Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
July-2020 Volume 57 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2020 Volume 57 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells

  • Authors:
    • Shan Liao
    • Lin Liang
    • Chunxue Yue
    • Junyu He
    • Zhengxi He
    • Xi Jin
    • Gengqiu Luo
    • Yanhong Zhou
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China, Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China, Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
  • Pages: 338-354
    |
    Published online on: April 8, 2020
       https://doi.org/10.3892/ijo.2020.5040
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

In contrast to normal cells, cancer cells typically undergo metabolic reprogramming. Studies have shown that oncogenes play an important role in this metabolic reprogramming. CD38 is a multifunctional transmembrane protein that is expressed abnormally in a variety of tumor types. To investigate the effect and possible mechanism of CD38 in cervical cancer cells and to provide a new therapeutic target for the treatment of cervical cancer, the present study identified that CD38 is involved in regulating cell metabolism in cervical cancer cells. Liquid chromatography‑tandem mass spectrometry and bioinformatic analyses revealed that differentially abundant proteins in CD38‑overexpressed cervical cancer cells (CaSki‑CD38 and HeLa‑CD38) are predominantly involved in glycolytic pathways, oxidative phosphorylation and the NAD/NADH metabolic process. Further experiments using an ATP test kit and lactate test kit revealed that CD38 promotes glucose consumption, increases lactate accumulation and increases ATP production. In addition, CD38 increases the phosphorylation of phosphatidylserine/threonine kinase (AKT), mechanistic target of rapamycin (mTOR) and phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K), which play a key role in tumor metabolism. Furthermore, it was found that the energy metabolism of cervical cancer cells was inhibited following treatment with the mTOR inhibitor rapamycin. In conclusion, the results of the present study suggested that CD38 regulates the metabolism of cervical cancer cells by regulating the PI3K/AKT/mTOR pathway, which may be a candidate target for the treatment of cervical cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB: The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism. 7:11–20. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI

4 

Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI

5 

Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y, et al: Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell. 42:719–730. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Xu XD, Shao SX, Jiang HP, Cao YW, Wang YH, Yang XC, Wang YL, Wang XS and Niu HT: Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol Res Treat. 38:117–122. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Liesa M and Shirihai OS: Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17:491–506. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Mitra K: Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation. Bioessays. 35:955–964. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Youle RJ and Karbowski M: Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol. 6:657–663. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Luo S, Li Y, Ma R, Liu J, Xu P, Zhang H, Tang K, Ma J, Liu N, Zhang Y, et al: Downregulation of PCK2 remodels tricar-boxylic acid cycle in tumor-repopulating cells of melanoma. Oncogene. 36:3609–3617. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Kerins MJ, Vashisht AA, Liang BX, Duckworth SJ, Praslicka BJ, Wohlschlegel JA and Ooi A: Fumarate mediates a chronic prolif-erative signal in fumarate Hydratase-inactivated cancer cells by increasing transcription and translation of ferritin genes. Mol Cell Biol. 37:pii: e00079-e17. 2017, View Article : Google Scholar

12 

Crunkhorn S: Breast cancer: Inhibiting fatty acid oxidation blocks tumour growth. Nat Rev Drug Discov. 15:3102016.

13 

Zhu L, Ploessl K, Zhou R, Mankoff D and Kung HF: Metabolic imaging of glutamine in cancer. J Nucl Med. 58:533–537. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY, Chapski DJ, Jeong SM, Dempsey JM, Parkhitko A, Morrison T, et al: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell. 153:840–854. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Altman BJ, Stine ZE and Dang CV: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer. 16:619–634. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Tedeschi PM, Bansal N, Kerrigan JE, Abali EE, Scotto KW and Bertino JR: NAD+ kinase as a therapeutic target in cancer. Clin Cancer Res. 22:5189–5195. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M and Yang X: p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol. 13:310–316. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Dang CV: Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res. 70:859–862. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV and Cerione RA: Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 18:207–219. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT and Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Poulain L, Sujobert P, Zylbersztejn F, Barreau S, Stuani L, Lambert M, Palama TL, Chesnais V, Birsen R, Vergez F, et al: High mTORC1 activity drives glycolysis addiction and sensitivity to G6PD inhibition in acute myeloid leukemia cells. Leukemia. 31:2326–2335. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Oronsky BT, Oronsky N, Fanger GR, Parker CW, Caroen SZ, Lybeck M and Scicinski JJ: Follow the ATP: Tumor energy production: A perspective. Anticancer Agents Med Chem. 14:1187–1198. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Rah SY and Kim UH: CD38-mediated Ca2+ signaling contributes to glucagon-induced hepatic gluconeogenesis. Sci Rep. 5:107412015. View Article : Google Scholar

24 

Mehta K, Shahid U and Malavasi F: Human CD38, a cell-surface protein with multiple functions. FASEB J. 10:1408–1417. 1996. View Article : Google Scholar : PubMed/NCBI

25 

Malavasi F, Funaro A, Roggero S, Horenstein A, Calosso L and Mehta K: Human CD38: A glycoprotein in search of a function. Immunol Today. 15:95–97. 1994. View Article : Google Scholar : PubMed/NCBI

26 

Chini EN: CD38 as a regulator of cellular NAD: A novel potential pharmacological target for metabolic conditions. Curr Pharm Des. 15:57–63. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Zocchi E, Daga A, Usai C, Franco L, Guida L, Bruzzone S, Costa A, Marchetti C and De Flora A: Expression of CD38 increases intracellular calcium concentration and reduces doubling time in HeLa and 3T3 cells. J Biol Chem. 273:8017–8024. 1998. View Article : Google Scholar : PubMed/NCBI

28 

Long AN, Owens K, Schlappal AE, Kristian T, Fishman PS and Schuh RA: Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer's disease‑relevant murine model. BMC Neurol. 15:192015. View Article : Google Scholar

29 

Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X and Lo EH: Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 535:551–555. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Liao S, Xiao S, Chen H, Zhang M, Chen Z, Long Y, Gao L, Zhu G, He J, Peng S, et al: CD38 enhances the proliferation and inhibits the apoptosis of cervical cancer cells by affecting the mitochondria functions. Mol Carcinog. 56:2245–2257. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Liao S, Xiao S, Zhu G, Zheng D, He J, Pei Z, Li G and Zhou Y: CD38 is highly expressed and affects the PI3K/Akt signaling pathway in cervical cancer. Oncol Rep. 32:2703–2709. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Zhu GC, Gao L, He J, Long Y, Liao S, Wang H, Li X, Yi W, Pei Z, Wu M, et al: CD90 is upregulated in gastric cancer tissues and inhibits gastric cancer cell apoptosis by modulating the expression level of SPARC protein. Oncol Rep. 34:2497–2506. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Li H, Li X, Ge X, Jia L, Zhang Z, Fang R, Yang J, Liu J, Peng S, Zhou M, et al: MiR-34b-3 and miR-449a inhibit malignant progression of nasopharyngeal carcinoma by targeting lactate dehydrogenase A. Oncotarget. 7:54838–54851. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Luo P, Zhang C, Liao F, Chen L, Liu Z, Long L, Jiang Z, Wang Y, Wang Z, Liu Z, et al: Transcriptional positive cofactor 4 promotes breast cancer proliferation and metastasis through c-Myc mediated Warburg effect. Cell Commun Signal. 17:362019. View Article : Google Scholar : PubMed/NCBI

35 

Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, et al: Metabolic heterogeneity in human lung tumors. Cell. 164:681–694. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Kletzien RF, Harris PK and Foellmi LA: Glucose-6-phosphate dehydrogenase: A 'housekeeping' enzyme subject to tissue‑specific regulation by hormones, nutrients, and oxidant stress. FASEB J. 8:174–181. 1994. View Article : Google Scholar : PubMed/NCBI

37 

Stanton RC: Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life. 64:362–369. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Wood T: Physiological functions of the pentose phosphate pathway. Cell Biochem Funct. 4:241–247. 1986. View Article : Google Scholar : PubMed/NCBI

39 

Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A, et al: Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 459:717–721. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM, et al: The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 346:1937–1947. 2002. View Article : Google Scholar : PubMed/NCBI

41 

Quade BJ, Wang TY, Sornberger K, Dal Cin P, Mutter GL and Morton CC: Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling. Genes Chromosomes Cancer. 40:97–108. 2004. View Article : Google Scholar : PubMed/NCBI

42 

Stearman RS, Dwyer-Nield L, Zerbe L, Blaine SA, Chan Z, Bunn PA Jr, Johnson GL, Hirsch FR, Merrick DT, Franklin WA, et al: Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am J Pathol. 167:1763–1775. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Su LJ, Chang CW, Wu YC, Chen KC, Lin CJ, Liang SC, Lin CH, Whang-Peng J, Hsu SL, Chen CH and Huang CY: Selection of DDX5 as a novel internal control for Q-RT-PCR from micro-array data using a block bootstrap re-sampling scheme. BMC Genomics. 8:1402007. View Article : Google Scholar

44 

Gatenby RA and Gillies RJ: Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 4:891–899. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, Torrice C, Wu MC, Shimamura T, Perera SA, et al: LKB1 modulates lung cancer differentiation and metastasis. Nature. 448:807–810. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, et al: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 496:101–105. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Jian M, Yunjia Z, Zhiying D, Yanduo J and Guocheng J: Interleukin 7 receptor activates PI3K/Akt/mTOR signaling pathway via downregulation of Beclin-1 in lung cancer. Mol Carcinog. 58:358–365. 2019. View Article : Google Scholar

48 

Lau MT and Leung PC: The PI3K/Akt/mTOR signaling pathway mediates insulin-like growth factor 1-induced E-cadherin down-regulation and cell proliferation in ovarian cancer cells. Cancer Lett. 326:191–198. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Guerrero-Zotano A, Mayer IA and Arteaga CL: PI3K/AKT/mTOR: Role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev. 35:515–524. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Takeuchi H, Kondo Y, Fujiwara K, Kanzawa T, Aoki H, Mills GB and Kondo S: Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 65:3336–3346. 2005. View Article : Google Scholar : PubMed/NCBI

51 

Barra F, Evangelisti G, Ferro Desideri L, Di Domenico S, Ferraioli D, Vellone VG, De Cian F and Ferrero S: Investigational PI3K/AKT/mTOR inhibitors in development for endometrial cancer. Expert Opin Investig Drugs. 28:131–142. 2019. View Article : Google Scholar

52 

Fleming GF, Filiaci VL, Marzullo B, Zaino RJ, Davidson SA, Pearl M, Makker V, Burke JJ II, Zweizig SL, Van Le L, et al: Temsirolimus with or without megestrol acetate and tamoxifen for endometrial cancer: A gynecologic oncology group study. Gynecol Oncol. 132:585–592. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Colombo N, McMeekin S, Schwartz P, Kostka J, Sessa C, Holloway PG, Braly P, Matei D and Einstein M: A phase II trial of the mTOR inhibitor AP23573 as a single agent in advanced endometrial cancer. J Clin Oncol. 25(18 Suppl): S55162007. View Article : Google Scholar

54 

Tsoref D, Welch S, Lau S, Biagi J, Tonkin K, Martin LA, Ellard S, Ghatage P, Elit L, Mackay HJ, et al: Phase II study of oral rida-forolimus in women with recurrent or metastatic endometrial cancer. Gynecol Oncol. 135:184–189. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Tan X, Zhang Z, Yao H and Shen L: Tim-4 promotes the growth of colorectal cancer by activating angiogenesis and recruiting tumor-associated macrophages via the PI3K/AKT/mTOR signaling pathway. Cancer Lett. 436:119–128. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Lian G, Chen S, Ouyang M, Li F, Chen L and Yang J: Colon cancer cell secretes EGF to promote M2 polarization of TAM through EGFR/PI3K/AKT/mTOR pathway. Technol Cancer Res Treat. 18:15330338198490682019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liao S, Liang L, Yue C, He J, He Z, Jin X, Luo G and Zhou Y: CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells. Int J Oncol 57: 338-354, 2020.
APA
Liao, S., Liang, L., Yue, C., He, J., He, Z., Jin, X. ... Zhou, Y. (2020). CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells. International Journal of Oncology, 57, 338-354. https://doi.org/10.3892/ijo.2020.5040
MLA
Liao, S., Liang, L., Yue, C., He, J., He, Z., Jin, X., Luo, G., Zhou, Y."CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells". International Journal of Oncology 57.1 (2020): 338-354.
Chicago
Liao, S., Liang, L., Yue, C., He, J., He, Z., Jin, X., Luo, G., Zhou, Y."CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells". International Journal of Oncology 57, no. 1 (2020): 338-354. https://doi.org/10.3892/ijo.2020.5040
Copy and paste a formatted citation
x
Spandidos Publications style
Liao S, Liang L, Yue C, He J, He Z, Jin X, Luo G and Zhou Y: CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells. Int J Oncol 57: 338-354, 2020.
APA
Liao, S., Liang, L., Yue, C., He, J., He, Z., Jin, X. ... Zhou, Y. (2020). CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells. International Journal of Oncology, 57, 338-354. https://doi.org/10.3892/ijo.2020.5040
MLA
Liao, S., Liang, L., Yue, C., He, J., He, Z., Jin, X., Luo, G., Zhou, Y."CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells". International Journal of Oncology 57.1 (2020): 338-354.
Chicago
Liao, S., Liang, L., Yue, C., He, J., He, Z., Jin, X., Luo, G., Zhou, Y."CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells". International Journal of Oncology 57, no. 1 (2020): 338-354. https://doi.org/10.3892/ijo.2020.5040
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team