Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
August-2020 Volume 57 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 57 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation

  • Authors:
    • Fatima Mohammed
    • Fiza Rashid‑Doubell
    • Safa Taha
    • Seamas Cassidy
    • Salim Fredericks
  • View Affiliations / Copyright

    Affiliations: Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen 228, Kingdom of Bahrain, Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen 228, Kingdom of Bahrain, Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al‑Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama 2827, Kingdom of Bahrain
    Copyright: © Mohammed et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 445-455
    |
    Published online on: May 14, 2020
       https://doi.org/10.3892/ijo.2020.5065
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Curcumin displays anticancer properties; however, some issues with the drug delivery mode limit its therapeutic use. Although reformulation and derivatization of curcumin have improved its bioavailability, curcumin derivatives may not retain the same anticancer properties as the parent compound. The present study investigated the anticancer properties of two curcumin complexes, the iron‑curcumin [Fe(Cur)3] and boron‑curcumin [B(Cur)2] complexes, in the MDA‑MB‑231 breast cancer cell line. The cellular localization of curcumin, B(Cur)2 and Fe(Cur)3 was determined by fluorescence microscopy. Cell proliferation, migration and invasion were also analysed. Furthermore, apoptosis‑associated proteins were detected by using a proteome profiler array, and ion channel gene expression was analysed by reverse transcription‑quantitative PCR. The results demonstrated that the three compounds were localized in the perinuclear and cytoplasmic regions of the cell, and displayed cytotoxicity with IC50 values of 25, 35 and 8 µM for curcumin, B(Cur)2 and Fe(Cur)3, respectively. In addition, the three compounds inhibited cell invasion, whereas only curcumin and B(Cur)2 inhibited cell migration. Furthermore, cell exposure to curcumin resulted in an increase in the relative expression of the two key proapoptotic proteins, cytochrome c and cleaved caspase‑3, as well as the antiapoptotic protein haem oxygenase‑1. In addition, curcumin increased the expression levels of the voltage‑gated potassium channels Kv2.1 and Kv3.2. Similarly, the expression levels of the chloride channel bestrophin‑1 and the calcium channel coding gene calcium voltage‑gated channel auxiliary subunit γ4 were increased following exposure to curcumin. Taken together, these results indicated that Fe(Cur)3 and B(Cur)2 may display similar anticancer properties as curcumin, suggesting that chemical complexation may be considered as a strategy for improving the potency of curcumin in the treatment of breast cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C, et al: Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: A collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 7:pp. e10002792010, View Article : Google Scholar : PubMed/NCBI

3 

Hugh J, Hanson J, Cheang MC, Nielsen TO, Perou CM, Dumontet C, Reed J, Krajewska M, Treilleux I, Rupin M, et al: Breast cancer subtypes and response to docetaxel in node-positive breast cancer: Use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol. 27:1168–1176. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, et al: Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 10:5367–5374. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML and Perou CM: The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 13:2329–2334. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P and Narod SA: Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res. 13:4429–4434. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Li X, Yang J, Peng L, Sahin AA, Huo L, Ward KC, O'Regan R, Torres MA and Meisel JL: Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res Treat. 161:279–287. 2017. View Article : Google Scholar

8 

Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, et al: Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 26:1275–1281. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Massat NJ, Dibden A, Parmar D, Cuzick J, Sasieni PD and Duffy SW: Impact of screening on breast cancer mortality: The UK program 20 years on. Cancer Epidemiol Biomarkers Prev. 25:455–462. 2016. View Article : Google Scholar

10 

Kalager M, Zelen M, Langmark F and Adami HO: Effect of screening mammography on breast-cancer mortality in Norway. N Engl J Med. 363:1203–1210. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Gonzalez-Angulo AM, Morales-Vasquez F and Hortobagyi GN: Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 608:1–22. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Choudhuri T, Pal S, Das T and Sa G: Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem. 280:20059–20068. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Pal S, Bhattacharyya S, Choudhuri T, Datta GK, Das T and Sa G: Amelioration of immune cell number depletion and potentiation of depressed detoxification system of tumor-bearing mice by curcumin. Cancer Detect Prev. 29:470–478. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Shim JS, Kim JH, Cho HY, Yum YN, Kim SH, Park HJ, Shim BS, Choi SH and Kwon HJ: Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chem Biol. 10:695–704. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Yang X, Thomas DP, Zhang X, Culver BW, Alexander BM, Murdoch WJ, Rao MN, Tulis DA, Ren J and Sreejayan N: Curcumin inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol. 26:85–90. 2006. View Article : Google Scholar

16 

Zeitlin P: Can curcumin cure cystic fibrosis? N Engl J Med. 351:606–608. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Carroll RE, Benya RV, Turgeon DK, Vareed S, Neuman M, Rodriguez L, Kakarala M, Carpenter PM, McLaren C, Meyskens FL Jr and Brenner DE: Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res (Phila). 4:354–364. 2011. View Article : Google Scholar

18 

He ZY, Shi CB, Wen H, Li FL, Wang BL and Wang J: Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest. 29:208–213. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Hejazi J, Rastmanesh R, Taleban FA, Molana SH, Hejazi E, Ehtejab G and Hara N: Effect of curcumin supplementation during radiotherapy on oxidative status of patients with prostate cancer: A double blinded, randomized, placebo-controlled study. Nutr Cancer. 68:77–85. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Epstein J, Sanderson IR and Macdonald TT: Curcumin as a therapeutic agent: The evidence from in vitro, animal and human studies. Br J Nutr. 103:1545–1557. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Durgaprasad S, Pai CG, Vasanthkumar, Alvres JF and Namitha S: A pilot study of the antioxidant effect of curcumin in tropical pancreatitis. Indian J Med Res. 122:315–318. 2005.

22 

Sahin Kavaklı H, Koca C and Alıcı O: Antioxidant effects of curcumin in spinal cord injury in rats. Ulus Travma Acil Cerrahi Derg. 17:14–18. 2011. View Article : Google Scholar

23 

Meng B, Li J and Cao H: Antioxidant and antiinflammatory activities of curcumin on diabetes mellitus and its complications. Curr Pharm Des. 19:2101–2113. 2013.

24 

Lüer S, Troller R and Aebi C: Antibacterial and antiinflammatory kinetics of curcumin as a potential antimucositis agent in cancer patients. Nutr Cancer. 64:975–981. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Beevers CS and Huang S: Pharmacological and clinical properties of curcumin. Botanics Targets Ther. 1:5–18. 2011.

26 

Shishodia S, Sethi G and Aggarwal BB: Curcumin: Getting back to the roots. Ann N Y Acad Sci. 1056:206–217. 2005. View Article : Google Scholar

27 

Aggarwal BB, Kumar A and Bharti AC: Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 23:363–398. 2003.PubMed/NCBI

28 

Tønnesen HH, Karlsen J and van Henegouwen GB: Studies on curcumin and curcuminoids. VIII. Photochemical stability of curcumin. Z Lebensm Unters Forsch. 183:116–122. 1986. View Article : Google Scholar : PubMed/NCBI

29 

Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY and Lin JK: Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 15:1867–1876. 1997. View Article : Google Scholar : PubMed/NCBI

30 

Cartiera MS, Ferreira EC, Caputo C, Egan ME, Caplan MJ and Saltzman WM: Partial correction of cystic fibrosis defects with PLGA nanoparticles encapsulating curcumin. Mol Pharm. 7:86–93. 2010. View Article : Google Scholar :

31 

Liang G, Shao L, Wang Y, Zhao C, Chu Y, Xiao J, Zhao Y, Li X and Yang S: Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg Med Chem. 17:2623–2631. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Wanninger S, Lorenz V, Subhan A and Edelmann FT: Metal complexes of curcumin-synthetic strategies, structures and medicinal applications. Chem Soc Rev. 44:4986–5002. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Greish K, Pittalà V, Taurin S, Taha S, Bahman F, Mathur A, Jasim A, Mohammed F, El-Deeb IM, Fredericks S and Rashid-Doubell F: Curcumin-copper complex nanoparticles for the management of triple-negative breast cancer. Nanomaterials (Basel). 8. pp. E8842018, View Article : Google Scholar

34 

Mohammed F, Rashid-Doubell F, Cassidy S and Henari F: A comparative study of the spectral, fluorometric properties and photostability of natural curcumin, iron- and boron-complexed curcumin. Spectrochim Acta A Mol Biomol Spectrosc. 183:439–450. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Pröhl M, Schubert US, Weigand W and Gottschaldt M: Metal complexes of curcumin and curcumin derivatives for molecular imaging and anticancer therapy. Coord Chem Rev. 307:32–41. 2016. View Article : Google Scholar

36 

Cailleau R, Olivé M and Cruciger QV: Long-term human breast carcinoma cell lines of metastatic origin: Preliminary characterization. In Vitro. 14:911–915. 1978. View Article : Google Scholar : PubMed/NCBI

37 

Chavez KJ, Garimella SV and Lipkowitz S: Triple negative breast cancer cell lines: One tool in the search for better treatment of triple negative breast cancer. Breast Dis. 32:35–48. 2010. View Article : Google Scholar

38 

Osborne CK: Tamoxifen in the treatment of breast cancer. N Engl J Med. 339:1609–1618. 1998. View Article : Google Scholar : PubMed/NCBI

39 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Chiu TL and Su CC: Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-kappaBp65 expression in breast cancer MDA-MB-231 cells. Int J Mol Med. 23:469–475. 2009.PubMed/NCBI

41 

Lv ZD, Liu XP, Zhao WJ, Dong Q, Li FN, Wang HB and Kong B: Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. Int J Clin Exp Pathol. 7:2818–2824. 2014.PubMed/NCBI

42 

Kim HI, Huang H, Cheepala S, Huang S and Chung J: Curcumin inhibition of integrin (alpha6beta4)-dependent breast cancer cell motility and invasion. Cancer Prev Res (Phila). 1:pp. 385–391. 2008, View Article : Google Scholar

43 

Yee NS: Roles of TRPM8 Ion channels in cancer: Proliferation, survival, and invasion. Cancers (Basel). 7:2134–2146. 2015. View Article : Google Scholar

44 

Pardo LA and Stühmer W: The roles of K(+) channels in cancer. Nat Rev Cancer. 14:39–48. 2014. View Article : Google Scholar

45 

Urrego D, Tomczak AP, Zahed F, Stühmer W and Pardo LA: Potassium channels in cell cycle and cell proliferation. Philos Trans R Soc Lond B Biol Sci. 369:201300942014. View Article : Google Scholar : PubMed/NCBI

46 

Litan A and Langhans SA: Cancer as a channelopathy: Ion channels and pumps in tumor development and progression. Front Cell Neurosci. 9:862015. View Article : Google Scholar : PubMed/NCBI

47 

Djamgoz MB and Onkal R: Persistent current blockers of voltage-gated sodium channels: A clinical opportunity for controlling metastatic disease. Recent Pat Anticancer Drug Discov. 8:66–84. 2013. View Article : Google Scholar

48 

Wang Y, Yang Z, Meng Z, Cao H, Zhu G, Liu T and Wang X: Knockdown of TRPM8 suppresses cancer malignancy and enhances epirubicin-induced apoptosis in human osteosarcoma cells. Int J Biol Sci. 10:90–102. 2013. View Article : Google Scholar

49 

Hoffmann EK and Lambert IH: Ion channels and transporters in the development of drug resistance in cancer cells. Philos Trans R Soc Lond B Biol Sci. 369:201301092014. View Article : Google Scholar : PubMed/NCBI

50 

Yang M and Brackenbury WJ: Membrane potential and cancer progression. Front Physiol. 4:1852013. View Article : Google Scholar : PubMed/NCBI

51 

Bortner CD and Cidlowski JA: Ion channels and apoptosis in cancer. Philos Trans R Soc Lond B Biol Sci. 369:201301042014. View Article : Google Scholar : PubMed/NCBI

52 

Felipe A, Bielanska J, Comes N, Vallejo A and Roig S: Targeting the voltage-dependent K(+) channels Kv1.3 and Kv1.5 as tumor biomarkers for cancer detection and prevention. Curr Med Chem. 19:661–674. 2012. View Article : Google Scholar

53 

Szabò I, Zoratti M and Gulbins E: Contribution of voltage-gated potassium channels to the regulation of apoptosis. FEBS Lett. 584:2049–2056. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Szabó I, Bock J, Grassmé H, Soddemann M, Wilker B, Lang F, Zoratti M and Gulbins E: Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proc Natl Acad Sci USA. 105:14861–14866. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Banderali U, Belke D, Singh A, Jayanthan A, Giles WR and Narendran A: Curcumin blocks Kv11.1 (erg) potassium current and slows proliferation in the infant acute monocytic leukemia cell line THP-1. Cell Physiol Biochem. 28:1169–1180. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Lian YT, Yang XF, Wang ZH, Yang Y, Yang Y, Shu YW, Cheng LX and Liu K: Curcumin serves as a human kv1.3 blocker to inhibit effector memory T lymphocyte activities. Phytother Res. 27:1321–1327. 2013. View Article : Google Scholar

57 

Aréchiga-Figueroa IA, Delgado-Ramirez M, Morán-Zendejas R and Rodriguez-Menchaca AA: Modulation of Kv2.1 channels inactivation by curcumin. Pharmacol Rep. 67:1273–1279. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Khalil MI, AL-Zahem AM and Qunaibit MM: Synthesis, characterization, and antitumor activity of binuclear curcumin-metal(II) hydroxo complexes. Med Chem Res. 23:1683–1689. 2014. View Article : Google Scholar

59 

Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S and Boyd MR: New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 82:1107–1112. 1990. View Article : Google Scholar : PubMed/NCBI

60 

Heit B and Kubes P: Measuring chemotaxis and chemokinesis: The under-agarose cell migration assay. Sci STKE. 2003:PL52003.PubMed/NCBI

61 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

62 

Hope-Roberts M and Horobin RW: A review of curcumin as a biological stain and as a self-visualizing pharmaceutical agent. Biotech Histochem. 92:315–323. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Kunwar A, Barik A, Mishra B, Rathinasamy K, Pandey R and Priyadarsini KI: Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim Biophys Acta. 1780:673–679. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Sarkar T, Butcher RJ, Banerjee S, Mukherjee S and Hussain A: Visible light-induced cytotoxicity of a dinuclear iron(III) complex of curcumin with low-micromolar IC50 value in cancer cells. Inorganica Chimica Acta. 439:8–17. 2016. View Article : Google Scholar

65 

Ganguly KK, Sen T, Pal S, Biswas J and Chatterjee A: Studies on focal adhesion kinase in human breast cancer cell MDA-MB-231. Adv Biol Chem. 2:29–42. 2012. View Article : Google Scholar

66 

Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C and Kroemer G: Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 13:1423–1433. 2006. View Article : Google Scholar : PubMed/NCBI

67 

Xiao Y, Xia J, Wu S, Lv Z, Huang S, Huang H, Su X, Cheng J and Ke Y: Curcumin inhibits acute vascular inflammation through the activation of heme oxygenase-1. Oxid Med Cell Longev. 2018:32958072018. View Article : Google Scholar : PubMed/NCBI

68 

Wu SY, Lee YR, Huang CC, Li YZ, Chang YS, Yang CY, Wu JD and Liu YW: Curcumin-induced heme oxygenase-1 expression plays a negative role for its anti-cancer effect in bladder cancers. Food Chem Toxicol. 50:3530–3536. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Lee WY, Chen YC, Shih CM, Lin CM, Cheng CH, Chen KC and Lin CW: The induction of heme oxygenase-1 suppresses heat shock protein 90 and the proliferation of human breast cancer cells through its byproduct carbon monoxide. Toxicol Appl Pharmacol. 274:55–62. 2014. View Article : Google Scholar

70 

Park J and Conteas CN: Anti-carcinogenic properties of curcumin on colorectal cancer. World J Gastrointest Oncol. 2:169–175. 2010. View Article : Google Scholar : PubMed/NCBI

71 

Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R, Alam J and Motterlini R: Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J. 371:887–895. 2003. View Article : Google Scholar : PubMed/NCBI

72 

McNally SJ, Harrison EM, Ross JA, Garden OJ and Wigmore SJ: Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition. Int J Mol Med. 19:165–172. 2007.

73 

Mimche PN, Taramelli D and Vivas L: The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria. Malar J. 10(Suppl 1): pp. S102011, View Article : Google Scholar : PubMed/NCBI

74 

Nitti M, Piras S, Marinari UM, Moretta L, Pronzato MA and Furfaro AL: HO-1 induction in cancer progression: A matter of cell adaptation. Antioxidants(Basel). 6. pp. E292017, View Article : Google Scholar

75 

Jeon WK, Hong HY, Seo WC, Lim KH, Lee HY, Kim WJ, Song SY and Kim BC: Smad7 sensitizes A549 lung cancer cells to cisplatin-induced apoptosis through heme oxygenase-1 inhibition. Biochem Biophys Res Commun. 420:288–292. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Kongpetch S, Kukongviriyapan V, Prawan A, Senggunprai L, Kukongviriyapan U and Buranrat B: Crucial role of heme oxygenase-1 on the sensitivity of cholangiocarcinoma cells to chemotherapeutic agents. PLoS One. 7:pp. e349942012, View Article : Google Scholar : PubMed/NCBI

77 

Lv X, Song DM, Niu YH and Wang BS: Inhibition of heme oxygenase-1 enhances the chemosensitivity of laryngeal squamous cell cancer Hep-2 cells to cisplatin. Apoptosis. 21:489–501. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Tracey N, Creedon H, Kemp AJ, Culley J, Muir M, Klinowska T and Brunton VG: HO-1 drives autophagy as a mechanism of resistance against HER2-targeted therapies. Breast Cancer Res Treat. 179:543–555. 2020. View Article : Google Scholar :

79 

Zhao Z, Xu Y, Lu J, Xue J and Liu P: High expression of HO-1 predicts poor prognosis of ovarian cancer patients and promotes proliferation and aggressiveness of ovarian cancer cells. Clin Transl Oncol. 20:491–499. 2018. View Article : Google Scholar

80 

Becker JC, Fukui H, Imai Y, Sekikawa A, Kimura T, Yamagishi H, Yoshitake N, Pohle T, Domschke W and Fujimori T: Colonic expression of heme oxygenase-1 is associated with a better long-term survival in patients with colorectal cancer. Scand J Gastroenterol. 42:852–858. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Loboda A, Jozkowicz A and Dulak J: HO-1/CO system in tumor growth, angiogenesis and metabolism-targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol. 74:11–22. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Maines MD and Abrahamsson PA: Expression of heme oxygenase-1 (HSP32) in human prostate: Normal, hyperplastic, and tumor tissue distribution. Urology. 47:727–733. 1996. View Article : Google Scholar : PubMed/NCBI

83 

Busserolles J, Megías J, Terencio MC and Alcaraz MJ: Heme oxygenase-1 inhibits apoptosis in Caco-2 cells via activation of Akt pathway. Int J Biochem Cell Biol. 38:1510–1517. 2006. View Article : Google Scholar : PubMed/NCBI

84 

Tanaka S, Akaike T, Fang J, Beppu T, Ogawa M, Tamura F, Miyamoto Y and Maeda H: Antiapoptotic effect of haem oxygenase-1 induced by nitric oxide in experimental solid tumour. Br J Cancer. 88:902–909. 2003. View Article : Google Scholar : PubMed/NCBI

85 

Cherrington JM, Strawn LM and Shawver LK: New paradigms for the treatment of cancer: The role of anti-angiogenesis agents. Adv Cancer Res. 79:1–38. 2000. View Article : Google Scholar : PubMed/NCBI

86 

Price JT and Thompson EW: Mechanisms of tumour invasion and metastasis: Emerging targets for therapy. Expert Opin Ther Targets. 6:217–233. 2002. View Article : Google Scholar : PubMed/NCBI

87 

Lin Q, Weis S, Yang G, Weng YH, Helston R, Rish K, Smith A, Bordner J, Polte T, Gaunitz F and Dennery PA: Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem. 282:20621–20633. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Biswas C, Shah N, Muthu M, La P, Fernando AP, Sengupta S, Yang G and Dennery PA: Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem. 289:26882–26894. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Was H, Dulak J and Jozkowicz A: Heme oxygenase-1 in tumor biology and therapy. Curr Drug Targets. 11:1551–1570. 2010. View Article : Google Scholar : PubMed/NCBI

90 

Duckers HJ, Boehm M, True AL, Yet SF, San H, Park JL, Clinton Webb R, Lee ME, Nabel GJ and Nabel EG: Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med. 7:693–698. 2001. View Article : Google Scholar : PubMed/NCBI

91 

Taillé C, Almolki A, Benhamed M, Zedda C, Mégret J, Berger P, Lesèche G, Fadel E, Yamaguchi T, Marthan R, et al: Heme oxygenase inhibits human airway smooth muscle proliferation via a bilirubin-dependent modulation of ERK1/2 phosphorylation. J Biol Chem. 278:27160–27168. 2003. View Article : Google Scholar : PubMed/NCBI

92 

Ozawa N, Goda N, Makino N, Yamaguchi T, Yoshimura Y and Suematsu M: Leydig cell-derived heme oxygenase-1 regulates apoptosis of premeiotic germ cells in response to stress. J Clin Invest. 109:457–467. 2002. View Article : Google Scholar : PubMed/NCBI

93 

Liu XM, Chapman GB, Wang H and Durante W: Adenovirus-mediated heme oxygenase-1 gene expression stimulates apoptosis in vascular smooth muscle cells. Circulation. 105:79–84. 2002. View Article : Google Scholar : PubMed/NCBI

94 

Hill M, Pereira V, Chauveau C, Zagani R, Remy S, Tesson L, Mazal D, Ubillos L, Brion R, Asghar K, et al: Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: Mutual cross inhibition with indoleamine 2,3-dioxygenase. FASEB J. 19:1957–1968. 2005. View Article : Google Scholar : PubMed/NCBI

95 

Lin CW, Shen SC, Hou WC, Yang LY and Chen YC: Heme oxygenase-1 inhibits breast cancer invasion via suppressing the expression of matrix metalloproteinase-9. Mol Cancer Ther. 7:1195–1206. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Andreadi CK, Howells LM, Atherfold PA and Manson MM: Involvement of Nrf2, p38, B-Raf, and nuclear factor-kappaB, but not phosphatidylinositol 3-kinase, in induction of hemeoxy-genase-1 by dietary polyphenols. Mol Pharmacol. 69:1033–1040. 2006. View Article : Google Scholar

97 

Pal SK, Takimoto K, Aizenman E and Levitan ES: Apoptotic surface delivery of K+ channels. Cell Death Differ. 13:661–667. 2006. View Article : Google Scholar :

98 

Comes N, Bielanska J, Vallejo-Gracia A, Serrano-Albarrás A, Marruecos L, Gómez D, Soler C, Condom E, Ramón Y, Cajal S, et al: The voltage-dependent K(+) channels Kv1.3 and Kv1.5 in human cancer. Front Physiol. 4:2832013. View Article : Google Scholar : PubMed/NCBI

99 

Lowinus T, Heidel FH, Bose T, Nimmagadda SC, Schnöder T, Cammann C, Schmitz I, Seifert U, Fischer T, Schraven B and Bommhardt U: Memantine potentiates cytarabine-induced cell death of acute leukemia correlating with inhibition of Kv1.3 potassium channels, AKT and ERK1/2 signalin. Cell Commun Signal. 17:52019. View Article : Google Scholar

100 

Teisseyre A, Palko-Labuz A, Sroda-Pomianek K and Michalak K: Voltage-gated potassium channel Kv1.3 as a target in therapy of cancer. Front Oncol. 9:9332019. View Article : Google Scholar : PubMed/NCBI

101 

Wu J, Chen Z, Liu Q, Zeng W, Wu X and Lin B: Silencing of Kv1.5 gene inhibits proliferation and induces apoptosis of osteo-sarcoma cells. Int J Mol Sci. 16:26914–26926. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Pal S, Hartnett KA, Nerbonne JM, Levitan ES and Aizenman E: Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci. 23:4798–4802. 2003. View Article : Google Scholar : PubMed/NCBI

103 

Al-Owais MM, Dallas ML, Boyle JP, Scragg JL and Peers C: Heme oxygenase-1 influences apoptosis via CO-mediated inhibition of K+ channels. Adv Exp Med Biol. 860:343–351. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Al-Owais MM, Scragg JL, Dallas ML, Boycott HE, Warburton P, Chakrabarty A, Boyle JP and Peers C: Carbon monoxide mediates the anti-apoptotic effects of heme oxygenase-1 in medulloblastoma DAOY cells via K+ channel inhibition. J Biol Chem. 287:24754–24764. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Lan M, Shi Y, Han Z, Hao Z, Pan Y, Liu N, Guo C, Hong L, Wang J, Qiao T and Fan D: Expression of delayed rectifier potassium channels and their possible roles in proliferation of human gastric cancer cells. Cancer Biol Ther. 4:1342–1347. 2005. View Article : Google Scholar : PubMed/NCBI

106 

Song MS, Park SM, Park JS, Byun JH, Jin HJ, Seo SH, Ryu PD and Lee SY: Kv3.1 and Kv3.4, are involved in cancer cell migration and invasion. Int J Mol Sci. 19:pp. E10612018, View Article : Google Scholar : PubMed/NCBI

107 

Schwab A, Fabian A, Hanley PJ and Stock C: Role of ion channels and transporters in cell migration. Physiol Rev. 92:1865–1913. 2012. View Article : Google Scholar : PubMed/NCBI

108 

Duvvuri U, Shiwarski DJ, Xiao D, Bertrand C, Huang X, Edinger RS, Rock JR, Harfe BD, Henson BJ, Kunzelmann K, et al: TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res. 72:3270–3281. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Spitzner M, Martins JR, Soria RB, Ousingsawat J, Scheidt K, Schreiber R and Kunzelmann K: Eag1 and Bestrophin 1 are up-regulated in fast-growing colonic cancer cells. J Biol Chem. 283:7421–7428. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Mohammed F, Rashid‑Doubell F, Taha S, Cassidy S and Fredericks S: Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation. Int J Oncol 57: 445-455, 2020.
APA
Mohammed, F., Rashid‑Doubell, F., Taha, S., Cassidy, S., & Fredericks, S. (2020). Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation. International Journal of Oncology, 57, 445-455. https://doi.org/10.3892/ijo.2020.5065
MLA
Mohammed, F., Rashid‑Doubell, F., Taha, S., Cassidy, S., Fredericks, S."Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation". International Journal of Oncology 57.2 (2020): 445-455.
Chicago
Mohammed, F., Rashid‑Doubell, F., Taha, S., Cassidy, S., Fredericks, S."Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation". International Journal of Oncology 57, no. 2 (2020): 445-455. https://doi.org/10.3892/ijo.2020.5065
Copy and paste a formatted citation
x
Spandidos Publications style
Mohammed F, Rashid‑Doubell F, Taha S, Cassidy S and Fredericks S: Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation. Int J Oncol 57: 445-455, 2020.
APA
Mohammed, F., Rashid‑Doubell, F., Taha, S., Cassidy, S., & Fredericks, S. (2020). Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation. International Journal of Oncology, 57, 445-455. https://doi.org/10.3892/ijo.2020.5065
MLA
Mohammed, F., Rashid‑Doubell, F., Taha, S., Cassidy, S., Fredericks, S."Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation". International Journal of Oncology 57.2 (2020): 445-455.
Chicago
Mohammed, F., Rashid‑Doubell, F., Taha, S., Cassidy, S., Fredericks, S."Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation". International Journal of Oncology 57, no. 2 (2020): 445-455. https://doi.org/10.3892/ijo.2020.5065
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team