajjed T and Wu TT: High mobility group AT-hook 2 is overexpressed in hepatoblastoma. Hum Pathol. 44:802–810. 2013. View Article : Google Scholar

167 

Raskin L, Fullen DR, Giordano TJ, Thomas DG, Frohm ML, Cha KB, Ahn J, Mukherjee B, Johnson TM and Gruber SB: Transcriptome profiling identifies HMGA2 as a biomarker of melanoma progression and prognosis. J Invest Dermatol. 133:2585–2592. 2013. View Article : Google Scholar : PubMed/NCBI

168 

Qian ZR, Asa SL, Siomi H, Siomi MC, Yoshimoto K, Yamada S, Wang EL, Rahman MM, Inoue H, Itakura M, et al: Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol. 22:431–441. 2009. View Article : Google Scholar : PubMed/NCBI

169 

Belge G, Meyer A, Klemke M, Burchardt K, Stern C, Wosniok W, Loeschke S and Bullerdiek J: Upregulation of HMGA2 in thyroid carcinomas: A novel molecular marker to distinguish between benign and malignant follicular neoplasias. Genes Chromosomes Cancer. 47:56–63. 2008. View Article : Google Scholar

170 

Zhang S, Zhang H and Yu L: HMGA2 promotes glioma invasion and poor prognosis via a long-range chromatin interaction. Cancer Med. 7:3226–3239. 2018. View Article : Google Scholar :

171 

Na N, Si T, Huang Z, Miao B, Hong L, Li H and Qiu J and Qiu J: High expression of HMGA2 predicts poor survival in patients with clear cell renal cell carcinoma. OncoTargets Ther. 9:7199–7205. 2016. View Article : Google Scholar

172 

Günther K, Foraita R, Friemel J, Günther F, Bullerdiek J, Nimzyk R, Markowski DN, Behrens T and Ahrens W: The stem cell factor HMGA2 is expressed in non-HPV-associated head and neck squamous cell carcinoma and predicts patient survival of distinct subsites. Cancer Epidemiol Biomarkers Prev. 26:197–205. 2017. View Article : Google Scholar

173 

Mito JK, Agoston AT, Dal Cin P and Srivastava A: Prevalence and significance of HMGA2 expression in oesophageal adeno-carcinoma. Histopathology. 71:909–917. 2017. View Article : Google Scholar : PubMed/NCBI

174 

Sarhadi VK, Wikman H, Salmenkivi K, Kuosma E, Sioris T, Salo J, Karjalainen A, Knuutila S and Anttila S: Increased expression of high mobility group A proteins in lung cancer. J Pathol. 209:206–212. 2006. View Article : Google Scholar : PubMed/NCBI

175 

Di Cello F, Hillion J, Hristov A, Wood LJ, Mukherjee M, Schuldenfrei A, Kowalski J, Bhattacharya R, Ashfaq R and Resar LM: HMGA2 participates in transformation in human lung cancer. Mol Cancer Res. 6:743–750. 2008. View Article : Google Scholar : PubMed/NCBI

176 

Strell C, Norberg KJ, Mezheyeuski A, Schnittert J, Kuninty PR, Moro CF, Paulsson J, Schultz NA, Calatayud D, Löhr JM, et al: Stroma-regulated HMGA2 is an independent prognostic marker in PDAC and AAC. Br J Cancer. 117:65–77. 2017. View Article : Google Scholar : PubMed/NCBI

177 

Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K and Mori M: Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res. 14:2334–2340. 2008. View Article : Google Scholar : PubMed/NCBI

178 

Berlingieri MT, Manfioletti G, Santoro M, Bandiera A, Visconti R, Giancotti V and Fusco A: Inhibition of HMGI-C protein synthesis suppresses retrovirally induced neoplastic transformation of rat thyroid cells. Mol Cell Biol. 15:1545–1553. 1995. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang S, Mo Q and Wang X: Oncological role of HMGA2 (Review). Int J Oncol 55: 775-788, 2019.
APA
Zhang, S., Mo, Q., & Wang, X. (2019). Oncological role of HMGA2 (Review). International Journal of Oncology, 55, 775-788. https://doi.org/10.3892/ijo.2019.4856
MLA
Zhang, S., Mo, Q., Wang, X."Oncological role of HMGA2 (Review)". International Journal of Oncology 55.4 (2019): 775-788.
Chicago
Zhang, S., Mo, Q., Wang, X."Oncological role of HMGA2 (Review)". International Journal of Oncology 55, no. 4 (2019): 775-788. https://doi.org/10.3892/ijo.2019.4856
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang S, Mo Q and Wang X: Oncological role of HMGA2 (Review). Int J Oncol 55: 775-788, 2019.
APA
Zhang, S., Mo, Q., & Wang, X. (2019). Oncological role of HMGA2 (Review). International Journal of Oncology, 55, 775-788. https://doi.org/10.3892/ijo.2019.4856
MLA
Zhang, S., Mo, Q., Wang, X."Oncological role of HMGA2 (Review)". International Journal of Oncology 55.4 (2019): 775-788.
Chicago
Zhang, S., Mo, Q., Wang, X."Oncological role of HMGA2 (Review)". International Journal of Oncology 55, no. 4 (2019): 775-788. https://doi.org/10.3892/ijo.2019.4856
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team