|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gera S, Ettel M, Acosta-Gonzalez G and Xu
R: Clinical features, histology, and histogenesis of combined
hepatocellular-cholan-giocarcinoma. World J Hepatol. 6:300–309.
2017. View Article : Google Scholar
|
|
3
|
Saffroy R, Pham P, Reffas M, Takka M,
Lemoine A and Debuire B: New perspectives and strategy research
biomarkers for hepatocel-lular carcinoma. Clin Chem Lab Med.
45:1169–1179. 2007. View Article : Google Scholar
|
|
4
|
Zhou YM, Yang JM, Li B, Yin ZF, Xu F, Wang
B, Liu P and Li ZM: Clinicopathologic characteristics of
intrahepatic chol-angiocarcinoma in patients with positive serum
a-fetoprotein. World J Gastroenterol. 14:2251–2254. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yin X, Zhang BH, Qiu SJ, Ren ZG, Zhou J,
Chen XH, Zhou Y and Fan J: Combined hepatocellular carcinoma and
cholangiocarci-noma: Clinical features, treatment modalities, and
prognosis. Ann Surg Oncol. 19:2869–2876. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yamashita T, Forgues M, Wang W, Kim JW, Ye
Q, Jia H, Budhu A, Zanetti KA, Chen Y, Qin LX, et al: EpCAM and
alpha‑fetoprotein expression defnes novel prognostic subtypes of
hepatocellular carcinoma. Cancer Res. 68:1451–1461. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Li R, Yang D, Tang CL, Cai P, Ma KS, Ding
SY, Zhang XH, Guo DY and Yan XC: Combined hepatocellular carcinoma
and cholangiocarcinoma (biphenotypic) tumors: Clinical
characteristics, imaging features of contrast-enhanced ultrasound
and computed tomography. BMC Cancer. 16:1582016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bertino G, Ardiri A, Malaguarnera M,
Malaguarnera G, Bertino N and Calvagno GS: Hepatocellualar
carcinoma serum markers. Semin Oncol. 39:410–433. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hagiwara S, Kudo M, Kawasaki T, Nagashima
M, Minami Y, Chung H, Fukunaga T, Kitano M and Nakatani T:
Prognostic factors for portal venous invasion in patients with
hepatocellular carcinoma. J Gastroenterol. 41:1214–1219. 2006.
View Article : Google Scholar
|
|
10
|
Tamura Y, Igarashi M, Kawai H, Suda T,
Satomura S and Aoyagi Y: Clinical advantage of highly sensitive
on-chip immunoassay for fucosylated fraction of alpha-fetoprotein
in patients with hepatocellular carcinoma. Dig Dis Sci. 55:pp.
3576–3583. 2010, View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Choi J, Kim GA, Han S, Lee W, Chun S and
Lim YS: Longitudinal assessment of three serum biomarkers to detect
very early stage hepatocellular carcinoma. Hepatology.
69:1983–1994. 2019. View Article : Google Scholar
|
|
12
|
Choi JY, Jung SW, Kim HY, Kim M, Kim Y,
Kim DG and Oh EJ: Diagnostic value of AFP‑L3 and PIVKA‑II in
hepatocellular carcinoma according to total-AFP. World J
Gastroenterol. 19:339–346. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Taketa K: Alpha-fetoprotein: Reevaluation
in hepatology. Hepatology. 12:1420–1432. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhang YS, Chu JH, Cui SX, Song ZY and Qu
XJ: Des‑γ-carboxy prothrombin (DCP) as a potential autologous
growth factor for the development of hepatocellular carcinoma. Cell
Physiol Biochem. 34:903–915. 2014. View Article : Google Scholar
|
|
15
|
Hu B, Tian X, Sun J and Meng X: Evaluation
of individual and combined applications of serum biomarkers for
diagnosis of hepatocellular carcinoma: A meta‑analysis. Int J Mol
Sci. 14:23559–23580. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Volk ML, Hernandez JC, Su GL, Lok AS and
Marrero JA: Risk factors for hepatocellular carcinoma may impair
the performance of biomarkers: A comparison of AFP, DCP, and
AFP-L3. Cancer Biomark. 3:79–87. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Song P, Tobe RG, Inagaki Y, Kokudo N,
Hasegawa K, Sugawara Y and Tang W: The management of hepatocellular
carcinoma around the world: A comparison of guidelines from 2001 to
2011. Liver Int. 32:1053–1063. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yamamoto K, Imamura H, Matsuyama Y, Kume
Y, Ikeda H, Norman GL, Shums Z, Aoki T, Hasegawa K, Beck Y, et al:
AFP, AFP-L3, DCP, and GP73 as markers for monitoring treatment
response and recurrence and as surrogate markers of
clinicopathological variables of HCC. J Gastroenterol.
45:1272–1282. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen J, Wu G and Li Y: Evaluation of serum
des-gamma-carboxy prothrombin for the diagnosis of hepatitis B
virus-related hepatocellular carcinoma: A meta-analysis. Dis
Markers. 2018:pp. 89060232018, View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Masuzaki R, Karp SJ and Omata M: New serum
markers of hepatocellular carcinoma. Semin Oncol. 39:pp. 434–439.
2012, View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang K, Guo W, Li N, Shi J, Zhang C, Lau
WY, Wu M and Cheng S: Alpha‑1‑fucosidase as a prognostic indicator
for hepatocellular carcinoma following hepatectomy: A large-scale,
long-term study. Br J Cancer. 110:1811–1819. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mintz K, Waidely E, Zhou Y, Peng Z,
Al‑Youbi AO, Bashammakh AS, El‑Shahawi MS and Leblanc RM: Carbon
dots and gold nanoparticles based immunoassay for detection of
alpha-L-fucosidase. Anal Chim Acta. 1041:114–121. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
El‑Tayeh SF, Hussein TD, El‑Houseini ME,
Amer MA, El‑Sherbini M and Elshemey WM: Serological biomarkers of
hepatocellular carcinoma in Egyptian patients. Dis Markers.
32:255–263. 2012. View Article : Google Scholar
|
|
24
|
Waidely E, Al‑Youbi AO, Bashammakh AS,
El‑Shahawi MS and Leblanc RM: Alpha-l-fucosidase immunoassay for
early detection of hepatocellular carcinoma. Anal Chem.
89:9459–9466. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wei C, Yang X, Liu N, Geng J, Tai Y, Sun
Z, Mei G, Zhou P, Peng Y, Wang C, et al: Tumor microenvironment
regulation by the endoplasmic reticulum stress transmission
mediator Golgi protein 73 in mice. Hepatology. 70:851–870. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu Y, Zhang X, Zhou S, Shi J, Xu Y, He J,
Lin F, Wei A, Zhou L and Chen Z: Knockdown of Golgi phosphoprotein
73 blocks the trafficking of matrix metalloproteinase‑2 in
hepatocellular carcinoma cells and inhibits cell invasion. J Cell
Mol Med. 23:2399–2409. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Block TM, Comunale MA, Lowman M, Steel LF,
Romano PR, Fimmel C, Tennant BC, London WT, Evans AA, Blumberg B S,
et al: use of targeted glycoproteomics to identify serum
glycoproteins that correlate with liver cancer in woodchucks and
humans. Proc Natl Acad Sci USA. 102:pp. 779–784. 2005, View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mao Y, Yang H, Xu H, Lu X, Sang X, Du S,
Zhao H, Chen W, Xu Y, Chi T, et al: Golgi protein 73 (GOLPH2) is a
valuable serum marker for hepatocellular carcinoma. Gut.
59:1687–1693. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ibrahim GH, Mahmoud MA and Aly NM:
Evaluation of circulating transforming growth factor-beta1,
glypican-3 and Golgi protein-73 mRNAs expression as predictive
markers for hepatocellular carcinoma in Egyptian patients. Mol Biol
Rep. 40:7069–7075. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang Z, Zhang Y, Wang Y, Xu L and Xu W:
Alpha‑fetoprotein‑L3 and Golgi protein 73 may serve as candidate
biomarkers for diagnosing alpha-fetoprotein-negative hepatocellular
carcinoma. Onco Targets Ther. 9:123–129. 2015.
|
|
31
|
Lamort AS, Giopanou I, Psallidas I and
Stathopoulos GT: Osteopontin as a link between infammation and
cancer: The thorax in the spotlight. Cells. 8:pii: E815. 2019,
View Article : Google Scholar
|
|
32
|
Ying X, Zhao Y, Wang JL, Zhou X, Zhao J,
He CC, Guo XJ, Jin GH, Wang LJ, Zhu Q and Han SX: Serum
anti‑osteopontin autoantibody as a novel diagnostic and prognostic
biomarker in patients with hepatocellular carcinoma. Oncol Rep.
32:1550–1556. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Shang S, Plymoth A, Ge S, Feng Z, Rosen
HR, Sangrajrang S, Hainaut P, Marrero JA and Beretta L:
Identification of osteo-pontin as a novel marker for early
hepatocellular carcinoma. Hepatology. 55:483–490. 2012. View Article : Google Scholar
|
|
34
|
Zhu Y, Yang J, Xu D, Gao XM, Zhang Z, Hsu
JL, Li CW, Lim SO, Sheng YY, Zhang Y, et al: Disruption of
tumour-associated macrophage trafficking by the osteopontin‑induced
colony‑stimulating factor-1 signalling sensitises hepatocellular
carcinoma to anti-PD-L1 blockade. Gut. 9:1653–1666. 2019.
View Article : Google Scholar
|
|
35
|
Liu K, Duan J, Liu H, Yang X, Yang J, Wu M
and Chang Y: Precancer antiviral treatment reduces microvascular
invasion of early‑stage Hepatitis B‑related hepatocellular
carcinoma. Sci Rep. 9:22202019. View Article : Google Scholar
|
|
36
|
Qin XL, Wang ZR, Shi JS, Lu M, Wang L and
He QR: Utility of serum CA19-9 in diagnosis of cholangiocarcinoma:
In comparison with CEA. World J Gastroenterol. 10:427–432. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Minato H, Nakanuma Y and Terada T:
Expression of blood group-related antigens in cholangiocarcinoma in
relation to non-neoplastic bile ducts. Histopathology. 28:411–419.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang Y, Li J, Xia Y, Gong R, Wang K, Yan
Z, Wan X, Liu G, Wu D, Shi L, et al: Prognostic nomogram for
intrahepatic cholangiocarcinoma after partial hepatectomy. J Clin
Oncol. 31:1188–1195. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yamada T, Nakanishi Y, Okamura K,
Tsuchikawa T, Nakamura T, Noji T, Asano T, Tanaka K, Kurashima Y,
Ebihara Y, et al: Impact of serum carbohydrate antigen 19-9 level
on prognosis and prediction of lymph node metastasis in patients
with intrahepatic cholangiocarcinoma. J Gastroenterol Hepatol. Feb
10–2018, Epub ahead of print. View Article : Google Scholar
|
|
40
|
Carr BI, Kanke F, Wise M and Satomura S:
Clinical evaluation of lens culinaris agglutinin-reactive
alpha-fetoprotein and des-gamma-carboxy prothrombin in
histologically proven hepatocellular carcinoma in the United
States. Dig Dis Sci. 52:776–782. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Omata M, Cheng AL, Kokudo N, Kudo M, Lee
JM, Jia J, Tateishi R, Han KH, Chawla YK, Shiina S, et al:
Asia‑Pacific clinical practice guidelines on the management of
hepatocellular carcinoma: A 2017 update. Hepatol Int. 11:317–370.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kokudo N, Hasegawa K, Akahane M, Igaki H,
Izumi N, Ichida T, Uemoto S, Kaneko S, Kawasaki S, Ku Y, et al:
Evidence-based clinical practice guidelines for hepatocellular
carcinoma: The Japan society of hepatology 2013 update (3rd JSH‑HCC
Guidelines). Hepatol Res. 45:2015. View Article : Google Scholar
|
|
43
|
World Health Organization (WHO):
Guidelines for the prevention, care and treatment of persons with
chronic hepatitis B infection. WHO; Geneva: 2015
|
|
44
|
Zhou J, Sun HC, Wang Z, Cong WM, Wang JH,
Zeng MS, Yang JM, Bie P, Liu LX, Wen TF, et al: Guidelines for
diagnosis and treatment of primary liver cancer in China (2017
Edition). Liver Cancer. 7:235–260. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Nishida T and Kataoka H: Glypican
3-targeted therapy in hepatocellular carcinoma. Cancers (Basel).
11. pii: E1339. 2019, View Article : Google Scholar
|
|
46
|
Chen C, Huang X, Ying Z, Wu D, Yu Y, Wang
X and Chen C: Can glypican‑3 be a disease‑specific biomarker? Clin
Transl Med. 6:182017. View Article : Google Scholar
|
|
47
|
Shirakawa H, Kuronuma T, Nishimura Y,
Hasebe T, Nakano M, Gotohda N, Takahashi S, Nakagohri T, Konishi M,
Kobayashi N, et al: Glypican-3 is a useful diagnostic marker for a
component of hepatocellular carcinoma in human liver cancer. Int J
Oncol. 34:649–656. 2009.PubMed/NCBI
|
|
48
|
Capurro M, Wanless IR, Sherman M, Deboer
G, Shi W, Miyoshi E and Filmus J: Glypican-3: A novel serum and
histochemical marker for hepatocellular carcinoma.
Gastroenterology. 125:89–97. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kolluri A and Ho M: The role of glypican-3
in regulating Wnt, YAP, and hedgehog in liver cancer. Front Oncol.
9:7082019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liu H, Li P, Zhai Y, Qu CF, Zhang LJ, Tan
YF, Li N and Ding HG: Diagnostic value of glypican-3 in serum and
liver for primary hepa-tocellular carcinoma. World J Gastroenterol.
16:4410–4415. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang L, Yao M, Pan LH, Qian Q and Yao DF:
Glypican‑3 is a biomarker and a therapeutic target of
hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int.
14:361–366. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Han HH, Qiu YJ, Shi YY, Wen W, He XP, Dong
LW, Tan YX, Long YT, Tian H and Wang HY: Glypican-3-targeted
precision diagnosis of hepatocellular carcinoma on clinical
sections with a supramolecular 2D imaging probe. Theranostics.
8:3268–3274. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kakar S, Muir T, Murphy LM, Lloyd RV and
Burgart LJ: Immunoreactivity of Hep Par 1 in hepatic and
extrahepatic tumors and its correlation with albumin in situ
hybridization in hepatocellular carcinoma. Am J Clin Patho.
119:361–366. 2003. View Article : Google Scholar
|
|
54
|
Leong AS, Sormunen RT, Tsui WM and Liew
CT: Hep Par 1 and selected antibodies in the immunohistological
distinction of hepatocellular carcinoma from cholangiocarcinoma,
combined tumours and metastatic carcinoma. Histopathology.
33:318–324. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ibrahim TR and Abdel‑Raouf SM:
Immunohistochemical study of glypican-3 and HepPar-1 in
differentiating hepatocellular carcinoma from metastatic carcinomas
in FNA of the liver. Pathol Oncol Res. 21:379–387. 2015. View Article : Google Scholar
|
|
56
|
Kakar S, Gown AM, Goodman ZD and Ferrell
LD: Best practices in diagnostic immunohistochemistry:
Hepatocellular carcinoma versus metastatic neoplasms. Arch Pathol
Lab Med. 131:1648–1654. 2007.PubMed/NCBI
|
|
57
|
Wang C, Zhang Y, Guo K, Wang N, Jin H, Liu
Y and Qin W: Heat shock proteins in hepatocellular carcinoma:
Molecular mechanism and therapeutic potential. Int J Cancer.
138:1824–1834. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chuma M, Sakamoto M, Yamazaki K, Ohta T,
Ohki M, Asaka M and Hirohashi S: Expression profiling in multistage
hepatocarcinogenesis: Identification of HSP70 as a molecular marker
of early hepatocellular carcinoma. Hepatology. 37:198–207. 2003.
View Article : Google Scholar
|
|
59
|
Shin E, Ryu HS, Kim SH, Jung H, Jang JJ
and Lee K: The clinicopathological signifcance of heat shock
protein 70 and glutamine synthetase expression in hepatocellular
carcinoma. J Hepatobiliary Pancreat Sci. 18:pp. 544–550. 2011,
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kang GH, Lee BS, Lee ES, Kim SH, Lee HY
and Kang DY: Prognostic significance of p53, mTOR, c-Met, IGF-1R,
and HSP70 overexpression after the resection of hepatocellular
carcinoma. Gut Liver. 8:79–87. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Evason KJ, Grenert J P, Ferrell LD and
Kakar S: Atypical hepato-cellular adenoma-like neoplasms with
β-catenin activation show cytogenetic alterations similar to
well-differentiated hepatocellular carcinomas. Hum Pathol.
44:750–758. 2013. View Article : Google Scholar
|
|
62
|
Dal Bello B, Rosa L, Campanini N, Tinelli
C, Torello Viera F, D'Ambrosio G, Rossi S and Silini EM: Glutamine
synthetase immunostaining correlates with pathologic features of
hepa-tocellular carcinoma and better survival after radiofrequency
thermal ablation. Clin Cancer Res. 16:2157–2166. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Osada T, Nagashima I, Tsuno NH, Kitayama J
and Nagawa H: Prognostic significance of glutamine synthetase
expression in unifocal advanced hepatocellular carcinoma. J
Hepatol. 33:247–253. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Nguyen TB, Roncalli M, Di Tommaso L and
Kakar S: Combined use of heat-shock protein 70 and glutamine
synthetase is useful in the distinction of typical hepatocellular
adenoma from atypical hepatocellular neoplasms and
well-differentiated hepatocellular carcinoma. Mod Pathol.
29:283–292. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Uthamalingam P, Das A, Behra A, Kalra N
and Chawla Y: Diagnostic value of glypican3, heat shock protein 70
and glutamine synthetase in hepatocellular carcinoma arising in
cirrhotic and non-cirrhotic livers. J Clin Exp Hepatol. 8:173–180.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lagana SM, Moreira RK, Remotti HE and Bao
F: Glutamine synthetase, heat shock protein-70, and glypican-3 in
intrahepatic cholangiocarcinoma and tumors metastatic to liver.
Appl Immunohistochem Mol Morphol. 21:254–257. 2013.
|
|
67
|
Timek DT, Shi J, Liu H and Lin F:
Arginase‑1, HepPar‑1, and Glypican-3 are the most effective panel
of markers in distinguishing hepatocellular carcinoma from
metastatic tumor on fine‑needle aspiration specimens. Am J Clin
Pathol. 138:pp. 203–210. 2012, View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Pesce JT, Ramalingam TR, Mentink‑Kane MM,
Wilson MS, El Kasmi KC, Smith AM, Thompson RW, Cheever AW, Murray
PJ and Wynn TA: Arginase-1-expressing macrophages suppress Th2
cytokine‑driven infammation and fibrosis. PLoS Pathog.
5:e10003712009. View Article : Google Scholar
|
|
69
|
Fujiwara M, Kwok S, Yano H and Pai RK:
Arginase‑1 is a more sensitive marker of hepatic differentiation
than HepPar-1 and glypican-3 in fine-needle aspiration biopsies.
Cancer Cytopathol. 120:230–237. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yan BC, Gong C, Song J, Krausz T,
Tretiakova M, Hyjek E, Al‑Ahmadie H, Alves V, Xiao SY, Anders RA
and Hart JA: Arginase-1: A new immunohistochemical marker of
hepatocytes and hepatocellular neoplasms. Am J Surg Pathol. 34:pp.
1147–1154. 2010, View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Moll R, Divo M and Langbein L: The human
keratins: Biology and pathology. Histochem Cell Biol. 129:705–733.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ryu HS, Lee K, Shin E, Kim SH, Jing J,
Jung HY, Lee H and Jang JJ: Comparative analysis of
immunohistochemical markers for differential diagnosis of
hepatocelluar carcinoma and cholan-giocarcinoma. Tumori.
98:478–484. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu LZ, Yang LX, Zheng BH, Dong PP, Liu
XY, Wang ZC, Zhou J, Fan J, Wang XY and Gao Q: CK7/CK19 index: A
potential prognostic factor for postoperative intrahepatic
cholangiocarcinoma patients. J Surg Oncol. 117:pp. 1531–1539. 2018,
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pinato DJ, Pirisi M, Maslen L and Sharma
R: Tissue biomarkers of prognostic significance in hepatocellular
carcinoma. Adv Anat Pathol. 21:270–284. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Calderaro J, Couchy G, Imbeaud S, Amaddeo
G, Letouzé E, Blanc JF, Laurent C, Hajji Y, Azoulay D, Bioulac-Sage
P, et al: Histological subtypes of hepatocellular carcinoma are
related to gene mutations and molecular tumour classification. J
Hepatol. 67:727–738. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Totoki Y, Tatsuno K, Covington KR, Ueda H,
Creighton CJ, Kato M, Tsuji S, Donehower LA, Slagle BL, Nakamura H,
et al: Trans-ancestry mutational landscape of hepatocellular
carcinoma genomes. Nat Genet. 46:1267–1273. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yu JI, Choi C, Ha SY, Park CK, Kang SY,
Joh JW, Paik SW, Kim S, Kim M, Jung SH and Park HC: Clinical
importance of TERT overexpression in hepatocellular carcinoma
treated with curative surgical resection in HBV endemic area. Sci
Rep. 7:122582017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wang P, Dong Q, Zhang C, Kuan PF, Liu Y,
Jeck WR, Andersen JB, Jiang W, Savich GL, Tan TX, et al: Mutations
in isocitrate dehydrogenase 1 and 2 occur frequently in
intrahepatic cholangiocarcinomas and share hypermethylation targets
with glioblastomas. Oncogene. 32:3091–3100. 2013. View Article : Google Scholar
|
|
79
|
Xu YF, Liu HD, Liu ZL, Pan C, Yang XQ,
Ning SL, Zhang ZL, Guo S and Yu JM: Sprouty2 suppresses progression
and correlates to favourable prognosis of intrahepatic
cholangiocar-cinoma via antagonizing FGFR2 signalling. J Cell Mol
Med. 22:5596–5606. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Mazzaferro V, El‑Rayes BF, Droz Dit Busset
M, Cotsoglou C, Harris W P, Damjanov N, Masi G, Rimassa L,
Personeni N, Braiteh F, et al: Derazantinib (ARQ 087) in advanced
or inoperable FGFR2 gene fusion-positive intrahepatic
cholangio-carcinoma. Br J Cancer. 120:165–171. 2019. View Article : Google Scholar
|
|
81
|
Sheng Y, Wei J, Zhang Y, Gao X, Wang Z,
Yang J, Yan S, Zhu Y, Zhang Z, Xu D, et al: Mutated EPHA2 is a
target for combating lymphatic metastasis in intrahepatic
cholangiocarcinoma. Int J Cancer. 144:2440–2452. 2019. View Article : Google Scholar
|
|
82
|
Tian XP, Wang CY, Jin XH, Li M, Wang FW,
Huang WJ, Yun JP, Xu RH, Cai QQ and Xie D: Acidic microenvironment
up‑regu-lates exosomal miR-21 and miR-10b in early-stage
hepatocellular carcinoma to promote cancer cell proliferation and
metastasis. Theranostics. 9:1965–1979. 2019. View Article : Google Scholar :
|
|
83
|
Amr KS, Elmawgoud Atia HA, Elazeem
Elbnhawy RA and Ezzat WM: Early diagnostic evaluation of miR-122
and miR-224 as biomarkers for hepatocellular carcinoma. Genes Dis.
4:215–221. 2017. View Article : Google Scholar
|
|
84
|
Wang L, Sun L, Wang Y, Yao B, Liu R, Chen
T, Tu K, Liu Q and Liu Z: MiR-1204 promotes hepatocellular
carcinoma progression through activating MAPK and c-Jun/AP1
signaling by targeting ZNF418. Int J Biol Sci. 15:pp. 1514–1522.
2019, View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ji J, Rong Y, Luo CL, Li S, Jiang X, Weng
H, Chen H, Zhang WW, Xie W and Wang FB: Up-regulation of
hsa-miR-210 promotes venous metastasis and predicts poor prognosis
in hepatocellular carcinoma. Front Oncol. 8:5692018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Li F, Wang F, Zhu C, Wei Q, Zhang T and
Zhou YL: MiR-221 suppression through nanoparticle-based miRNA
delivery system for hepatocellular carcinoma therapy and its
diagnosis as a potential biomarker. Int J Nanomedicine.
13:2295–2307. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li H, Zhou ZQ, Yang ZR, Tong DN, Guan J,
Shi BJ, Nie J, Ding XT, Li B, Zhou GW and Zhang ZY: MicroRNA‑191
acts as a tumor promoter by modulating the TET1-p53 pathway in
intrahepatic cholangiocarcinoma. Hepatology. 66:136–151. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wu J, Yang B, Zhang Y, Feng X, He B, Xie
H, Zhou L, Wu J and Zheng S: MiR-424-5prepresses the metastasis and
invasion of intrahepatic cholangiocarcinoma by targeting ARK5. Int
J Biol Sci. 15:pp. 1591–1599. 2019, View Article : Google Scholar :
|
|
89
|
Marisi G, Cucchetti A, Ulivi P, Canale M,
Cabibbo G, Solaini L, Foschi FG, De Matteis S, Ercolani G,
Valgiusti M, et al: Ten years of sorafenib in hepatocellular
carcinoma: Are there any predictive and/or prognostic markers.
World J Gastroenterol. 24:4152–4163. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Shao Q, Ren P, Li Y, Peng B, Dai L, Lei N,
Yao W, Zhao G, Li L and Zhang J: Autoantibodies against
glucose‑regulated protein 78 as serological diagnostic biomarkers
in hepatocellular carcinoma. Int J Oncol. 41:1061–1067. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Chiou JF, Tai CJ, Huang MT, Wei PL, Wang
YH, An J, Wu CH, Liu TZ and Chang YJ: Glucose‑regulated protein 78
is a novel contributor to acquisition of resistance to sorafenib in
hepatocel-lular carcinoma. Ann Surg Oncol. 17:pp. 603–612. 2010,
View Article : Google Scholar
|
|
92
|
Li R, Yanjiao G and Wubin H: Secreted
GRP78 activates EGFR‑SRC‑STAT3 signaling and confers the resistance
to sora-feinib in HCC cells. Oncotarget. 8:19354–19364. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Hu H, Gao L, Wang C, Li Y, Ma H, Chen L,
Qin J, Liu B, Liu Y and Liang C: Lower serum soluble-EGFR is a
potential biomarker for metastasis of HCC demonstrated by
N-glycoproteomic analysis. Discov Med. 19:333–341. 2015.PubMed/NCBI
|
|
94
|
Ezzoukhry Z, Louandre C, Trécherel E,
Godin C, Chauffert B, Dupont S, Diouf M, Barbare JC, Mazière JC and
Galmiche A: EGFR activation is a potential determinant of primary
resistance of hepatocellular carcinoma cells to sorafenib. Int J
Cancer. 131:2961–2969. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Komposch K and Sibilia M: EGFR signaling
in liver diseases. Int J Mol Sci. 17:pii: E30. 2015, View Article : Google Scholar
|
|
96
|
Firtina Karagonlar Z, Koc D, Iscan E,
Erdal E and Atabey N: Elevated hepatocyte growth factor expression
as an autocrine c-Met activation mechanism in acquired resistance
to sorafenib in hepatocellular carcinoma cells. Cancer Sci. 107:pp.
407–416. 2016, View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Xiang Q, Chen W, Ren M, Wang J, Zhang H,
Deng DY, Zhang L, Shang C and Chen Y: Cabozantinib suppresses tumor
growth and metastasis in hepatocellular carcinoma by a dual
blockade of VEGFR2 and MET. Clin Cancer Res. 20:pp. 2959–2970.
2014, View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Han P, Li H, Jiang X, Zhai B, Tan G, Zhao
D, Qiao H, Liu B, Jiang H and Sun X: Dual inhibition of Akt and
c‑Met as a second-line therapy following acquired resistance to
sorafenib in hepatocellular carcinoma cells. Mol Oncol. 11:320–334.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Capurro M, Martin T, Shi W and Filmus J:
Glypican‑3 binds to Frizzled and plays a direct role in the
stimulation of canonical Wnt signaling. J Cell Sci. 127:pp.
1565–1575. 2014, View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Austinat M, Dunsch R, Wittekind C,
Tannapfel A, Gebhardt R and Gaunitz F: Correlation between
beta-catenin mutations and expression of Wnt-signaling target genes
in hepatocellular carcinoma. Mol Cancer. 7:212008. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lachenmayer A, Alsinet C, Savic R,
Cabellos L, Toffanin S, Hoshida Y, Villanueva A, Minguez B, Newell
P, Tsai H W, et al: Wnt-pathway activation in two molecular classes
of hepatocellular carcinoma and experimental modulation by
sorafenib. Clin Cancer Res. 18:4997–5007. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Hu CT, Wu JR, Cheng CC and Wu WS: The
therapeutic targeting of HGF/c-Met signaling in hepatocellular
carcinoma: Alternative approaches. Cancers (Basel). 9. pii: E58.
2017, View Article : Google Scholar
|
|
103
|
Gao W, Kim H and Ho M: Human monoclonal
antibody targeting the heparan sulfate chains of glypican-3
inhibits HGF-mediated migration and motility of hepatocellular
carcinoma cells. PLoS One. 10:e01376642015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Yu J, Yuan X, Sjöholm L, Liu T, Kong F,
Ekström TJ, Björkholm M and Xu D: Telomerase reverse transcriptase
regulates DNMT3B expression/aberrant DNA methylation phenotype and
AKT activation in hepatocellular carcinoma. Cancer Lett. 434:33–41.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang S, Zhu M, Wang Q, Hou Y, Li L, Weng
H, Zhao Y, Chen D, Ding H, Guo J and Li M: Alpha-fetoprotein
inhibits autophagy to promote malignant behaviour in hepatocellular
carcinoma cells by activating PI3K/AKT/mTOR signaling. Cell Death
Dis. 10:pp. 832019, View Article : Google Scholar
|
|
106
|
Meng X, Franklin DA, Dong J and Zhang Y:
MDM2‑p53 pathway in hepatocellular carcinoma. Cancer Res.
74:7161–7167. 2014. View Article : Google Scholar : PubMed/NCBI
|