You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, Thürlimann B, Senn H-J, André F, Baselga J, et al: Panel Members: Tailoring therapies - improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol. 26:1533–1546. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, et al: NCI CPTAC: Proteogenomic characterization of human colon and rectal cancer. Nature. 513:382–387. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Johansson HJ, Socciarelli F, Vacanti NM, Haugen MH, Zhu Y, Siavelis I, Fernandez-Woodbridge A, Aure MR, Sennblad B, Vesterlund M, et al: Consortia Oslo Breast Cancer Research Consortium (OSBREAC): Breast cancer quantitative proteome and proteogenomic landscape. Nat Commun. 10:16002019. View Article : Google Scholar | |
|
Mann M: Quantitative proteomics? Nat Biotechnol. 17:954–955. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Monti C, Zilocchi M, Colugnat I and Alberio T: Proteomics turns functional. J Proteomics. 198:36–44. 2019. View Article : Google Scholar | |
|
Simpson RJ and Dorow DS: Cancer proteomics: From signaling networks to tumor markers. Trends Biotechnol. 19(Suppl): S40–S48. 2001. View Article : Google Scholar | |
|
Cheung CHY and Juan HF: Quantitative proteomics in lung cancer. J Biomed Sci. 24:372017. View Article : Google Scholar : PubMed/NCBI | |
|
Geiger T and Geiger B: Towards elucidation of functional molecular signatures of the adhesive-migratory phenotype of malignant cells. Semin Cancer Biol. 20:146–152. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Jazurek M, Ciesiolka A, Starega-Roslan J, Bilinska K and Krzyzosiak WJ: Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases. Nucleic Acids Res. 44:9050–9070. 2016.PubMed/NCBI | |
|
Abazova N and Krijgsveld J: Advances in stem cell proteomics. Curr Opin Genet Dev. 46:149–155. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Eubanks CG, Dayebgadoh G, Liu X and Washburn MP: Unravelling the biology of chromatin in health and cancer using proteomic approaches. Expert Rev Proteomics. 14:905–915. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gómez-Serrano M, Camafeita E, Loureiro M and Peral B: Mitoproteomics: Tackling mitochondrial dysfunction in human disease. Oxid Med Cell Longev. 2018:14359342018. View Article : Google Scholar : PubMed/NCBI | |
|
Suwakulsiri W, Rai A, Chen M, Greening DW and Simpson RJ: Proteomic profiling reveals key cancer progression modulators in shed microvesicles released from isogenic human primary and metastatic colorectal cancer cell lines. Biochim Biophys Acta Proteins Proteom. 1867:1401712019. View Article : Google Scholar | |
|
Li Z, Li N, Shen L and Fu J: Quantitative proteomic analysis identifies MAPK15 as a potential regulator of radioresistance in nasopharyngeal carcinoma cells. Front Oncol. 8:5482018. View Article : Google Scholar : PubMed/NCBI | |
|
Gillet L, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R and Aebersold R: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 11:pp. O111.0167172012, View Article : Google Scholar : PubMed/NCBI | |
|
Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC and Aebersold R: Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Mol Syst Biol. 14:pp. e81262018, View Article : Google Scholar : PubMed/NCBI | |
|
Krisp C and Molloy MP: SWATH mass spectrometry for proteomics of non-depleted plasma. Methods Mol Biol. 1619:373–383. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jamwal R, Barlock BJ, Adusumalli S, Ogasawara K, Simons BL and Akhlaghi F: Multiplex and label-free relative quantification approach for studying protein abundance of drug metabolizing enzymes in human liver microsomes using SWATH-MS. J Proteome Res. 16:4134–4143. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Skotland T, Berge V, Sandvig K and Llorente A: Exosomal proteins as prostate cancer biomarkers in urine: From mass spectrometry discovery to immunoassay-based validation. Eur J Pharm Sci. 98:80–85. 2017. View Article : Google Scholar | |
|
Nader JS, Abadie J, Deshayes S, Boissard A, Blandin S, Blanquart C, Boisgerault N, Coqueret O, Guette C, Grégoire M, et al: Characterization of increasing stages of invasiveness identifies stromal/cancer cell crosstalk in rat models of mesothelioma. Oncotarget. 9:16311–16329. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Besson D, Pavageau A-H, Valo I, Bourreau A, Bélanger A, Eymerit-Morin C, Moulière A, Chassevent A, Boisdron-Celle M, Morel A, et al: A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker. Mol Cell Proteomics. 10:0097122011. View Article : Google Scholar : PubMed/NCBI | |
|
Valo I, Raro P, Boissard A, Maarouf A, Jézéquel P, Verriele V, Campone M, Coqueret O and Guette C: OLFM4 expression in ductal carcinoma in situ and in invasive breast cancer cohorts by a SWATH-based proteomic approach. Proteomics. 19:pp. e18004462019, View Article : Google Scholar : PubMed/NCBI | |
|
Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, Telli ML, Advani RH, Carlson RW, Mollick JA, et al: Single cell profiling of circulating tumor cells: Transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One. 7:e337882012. View Article : Google Scholar : PubMed/NCBI | |
|
Lukanidin E and Sleeman JP: Building the niche: The role of the S100 proteins in metastatic growth. Semin Cancer Biol. 22:216–225. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bresnick AR, Weber DJ and Zimmer DB: S100 proteins in cancer. Nat Rev Cancer. 15:96–109. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shabani F, Farasat A, Mahdavi M and Gheibi N: Calprotectin (S100A8/S100A9): A key protein between inflammation and cancer. Inflamm Res. 67:801–812. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Björk P, Källberg E, Wellmar U, Riva M, Olsson A, He Z, Törngren M, Liberg D, Ivars F and Leanderson T: Common interactions between S100A4 and S100A9 defined by a novel chemical probe. PLoS One. 8:pp. e630122013, View Article : Google Scholar : PubMed/NCBI | |
|
Fei F, Qu J, Zhang M, Li Y and Zhang S: S100A4 in cancer progression and metastasis: A systematic review. Oncotarget. 8:73219–73239. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshimura H, Otsuka A, Michishita M, Yamamoto M, Ashizawa M, Zushi M, Moriya M, Azakami D, Ochiai K, Matsuda Y, et al: Expression and roles of S100A4 in anaplastic cells of canine mammary carcinomas. Vet Pathol. 56:389–398. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y and Cao X: Characteristics and significance of the pre-metastatic niche. Cancer Cell. 30:668–681. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hansen MT, Forst B, Cremers N, Quagliata L, Ambartsumian N, Grum-Schwensen B, Klingelhöfer J, Abdul-Al A, Herrmann P, Osterland M, et al: A link between inflammation and metastasis: Serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4. Oncogene. 34:424–435. 2015. View Article : Google Scholar | |
|
Mahmood MQ, Ward C, Muller HK, Sohal SS and Walters EH: Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): A mutual association with airway disease. Med Oncol. 34:452017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu M, Liu J, Yang B, Gao X, Gao LL, Kong QY, Zhang P and Li H: Inversed expression patterns of S100A4 and E-cadherin in cervical cancers: Implication in epithelial-mesenchymal transition. Anat Rec (Hoboken). 300:pp. 2184–2191. 2017, View Article : Google Scholar | |
|
Roulois D, Deshayes S, Guilly MN, Nader JS, Liddell C, Robard M, Hulin P, Ouacher A, Le Martelot V, Fonteneau JF, et al: Characterization of preneoplastic and neoplastic rat mesothelial cell lines: The involvement of TETs, DNMTs, and 5-hydroxy-methylcytosine. Oncotarget. 7:34664–34687. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Donato R, Sorci G and Giambanco I: S100A6 protein: Functional roles. Cell Mol Life Sci. 74:2749–2760. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lyu X, Li H, Ma X, Li X, Gao Y, Ni D, Shen D, Gu L, Wang B, Zhang Y, et al: High-level S100A6 promotes metastasis and predicts the outcome of T1-T2stage in clear cell renal cell carcinoma. Cell Biochem Biophys. 71:279–290. 2015. View Article : Google Scholar | |
|
Luo X, Sharff KA, Chen J, He T-C and Luu HH: S100A6 expression and function in human osteosarcoma. Clin Orthop Relat Res. 466:2060–2070. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Zhang K, Jiang X and Zhang J: S100A6 as a potential serum prognostic biomarker and therapeutic target in gastric cancer. Dig Dis Sci. 59:2136–2144. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Popa SJ, Stewart SE and Moreau K: Unconventional secretion of annexins and galectins. Semin Cell Dev Biol. 83:42–50. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gerke V, Creutz CE and Moss SE: Annexins: Linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol. 6:449–461. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Qi H, Liu S, Guo C, Wang J, Greenaway FT and Sun M-Z: Role of annexin A6 in cancer (Review). Oncol Lett. 10:1947–1952. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Grewal T, Hoque M, Conway JRW, Reverter M, Wahba M, Beevi SS, Timpson P, Enrich C and Rentero C: Annexin A6-A multifunctional scaffold in cell motility. Cell Adhes Migr. 11:288–304. 2017. View Article : Google Scholar | |
|
Sakwe AM, Koumangoye R, Guillory B and Ochieng J: Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions. Exp Cell Res. 317:823–837. 2011. View Article : Google Scholar : | |
|
Keklikoglou I, Cianciaruso C, Güç E, Squadrito ML, Spring LM, Tazzyman S, Lambein L, Poissonnier A, Ferraro GB, Baer C, et al: Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 21:190–202. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Koumangoye RB, Nangami GN, Thompson PD, Agboto VK, Ochieng J and Sakwe AM: Reduced annexin A6 expression promotes the degradation of activated epidermal growth factor receptor and sensitizes invasive breast cancer cells to EGFR-targeted tyrosine kinase inhibitors. Mol Cancer. 12:1672013. View Article : Google Scholar : PubMed/NCBI | |
|
García-Melero A, Reverter M, Hoque M, Meneses-Salas E, Koese M, Conway JRW, Johnsen CH, Alvarez-Guaita A, Morales-Paytuvi F, Elmaghrabi YA, et al: Annexin A6 and late endosomal cholesterol modulate integrin recycling and cell migration. J Biol Chem. 291:1320–1335. 2016. View Article : Google Scholar : | |
|
Widatalla SE, Korolkova OY, Whalen DS, Goodwin JS, Williams KP, Ochieng J and Sakwe AM: Lapatinib-induced annexin A6 upregulation as an adaptive response of triple-negative breast cancer cells to EGFR tyrosine kinase inhibitors. Carcinogenesis. 40:998–1009. 2019. View Article : Google Scholar : | |
|
Leca J, Martinez S, Lac S, Nigri J, Secq V, Rubis M, Bressy C, Sergé A, Lavaut M-N, Dusetti N, et al: Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. J Clin Invest. 126:4140–4156. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Whalen DS, Widatalla SE, Korolkova OY, Nangami GS, Beasley HK, Williams SD, Virgous C, Lehmann BD, Ochieng J and Sakwe AM: Implication of calcium activated RasGRF2 in Annexin A6-mediated breast tumor cell growth and motility. Oncotarget. 10:133–151. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sheikh MH and Solito E: Annexin A1: Uncovering the many talents of an old protein. Int J Mol Sci. 19:10452018. View Article : Google Scholar : | |
|
Babbin BA, Lee WY, Parkos CA, Winfree LM, Akyildiz A, Perretti M and Nusrat A: Annexin I regulates SKCO-15 cell invasion by signaling through formyl peptide receptors. J Biol Chem. 281:19588–19599. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Guo C, Liu S and Sun M-Z: Potential role of Anxa1 in cancer. Future Oncol. 9:1773–1793. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Swa HLF, Shaik AA, Lim LHK and Gunaratne J: Mass spectrometry based quantitative proteomics and integrative network analysis accentuates modulating roles of annexin-1 in mammary tumorigenesis. Proteomics. 15:408–418. 2015. View Article : Google Scholar | |
|
Okano M, Kumamoto K, Saito M, Onozawa H, Saito K, Abe N, Ohtake T and Takenoshita S: Upregulated Annexin A1 promotes cellular invasion in triple-negative breast cancer. Oncol Rep. 33:1064–1070. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tu Y, Johnstone CN and Stewart AG: Annexin A1 influences in breast cancer: Controversies on contributions to tumour, host and immunoediting processes. Pharmacol Res. 119:278–288. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liao S-H, Zhao X-Y, Han Y-H, Zhang J, Wang L-S, Xia L, Zhao K-W, Zheng Y, Guo M and Chen G-Q: Proteomics-based identification of two novel direct targets of hypoxia-inducible factor-1 and their potential roles in migration/invasion of cancer cells. Proteomics. 9:3901–3912. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Wang J, Xu Y, Xiao H, Li J and Wang Z: Screening critical genes associated with malignant glioma using bioinformatics analysis. Mol Med Rep. 16:6580–6589. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kang H, Ko J and Jang S-W: The role of annexin A1 in expression of matrix metalloproteinase-9 and invasion of breast cancer cells. Biochem Biophys Res Commun. 423:188–194. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Grindheim AK, Saraste J and Vedeler A: Protein phosphorylation and its role in the regulation of Annexin A2 function. Biochim Biophys Acta, Gen Subj. 1861A:A2515–A2529. 2017. View Article : Google Scholar | |
|
Christensen MV, Høgdall CK, Jochumsen KM and Høgdall EVS: Annexin A2 and cancer: A systematic review. Int J Oncol. 52:5–18. 2018. | |
|
Maule F, Bresolin S, Rampazzo E, Boso D, Della Puppa A, Esposito G, Porcù E, Mitola S, Lombardi G, Accordi B, et al: Annexin 2A sustains glioblastoma cell dissemination and proliferation. Oncotarget. 7:54632–54649. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Li H, Ban Z, Nai M, Yang L, Chen Y and Xu Y: Annexin A2 inhibition suppresses ovarian cancer progression via regulating β-catenin/EMT. Oncol Rep. 37:3643–3650. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rocha MR, Barcellos-de-Souza P, Sousa-Squiavinato ACM, Fernandes PV, de Oliveira IM, Boroni M and Morgado-Diaz JA: Annexin A2 overexpression associates with colorectal cancer invasiveness and TGF-β induced epithelial mesenchymal transition via Src/ANXA2/STAT3. Sci Rep. 8:112852018. View Article : Google Scholar | |
|
Yoneura N, Takano S, Yoshitomi H, Nakata Y, Shimazaki R, Kagawa S, Furukawa K, Takayashiki T, Kuboki S, Miyazaki M, et al: Expression of annexin II and stromal tenascin C promotes epithelial to mesenchymal transition and correlates with distant metastasis in pancreatic cancer. Int J Mol Med. 42:821–830. 2018.PubMed/NCBI | |
|
Zhang Q, Zhao Z, Ma Y, Wang H, Ma J, He X and Zhang D: Combined expression of S100A4 and Annexin A2 predicts disease progression and overall survival in patients with urothelial carcinoma. Urol Oncol. 32:798–805. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Ye Z, Yang Q, He X, Wang H and Zhao Z: Upregulated expression of annexin II is a prognostic marker for patients with gastric cancer. World J Surg Oncol. 10:1032012. View Article : Google Scholar : PubMed/NCBI | |
|
Korwar AM, Bhonsle HS, Chougale AD, Kote SS, Gawai KR, Ghole VS, Koppikar CB and Kulkarni MJ: Analysis of AGE modified proteins and RAGE expression in HER2/neu negative invasive ductal carcinoma. Biochem Biophys Res Commun. 419:490–494. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Sheng SH and Zhu HL: Proteomic analysis of pleural effusion from lung adenocarcinoma patients by shotgun strategy. Clin Transl Oncol. 16:153–157. 2014. View Article : Google Scholar | |
|
Ricciardelli C, Lokman NA, Ween MP and Oehler MK: WOMEN IN CANCER THEMATIC REVIEW: Ovarian cancer-peritoneal cell interactions promote extracellular matrix processing. Endocr Relat Cancer. 23:T155–T168. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
van den Brûle FA, Buicu C, Berchuck A, Bast RC, Deprez M, Liu F-T, Cooper DNW, Pieters C, Sobel ME and Castronovo V: Expression of the 67-kD laminin receptor, galectin-1, and galectin-3 in advanced human uterine adenocarcinoma. Hum Pathol. 27:1185–1191. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Camby I, Belot N, Rorive S, Lefranc F, Maurage C-A, Lahm H, Kaltner H, Hadari Y, Ruchoux MM, Brotchi J, et al: Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. Brain Pathol. 11:12–26. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Astorgues-Xerri L, Riveiro ME, Tijeras-Raballand A, Serova M, Neuzillet C, Albert S, Raymond E and Faivre S: Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat Rev. 40:307–319. 2014. View Article : Google Scholar | |
|
Cousin JM and Cloninger MJ: The role of galectin-1 in cancer progression, and synthetic multivalent systems for the study of galectin-1. Int J Mol Sci. 17:15662016. View Article : Google Scholar : | |
|
Bhat R, Belardi B, Mori H, Kuo P, Tam A, Hines WC, Le Q-T, Bertozzi CR and Bissell MJ: Nuclear repartitioning of galectin-1 by an extracellular glycan switch regulates mammary morphogenesis. Proc Natl Acad Sci USA. 113:E4820–E4827. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shen K-H, Li C-F, Chien L-H, Huang C-H, Su C-C, Liao AC and Wu T-F: Role of galectin-1 in urinary bladder urothelial carcinoma cell invasion through the JNK pathway. Cancer Sci. 107:1390–1398. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chong Y, Tang D, Xiong Q, Jiang X, Xu C, Huang Y, Wang J, Zhou H, Shi Y, Wu X, et al: Galectin-1 from cancer-associated fibroblasts induces epithelial-mesenchymal transition through β1 integrin-mediated upregulation of Gli1 in gastric cancer. J Exp Clin Cancer Res. 35:1752016. View Article : Google Scholar | |
|
Chong Y, Tang D, Gao J, Jiang X, Xu C, Xiong Q, Huang Y, Wang J, Zhou H, Shi Y, et al: Galectin-1 induces invasion and the epithelial-mesenchymal transition in human gastric cancer cells via non-canonical activation of the hedgehog signaling pathway. Oncotarget. 7:83611–83626. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang P-F, Li K-S, Shen YH, Gao P-T, Dong Z-R, Cai J-B, Zhang C, Huang X-Y, Tian M-X, Hu Z-Q, et al: Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling. Cell Death Dis. 7:e22012016. View Article : Google Scholar : PubMed/NCBI | |
|
Qian D, Lu Z, Xu Q, Wu P, Tian L, Zhao L, Cai B, Yin J, Wu Y, Staveley-O'Carroll KF, et al: Galectin-1-driven upregulation of SDF-1 in pancreatic stellate cells promotes pancreatic cancer metastasis. Cancer Lett. 397:43–51. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Noda Y, Kishino M, Sato S, Hirose K, Sakai M, Fukuda Y, Murakami S and Toyosawa S: Galectin-1 expression is associated with tumour immunity and prognosis in gingival squamous cell carcinoma. J Clin Pathol. 70:126–133. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Song L, Tang JW, Owusu L, Sun M-Z, Wu J and Zhang J: Galectin-3 in cancer. Clin Chim Acta. 431:185–191. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ajani JA, Estrella JS, Chen Q, Correa AM, Ma L, Scott AW, Jin J, Liu B, Xie M, Sudo K, et al: Galectin-3 expression is prognostic in diffuse type gastric adenocarcinoma, confers aggressive phenotype, and can be targeted by YAP1/BET inhibitors. Br J Cancer. 118:52–61. 2018. View Article : Google Scholar : | |
|
Ruvolo PP: Galectin 3 as a guardian of the tumor microenvi-ronment. Biochim Biophys Acta. 1863:427–437. 2016. View Article : Google Scholar | |
|
Cardoso AC, Andrade LN, Bustos SO and Chammas R: Galectin-3 determines tumor cell adaptive strategies in stressed tumor microenvironments. Front Oncol. 6:1272016. View Article : Google Scholar : PubMed/NCBI | |
|
Mackay A, Jones C, Dexter T, Silva RL, Bulmer K, Jones A, Simpson P, Harris RA, Jat PS, Neville AM, et al: cDNA microarray analysis of genes associated with ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial cells. Oncogene. 22:2680–2688. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Nomura T and Katunuma N: Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells. J Med Invest. 52:1–9. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Derocq D, Prébois C, Beaujouin M, Laurent-Matha V, Pattingre S, Smith GK and Liaudet-Coopman E: Cathepsin D is partly endocytosed by the LRP1 receptor and inhibits LRP1-regulated intramembrane proteolysis. Oncogene. 31:3202–3212. 2012. View Article : Google Scholar | |
|
Dubey V and Luqman S: Cathepsin D as a promising target for the discovery of novel anticancer agents. Curr Cancer Drug Targets. 17:404–422. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Brown KD: Transglutaminase 2 and NF-κB: An odd couple that shapes breast cancer phenotype. Breast Cancer Res Treat. 137:329–336. 2013. View Article : Google Scholar | |
|
Yang P, Yu D, Zhou J, Zhuang S and Jiang T: TGM2 interference regulates the angiogenesis and apoptosis of colorectal cancer via Wnt/β-catenin pathway. Cell Cycle. 18:1122–1134. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Eble JA and Niland S: The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. 36:171–198. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Garamszegi N, Garamszegi SP, Shehadeh LA and Scully SP: Extracellular matrix-induced gene expression in human breast cancer cells. Mol Cancer Res. 7:319–329. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Giehl K and Menke A: Microenvironmental regulation of E-cadherin-mediated adherens junctions. Front Biosci. 13:3975–3985. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Yang S, Shin J, Park KH, Jeung H-C, Rha SY, Noh SH, Yang WI and Chung HC: Molecular basis of the differences between normal and tumor tissues of gastric cancer. Biochim Biophys Acta. 1772:1033–1040. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Liang Y, Diehn M, Bollen AW, Israel MA and Gupta N: Type I collagen is overexpressed in medulloblastoma as a component of tumor microenvironment. J Neurooncol. 86:133–141. 2008. View Article : Google Scholar | |
|
Montgomery H, Rustogi N, Hadjisavvas A, Tanaka K, Kyriacou K and Sutton CW: Proteomic profiling of breast tissue collagens and site-specific characterization of hydroxyproline residues of collagen alpha-1-(I). J Proteome Res. 11:5890–5902. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mitsuhashi A, Goto H, Saijo A, Trung VT, Aono Y, Ogino H, Kuramoto T, Tabata S, Uehara H, Izumi K, et al: Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab. Nat Commun. 6:87922015. View Article : Google Scholar : PubMed/NCBI | |
|
Rong L, Huang W, Tian S, Chi X, Zhao P and Liu F: COL1A2 is a novel biomarker to improve clinical prediction in human gastric cancer: Integrating bioinformatics and meta-analysis. Pathol Oncol Res. 24:129–134. 2018. View Article : Google Scholar | |
|
Yang X, Staren ED, Howard JM, Iwamura T, Bartsch JE and Appert HE: Invasiveness and MMP expression in pancreatic carcinoma. J Surg Res. 98:33–39. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Parmo-Cabañas M, Molina-Ortiz I, Matías-Román S, García-Bernal D, Carvajal-Vergara X, Valle I, Pandiella A, Arroyo AG and Teixidó J: Role of metalloproteinases MMP-9 and MT1-MMP in CXCL12-promoted myeloma cell invasion across basement membranes. J Pathol. 208:108–118. 2006. View Article : Google Scholar | |
|
Ren F, Tang R, Zhang X, Madushi WM, Luo D, Dang Y, Li Z, Wei K and Chen G: Overexpression of MMP family members functions as prognostic biomarker for breast cancer patients: A systematic review and meta-analysis. PLoS One. 10:pp. e01355442015, View Article : Google Scholar : PubMed/NCBI | |
|
Liu H-Y, Gu W-J, Wang C-Z, Ji X-J and Mu Y-M: Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas: A systematic review and meta-analysis of case-control trials. Medicine (Baltimore). 95:pp. e39042016, View Article : Google Scholar | |
|
Delassus GS, Cho H, Park J and Eliceiri GL: New pathway links from cancer-progression determinants to gene expression of matrix metalloproteinases in breast cancer cells. J Cell Physiol. 217:739–744. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Franco-Barraza J, Valdivia-Silva JE, Zamudio-Meza H, Castillo A, García-Zepeda EA, Benítez-Bribiesca L and Meza I: Actin cytoskeleton participation in the onset of IL-1beta induction of an invasive mesenchymal-like phenotype in epithelial MCF-7 cells. Arch Med Res. 41:170–181. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuura I, Lai C-Y and Chiang K-N: Functional interaction between Smad3 and S100A4 (metastatin-1) for TGF-beta-mediated cancer cell invasiveness. Biochem J. 426:327–335. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Oskarsson T: Extracellular matrix components in breast cancer progression and metastasis. Breast. 22(Suppl 2): S66–S72. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et al: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438:820–827. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Topalovski M and Brekken RA: Matrix control of pancreatic cancer: New insights into fibronectin signaling. Cancer Lett. 381:252–258. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liao Y-X, Zhang Z-P, Zhao J and Liu J-P: Effects of fibronectin 1 on cell proliferation, senescence and apoptosis of human glioma cells through the PI3K/AKT signaling pathway. Cell Physiol Biochem. 48:1382–1396. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sercu S, Zhang L and Merregaert J: The extracellular matrix protein 1: Its molecular interaction and implication in tumor progression. Cancer Invest. 26:375–384. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bergamaschi A, Tagliabue E, Sørlie T, Naume B, Triulzi T, Orlandi R, Russnes HG, Nesland JM, Tammi R, Auvinen P, et al: Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol. 214:357–367. 2008. View Article : Google Scholar | |
|
Lal G, Hashimi S, Smith BJ, Lynch CF, Zhang L, Robinson RA and Weigel RJ: Extracellular matrix 1 (ECM1) expression is a novel prognostic marker for poor long-term survival in breast cancer: A Hospital-based Cohort Study in Iowa. Ann Surg Oncol. 16:2280–2287. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Lee KM, Nam K, Oh S, Lim J, Kim RK, Shim D, Choi JH, Lee S-J, Yu J-H, Lee JW, et al: ECM1 regulates tumor metastasis and CSC-like property through stabilization of β-catenin. Oncogene. 34:6055–6065. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Jia W and Li J: ECM1 promotes migration and invasion of hepatocellular carcinoma by inducing epithelial-mesen-chymal transition. World J Surg Oncol. 14:1952016. View Article : Google Scholar | |
|
Gómez-Contreras P, Ramiro-Díaz JM, Sierra A, Stipp C, Domann FE, Weigel RJ and Lal G: Extracellular matrix 1 (ECM1) regulates the actin cytoskeletal architecture of aggressive breast cancer cells in part via S100A4 and Rho-family GTPases. Clin Exp Metastasis. 34:37–49. 2017. View Article : Google Scholar : | |
|
Gan L, Meng J, Xu M, Liu M, Qi Y, Tan C, Wang Y, Zhang P, Weng W, Sheng W, et al: Extracellular matrix protein 1 promotes cell metastasis and glucose metabolism by inducing integrin β4/FAK/SOX2/HIF-1α signaling pathway in gastric cancer. Oncogene. 37:744–755. 2018. View Article : Google Scholar | |
|
Troup S, Njue C, Kliewer EV, Parisien M, Roskelley C, Chakravarti S, Roughley PJ, Murphy LC and Watson PH: Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin Cancer Res. 9:207–214. 2003.PubMed/NCBI | |
|
Vuillermoz B, Khoruzhenko A, D'Onofrio M-F, Ramont L, Venteo L, Perreau C, Antonicelli F, Maquart F-X and Wegrowski Y: The small leucine-rich proteoglycan lumican inhibits melanoma progression. Exp Cell Res. 296:294–306. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Radwanska A, Litwin M, Nowak D, Baczynska D, Wegrowski Y, Maquart F-X and Malicka-Blaszkiewicz M: Overexpression of lumican affects the migration of human colon cancer cells through up-regulation of gelsolin and filamentous actin reorganization. Exp Cell Res. 318:2312–2323. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, Andrade de Paula CA, Carneiro CR, Ortiz V, Toma L, Kao WW and Nader HB: Lumican expression, localization and antitumor activity in prostate cancer. Exp Cell Res. 319:967–981. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
de Wit M, Carvalho B, Delis-van Diemen PM, van Alphen C, Beliën JAM, Meijer GA and Fijneman RJA: Lumican and versican protein expression are associated with colorectal adenoma-to-carcinoma progression. PLoS One. 12:pp. e01747682017, View Article : Google Scholar : PubMed/NCBI | |
|
Farace C, Oliver JA, Melguizo C, Alvarez P, Bandiera P, Rama AR, Malaguarnera G, Ortiz R, Madeddu R and Prados J: Microenvironmental modulation of decorin and lumican in Temozolomide-resistant glioblastoma and neuroblastoma cancer stem-like cells. PLoS One. 10:pp. e01341112015, View Article : Google Scholar : PubMed/NCBI | |
|
Jeanne A, Untereiner V, Perreau C, Proult I, Gobinet C, Boulagnon-Rombi C, Terryn C, Martiny L, Brézillon S and Dedieu S: Lumican delays melanoma growth in mice and drives tumor molecular assembly as well as response to matrix-targeted TAX2 therapeutic peptide. Sci Rep. 7:77002017. View Article : Google Scholar : PubMed/NCBI | |
|
Gritsenko PG, Ilina O and Friedl P: Interstitial guidance of cancer invasion. J Pathol. 226:185–199. 2012. View Article : Google Scholar | |
|
Ruan K, Bao S and Ouyang G: The multifaceted role of periostin in tumorigenesis. Cell Mol Life Sci. 66:2219–2230. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kim G-E, Lee JS, Park MH and Yoon JH: Epithelial periostin expression is correlated with poor survival in patients with invasive breast carcinoma. PLoS One. 12:pp. e01876352017, View Article : Google Scholar : PubMed/NCBI | |
|
Mino M, Kanno K, Okimoto K, Sugiyama A, Kishikawa N, Kobayashi T, Ono J, Izuhara K, Kobayashi T, Ohigashi T, et al: Periostin promotes malignant potential by induction of epithelial-mesenchymal transition in intrahepatic cholangiocar-cinoma. Hepatol Commun. 1:1099–1109. 2017. View Article : Google Scholar | |
|
Sid B, Sartelet H, Bellon G, El Btaouri H, Rath G, Delorme N, Haye B and Martiny L: Thrombospondin 1: A multifunctional protein implicated in the regulation of tumor growth. Crit Rev Oncol Hematol. 49:245–258. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Okada K, Hirabayashi K, Imaizumi T, Matsuyama M, Yazawa N, Dowaki S, Tobita K, Ohtani Y, Tanaka M, Inokuchi S, et al: Stromal thrombospondin-1 expression is a prognostic indicator and a new marker of invasiveness in intraductal papillary-mucinous neoplasm of the pancreas. Biomed Res. 31:13–19. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Firlej V, Mathieu JRR, Gilbert C, Lemonnier L, Nakhlé J, Gallou-Kabani C, Guarmit B, Morin A, Prevarskaya N, Delongchamps NB, et al: Thrombospondin-1 triggers cell migration and development of advanced prostate tumors. Cancer Res. 71:7649–7658. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Radziwon-Balicka A, Santos-Martinez MJ, Corbalan JJ, O'Sullivan S, Treumann A, Gilmer JF, Radomski MW and Medina C: Mechanisms of platelet-stimulated colon cancer invasion: Role of clusterin and thrombospondin 1 in regulation of the P38MAPK-MMP-9 pathway. Carcinogenesis. 35:324–332. 2014. View Article : Google Scholar | |
|
Joshi R, Goihberg E, Ren W, Pilichowska M and Mathew P: Proteolytic fragments of fibronectin function as matrikines driving the chemotactic affinity of prostate cancer cells to human bone marrow mesenchymal stromal cells via the α5β1 integrin. Cell Adhes Migr. 11:305–315. 2017. View Article : Google Scholar | |
|
Lebdai S, Verhoest G, Parikh H, Jacquet SF, Bensalah K, Chautard D, Rioux Leclercq N, Azzouzi AR and Bigot P: Identification and validation of TGFBI as a promising prognosis marker of clear cell renal cell carcinoma. Urol Oncol. 33:pp. 69.e11–69.e18. 2015, View Article : Google Scholar | |
|
Nummela P, Lammi J, Soikkeli J, Saksela O, Laakkonen P and Hölttä E: Transforming growth factor beta-induced (TGFBI) is an anti-adhesive protein regulating the invasive growth of melanoma cells. Am J Pathol. 180:1663–1674. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Klamer SE, Kuijk CG, Hordijk PL, van der Schoot CE, von Lindern M, van Hennik PB and Voermans C: BIGH3 modulates adhesion and migration of hematopoietic stem and progenitor cells. Cell Adhes Migr. 7:434–449. 2013. View Article : Google Scholar | |
|
Kontostathi G, Zoidakis J, Makridakis M, Lygirou V, Mermelekas G, Papadopoulos T, Vougas K, Vlamis-Gardikas A, Drakakis P, Loutradis D, et al: Cervical cancer cell line secretome highlights the roles of transforming growth factor-beta-induced protein ig-h3, peroxiredoxin-2, and NRF2 on cervical carcinogenesis. BioMed Res Int. 2017:41807032017. View Article : Google Scholar : PubMed/NCBI | |
|
Mathias RA, Wang B, Ji H, Kapp EA, Moritz RL, Zhu HJ and Simpson RJ: Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial-mesenchymal transition. J Proteome Res. 8:2827–2837. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Lunter PC, van Kilsdonk JWJ, van Beek H, Cornelissen IMHA, Bergers M, Willems PHGM, van Muijen GNP and Swart GWM: Activated leukocyte cell adhesion molecule (ALCAM/CD166/MEMD), a novel actor in invasive growth, controls matrix metalloproteinase activity. Cancer Res. 65:8801–8808. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Ofori-Acquah SF and King JA: Activated leukocyte cell adhesion molecule: A new paradox in cancer. Transl Res. 151:122–128. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Weidle UH, Eggle D, Klostermann S and Swart GWM: ALCAM/CD166: Cancer-related issues. Cancer Genomics Proteomics. 7:231–243. 2010.PubMed/NCBI | |
|
von Lersner A, Droesen L and Zijlstra A: Modulation of cell adhesion and migration through regulation of the immunoglobulin superfamily member ALCAM/CD166. Clin Exp Metastasis. 36:87–95. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Glentis A, Gurchenkov V and Matic Vignjevic D: Assembly, heterogeneity, and breaching of the basement membranes. Cell Adhes Migr. 8:236–245. 2014. View Article : Google Scholar | |
|
Pozzi A, Yurchenco PD and Iozzo RV: The nature and biology of basement membranes. Matrix Biol. 57–58:1–11. 2017. View Article : Google Scholar | |
|
Randles MJ, Humphries MJ and Lennon R: Proteomic definitions of basement membrane composition in health and disease. Matrix Biol. 57–58:12–28. 2017. View Article : Google Scholar | |
|
Zhou Y, Zhu Y, Fan X, Zhang C, Wang Y, Zhang L, Zhang H, Wen T, Zhang K, Huo X, et al: NID1, a new regulator of EMT required for metastasis and chemoresistance of ovarian cancer cells. Oncotarget. 8:33110–33121. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pedrola N, Devis L, Llauradó M, Campoy I, Martinez-Garcia E, Garcia M, Muinelo-Romay L, Alonso-Alconada L, Abal M, Alameda F, et al: Nidogen 1 and Nuclear Protein 1: Novel targets of ETV5 transcription factor involved in endometrial cancer invasion. Clin Exp Metastasis. 32:467–478. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
McMahon B and Kwaan HC: The plasminogen activator system and cancer. Pathophysiol Haemost Thromb. 36:184–194. 2008. View Article : Google Scholar | |
|
Durand MKV, Bødker JS, Christensen A, Dupont DM, Hansen M, Jensen JK, Kjelgaard S, Mathiasen L, Pedersen KE, Skeldal S, et al: Plasminogen activator inhibitor-I and tumour growth, invasion, and metastasis. Thromb Haemost. 91:438–449. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Sitaram RT, Mallikarjuna P, Landström M and Ljungberg B: Transforming growth factor-β promotes aggressiveness and invasion of clear cell renal cell carcinoma. Oncotarget. 7:35917–35931. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Rabi ZA, Todorović-Raković N, Vujasinović T, Milovanović J and Nikolić-Vukosavljević D: Markers of progression and invasion in short term follow up of untreated breast cancer patients. Cancer Biomark. 15:745–754. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Rhone P, Ruszkowska-Ciastek B, Bielawski K, Brkic A, Zarychta E, Góralczyk B, Roszkowski K and Rość D: Comprehensive analysis of haemostatic profile depending on clinicopathological determinants in breast cancer patients. Biosci Rep. 38:BSR201716572018. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Wei X, He J, Tian X, Yuan S and Sun L: Plasminogen activator inhibitor-1 in cancer research. Biomed Pharmacother. 105:83–94. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ochieng J, Nangami G, Sakwe A, Moye C, Alvarez J, Whalen D, Thomas P and Lammers P: Impact of Fetuin-A (AHSG) on tumor progression and type 2 diabetes. Int J Mol Sci. 19:22112018. View Article : Google Scholar : | |
|
Nangami GN, Watson K, Parker-Johnson K, Okereke KO, Sakwe A, Thompson P, Frimpong N and Ochieng J: Fetuin-A (α2HS-glycoprotein) is a serum chemo-attractant that also promotes invasion of tumor cells through Matrigel. Biochem Biophys Res Commun. 438:660–665. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Watson K, Koumangoye R, Thompson P, Sakwe AM, Patel T, Pratap S and Ochieng J: Fetuin-A triggers the secretion of a novel set of exosomes in detached tumor cells that mediate their adhesion and spreading. FEBS Lett. 586:3458–3463. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Niu L, Song X, Wang N, Xue L, Song X and Xie L: Tumor-derived exosomal proteins as diagnostic biomarkers in non-small cell lung cancer. Cancer Sci. 110:433–442. 2019. View Article : Google Scholar | |
|
Adams GN, Rosenfeldt L, Frederick M, Miller W, Waltz D, Kombrinck K, McElhinney KE, Flick MJ, Monia BP, Revenko AS, et al: Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Cancer Res. 75:4235–4243. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Honda K-I, Asada R, Kageyama K, Fukuda T, Terada H, Yasui T, Sumi T, Koyama M, Ishiko O and Sugawa T: Protein complex of fibrinogen gamma chain and complement factor H in ovarian cancer patient plasma. Anticancer Res. 37:2861–2866. 2017.PubMed/NCBI | |
|
Duan S, Gong B, Wang P, Huang H, Luo L and Liu F: Novel prognostic biomarkers of gastric cancer based on gene expression microarray: COL12A1, GSTA3, FGA and FGG. Mol Med Rep. 18:3727–3736. 2018.PubMed/NCBI | |
|
Zhang X, Wang F, Huang Y, Ke K, Zhao B, Chen L, Liao N, Wang L, Li Q, Liu X, et al: FGG promotes migration and invasion in hepatocellular carcinoma cells through activating epithelial to mesenchymal transition. Cancer Manag Res. 11:1653–1665. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Brakebusch C and Fässler R: beta 1 integrin function in vivo: Adhesion, migration and more. Cancer Metastasis Rev. 24:403–411. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Pan B, Guo J, Liao Q and Zhao Y: β1 and β3 integrins in breast, prostate and pancreatic cancer: A novel implication (Review). Oncol Lett. 15:5412–5416. 2018.PubMed/NCBI | |
|
Sun Q, Zhou C, Ma R, Guo Q, Huang H, Hao J, Liu H, Shi R and Liu B: Prognostic value of increased integrin-beta 1 expression in solid cancers: A meta-analysis. OncoTargets Ther. 11:1787–1799. 2018. View Article : Google Scholar | |
|
Albrektsen T, Richter HE, Clausen JT and Fleckner J: Identification of a novel integral plasma membrane protein induced during adipocyte differentiation. Biochem J. 359:393–402. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Pessentheiner AR, Huber K, Pelzmann HJ, Prokesch A, Radner FPW, Wolinski H, Lindroos-Christensen J, Hoefler G, Rülicke T, Birner-Gruenberger R, et al: APMAP interacts with lysyl oxidase-like proteins, and disruption of Apmap leads to beneficial visceral adipose tissue expansion. FASEB J. 31:4088–4103. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gabriele C, Cantiello F, Nicastri A, Crocerossa F, Russo GI, Cicione A, Vartolomei MD, Ferro M, Morgia G, Lucarelli G, et al: High-throughput detection of low abundance sialylated glycoproteins in human serum by TiO2 enrichment and targeted LC-MS/MS analysis: Application to a prostate cancer sample set. Anal Bioanal Chem. 411:755–763. 2019. View Article : Google Scholar | |
|
Jiang S, Wang X, Song D, Liu X, Gu Y, Xu Z, Wang X, Zhang X, Ye Q, Tong Z, et al: Cholesterol induces epithelial-to-mesenchymal transition of prostate cancer cells by suppressing degradation of EGFR through APMAP. Cancer Res. 79:3063–3075. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Moriyama-Kita M, Endo Y, Yonemura Y, Heizmann CW, Miyamori H, Sato H, Yamamoto E and Sasaki T: S100A4 regulates E-cadherin expression in oral squamous cell carcinoma. Cancer Lett. 230:211–218. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Shin J, Song I-S, Pak JH and Jang S-W: Upregulation of annexin A1 expression by butyrate in human melanoma cells induces invasion by inhibiting E-cadherin expression. Tumour Biol. 37:14577–14584. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wong SHM, Fang CM, Chuah L-H, Leong CO and Ngai SC: E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 121:11–22. 2018. View Article : Google Scholar | |
|
Yu W, Wu J, Ning ZL, Liu QY and Quan RL: High expression of peroxiredoxin 1 is associated with epithelial-mesenchymal transition marker and poor prognosis in gastric cancer. Med Sci Monit. 24:2259–2270. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kim S-Y: Cancer energy metabolism: Shutting power off cancer factory. Biomol Ther (Seoul). 26:39–44. 2018. View Article : Google Scholar | |
|
Warburg O, Posener K and Negelein E: Über den stoffwechsel der carcinomzelle. Biochem Zeitschr. 152:309–344. 1924. | |
|
Chen T, Huang Z, Tian Y, Wang H, Ouyang P, Chen H, Wu L, Lin B and He R: Role of triosephosphate isomerase and downstream functional genes on gastric cancer. Oncol Rep. 38:1822–1832. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lincet H and Icard P: How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? Oncogene. 34:3751–3759. 2015. View Article : Google Scholar | |
|
Lone SN, Maqbool R, Parray FQ and Ul Hussain M: Triose-phosphate isomerase is a novel target of miR-22 and miR-28, with implications in tumorigenesis. J Cell Physiol. 233:8919–8929. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Menendez JA and Lupu R: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 7:763–777. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Madigan AA, Rycyna KJ, Parwani AV, Datiri YJ, Basudan AM, Sobek KM, Cummings JL, Basse PH, Bacich DJ and O'Keefe DS: Novel nuclear localization of fatty acid synthase correlates with prostate cancer aggressiveness. Am J Pathol. 184:2156–2162. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Xi Q and Wu G: Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Cancer Med. 5:1599–1606. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wen S, Niu Y, Lee SO, Yeh S, Shang Z, Gao H, Li Y, Chou F and Chang C: Targeting fatty acid synthase with ASC-J9 suppresses proliferation and invasion of prostate cancer cells. Mol Carcinog. 55:2278–2290. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Menendez JA and Lupu R: Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets. 21:1001–1016. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zaidi N, Swinnen JV and Smans K: ATP-citrate lyase: A key player in cancer metabolism. Cancer Res. 72:3709–3714. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Jia B, Wang Y and Wan S: miR-133b acts as a tumor suppressor and negatively regulates ATP citrate lyase via PPARγ in gastric cancer. Oncol Rep. 38:3220–3226. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Granchi C: ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism. Eur J Med Chem. 157:1276–1291. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Icard P and Lincet H: The reduced concentration of citrate in cancer cells: An indicator of cancer aggressiveness and a possible therapeutic target. Drug Resist Updat. 29:47–53. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nicolussi A, D'Inzeo S, Capalbo C, Giannini G and Coppa A: The role of peroxiredoxins in cancer. (Review) Mol Clin Oncol. 6:pp. 139–153. 2017, View Article : Google Scholar : PubMed/NCBI | |
|
Veal E, Jackson T and Latimer H: Role/s of 'Antioxidant' enzymes in ageing. Subcell Biochem. 90:425–450. 2018. View Article : Google Scholar | |
|
Hampton MB, Vick KA, Skoko JJ and Neumann CA: Peroxiredoxin involvement in the initiation and progression of human cancer. Antioxid Redox Signal. 28:591–608. 2018. View Article : Google Scholar | |
|
Kang SW, Lee S and Lee JHS: Cancer-associated function of 2-Cys peroxiredoxin subtypes as a survival gatekeeper. Antioxidants. 7:1612018. View Article : Google Scholar : | |
|
Forshaw TE, Holmila R, Nelson KJ, Lewis JE, Kemp ML, Tsang AW, Poole LB, Lowther WT and Furdui CM: Peroxiredoxins in cancer and response to radiation therapies. Antioxidants. 8:112019. View Article : Google Scholar : | |
|
Kim E-K, Lee SY, Kim Y, Ahn S-M and Jang HH: Peroxiredoxin 1 post-transcriptionally regulates snoRNA expression. Free Radic Biol Med. 141:1–9. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dayton TL, Jacks T and Vander Heiden MG: PKM2, cancer metabolism, and the road ahead. EMBO Rep. 17:1721–1730. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Méndez-Lucas A, Li X, Hu J, Che L, Song X, Jia J, Wang J, Xie C, Driscoll PC, Tschaharganeh DF, et al: Glucose catabolism in liver tumors induced by c-MYC can be sustained by various PKM1/PKM2 ratios and pyruvate kinase activities. Cancer Res. 77:4355–4364. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Butler EB and Tan M: Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4:pp. e5322013, View Article : Google Scholar : PubMed/NCBI | |
|
Zhou W, Liotta LA and Petricoin EF: Cancer metabolism and mass spectrometry-based proteomics. Cancer Lett. 356A. pp. A176–A183. 2015, View Article : Google Scholar | |
|
Cheng T-Y, Yang Y-C, Wang H-P, Tien Y-W, Shun C-T, Huang H-Y, Hsiao M and Hua K-T: Pyruvate kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis through phosphorylation and stabilization of PAK = 2 protein. Oncogene. 37:1730–1742. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Marchitti SA, Brocker C, Stagos D and Vasiliou V: Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 4:697–720. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Xu X, Chai S, Wang P, Zhang C, Yang Y, Yang Y and Wang K: Aldehyde dehydrogenases and cancer stem cells. Cancer Lett. 369:50–57. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou C and Sun B: The prognostic role of the cancer stem cell marker aldehyde dehydrogenase 1 in head and neck squamous cell carcinomas: A meta-analysis. Oral Oncol. 50:1144–1148. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wei D, Peng J-J, Gao H, Zhang T, Tan Y and Hu Y-H: ALDH1 expression and the prognosis of lung cancer: A systematic review and meta-analysis. Heart Lung Circ. 24:780–788. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Zhang B, Yang YF, Jin J and Liu YH: Aldehyde dehydrogenase 1 as a predictor of the neoadjuvant chemotherapy response in breast cancer: A meta-analysis. Medicine (Baltimore). 97:pp. e120562018, View Article : Google Scholar | |
|
Dvorakova M, Nenutil R and Bouchal P: Transgelins, cytoskeletal proteins implicated in different aspects of cancer development. Expert Rev Proteomics. 11:149–165. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Rao D, Kimler BF, Nothnick WB, Davis MK, Fan F and Tawfik O: Transgelin: A potentially useful diagnostic marker differentially expressed in triple-negative and non-triple-negative breast cancers. Hum Pathol. 46:876–883. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tan VY, Lewis SJ, Adams JC and Martin RM: Association of fascin-1 with mortality, disease progression and metastasis in carcinomas: A systematic review and meta-analysis. BMC Med. 11:522013. View Article : Google Scholar : PubMed/NCBI | |
|
Iancu-Rubin C and Atweh GF: p27(Kip1) and stathmin share the stage for the first time. Trends Cell Biol. 15:346–348. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Belletti B and Baldassarre G: Stathmin: A protein with many tasks. New biomarker and potential target in cancer. Expert Opin Ther Targets. 15:1249–1266. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Biaoxue R, Hua L, Wenlong G and Shuanying Y: Overexpression of stathmin promotes metastasis and growth of malignant solid tumors: A systemic review and meta-analysis. Oncotarget. 7:78994–79007. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ding Z, Bae YH and Roy P: Molecular insights on context-specific role of profilin-1 in cell migration. Cell Adhes Migr. 6:442–449. 2012. View Article : Google Scholar | |
|
Alkam D, Feldman EZ, Singh A and Kiaei M: Profilin1 biology and its mutation, actin(g) in disease. Cell Mol Life Sci. 74:967–981. 2017. View Article : Google Scholar : | |
|
Jiang C, Ding Z, Joy M, Chakraborty S, Kim SH, Bottcher R, Condeelis J, Singh S and Roy P: A balanced level of profilin-1 promotes stemness and tumor-initiating potential of breast cancer cells. Cell Cycle. 16:2366–2373. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Shi Z, Zhang L, Zhang H and Zhang Y: Profilin 1, negatively regulated by microRNA-19a-3p, serves as a tumor suppressor in human hepatocellular carcinoma. Pathol Res Pract. 215:499–505. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nakamura F, Stossel TP and Hartwig JH: The filamins: Organizers of cell structure and function. Cell Adhes Migr. 5:160–169. 2011. View Article : Google Scholar | |
|
Savoy RM and Ghosh PM: The dual role of filamin A in cancer: Can't live with (too much of) it, can't live without it. Endocr Relat Cancer. 20:R341–R356. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Shao Q-Q, Zhang T-P, Zhao W-J, Liu Z-W, You L, Zhou L, Guo J-C and Zhao Y-P: Filamin A: Insights into its exact role in cancers. Pathol Oncol Res. 22:245–252. 2016. View Article : Google Scholar | |
|
Wang Y, Liu S, Zhang Y and Yang J: Myosin heavy chain 9: Oncogene or tumor suppressor gene? Med Sci Monit. 25:888–892. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Desouza-Armstrong M, Gunning PW and Stehn JR: Tumor suppressor tropomyosin Tpm2.1 regulates sensitivity to apoptosis beyond anoikis characterized by changes in the levels of intrinsic apoptosis proteins. Cytoskeleton (Hoboken). 74:233–248. 2017. View Article : Google Scholar | |
|
Ma Y, Xiao T, Xu Q, Shao X and Wang H: iTRAQ-based quantitative analysis of cancer-derived secretory proteome reveals TPM2 as a potential diagnostic biomarker of colorectal cancer. Front Med. 10:278–285. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Zhang J, Xu S, Zhang X, Wang P, Wu H, Xia B, Zhang G, Lei B, Wan L, et al: Hypoxia-induced TPM2 methylation is associated with chemoresistance and poor prognosis in breast cancer. Cell Physiol Biochem. 45:692–705. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shin H, Kim D and Helfman DM: Tropomyosin isoform Tpm2.1 regulates collective and amoeboid cell migration and cell aggregation in breast epithelial cells. Oncotarget. 8:95192–95205. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mitchell CB, Black B, Sun F, Chrzanowski W, Cooper-White J, Maisonneuve B, Stringer B, Day B, Biro M and O'Neill GM: Tropomyosin Tpm 2.1 loss induces glioblastoma spreading in soft brain-like environments. J Neurooncol. 141:303–313. 2019. View Article : Google Scholar | |
|
Shishkin S, Eremina L, Pashintseva N, Kovalev L and Kovaleva M: Cofilin-1 and other ADF/Cofilin superfamily members in human malignant cells. Int J Mol Sci. 18:E102016. View Article : Google Scholar : PubMed/NCBI | |
|
Gasparski AN, Ozarkar S and Beningo KA: Transient mechanical strain promotes the maturation of invadopodia and enhances cancer cell invasion in vitro. J Cell Sci. 130:1965–1978. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai C-H, Lin L-T, Wang C-Y, Chiu Y-W, Chou Y-T, Chiu S-J, Wang H-E, Liu R-S, Wu C-Y, Chan P-C, et al: Over-expression of cofilin-1 suppressed growth and invasion of cancer cells is associated with up-regulation of let-7 microRNA. Biochim Biophys Acta. 1852:851–861. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Curto M and McClatchey AI: Ezrin...a metastatic detERMinant? Cancer Cell. 5:113–114. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Haase G, Gavert N, Brabletz T and Ben-Zé'ev A: The Wnt target gene L1 in colon cancer invasion and metastasis. Cancers (Basel). 8:482016. View Article : Google Scholar | |
|
Cihan YB: Does ezrin play a predictive role in cancer patients undergoing radiotherapy and/or chemotherapy? Hum Pathol. 80:247–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mierke CT: The role of vinculin in the regulation of the mechanical properties of cells. Cell Biochem Biophys. 53:115–126. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Goldmann WH, Auernheimer V, Thievessen I and Fabry B: Vinculin, cell mechanics and tumour cell invasion. Cell Biol Int. 37:397–405. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Y, Wang Z, Hao Q, Li W, Xu Y, Zhang J, Zhang W, Wang S, Liu S, Li M, et al: Loss of ERα induces amoeboid-like migration of breast cancer cells by downregulating vinculin. Nat Commun. 8:144832017. View Article : Google Scholar | |
|
Colombo E, Alcalay M and Pelicci PG: Nucleophosmin and its complex network: A possible therapeutic target in hematological diseases. Oncogene. 30:2595–2609. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA and Mann M: Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 426:570–574. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Box JK, Paquet N, Adams MN, Boucher D, Bolderson E, O'Byrne KJ and Richard DJ: Nucleophosmin: From structure and function to disease development. BMC Mol Biol. 17:192016. View Article : Google Scholar : PubMed/NCBI | |
|
Werner MT, Zhao C, Zhang Q and Wasik MA: Nucleophosmin- anaplastic lymphoma kinase: The ultimate oncogene and therapeutic target. Blood. 129:823–831. 2017. View Article : Google Scholar | |
|
Arrigo A-P: Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell. Cell Stress Chaperones. 22:517–529. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Y-H, Li L-Y, He J-Z, Xu X-E, Liao L-D, Zhang Q, Xie J-J, Xu L-Y and Li E-M: Heat shock protein family B member 1 facilitates ezrin activation to control cell migration in esophageal squamous cell carcinoma. Int J Biochem Cell Biol. 112:79–87. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H, Yamada Y, Chiba H and Hirohashi S: Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol. 140:1383–1393. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Hayashida Y, Honda K, Idogawa M, Ino Y, Ono M, Tsuchida A, Aoki T, Hirohashi S and Yamada T: E-cadherin regulates the association between beta-catenin and actinin-4. Cancer Res. 65:8836–8845. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Thomas DG and Robinson DN: The fifth sense: Mechanosensory regulation of alpha-actinin-4 and its relevance for cancer metastasis. Semin Cell Dev Biol. 71:68–74. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yamaguchi H, Ito Y, Miura N, Nagamura Y, Nakabo A, Fukami K, Honda K and Sakai R: Actinin-1 and actinin-4 play essential but distinct roles in invadopodia formation by carcinoma cells. Eur J Cell Biol. 96:685–694. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Keeling MC, Flores LR, Dodhy AH, Murray ER and Gavara N: Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization. Sci Rep. 7:52192017. View Article : Google Scholar : PubMed/NCBI | |
|
Battaglia RA, Delic S, Herrmann H and Snider NT: Vimentin on the move: new developments in cell migration. F1000 Res 7 (F1000 Faculty Rev). 17962018. | |
|
Rao J and Li N: Microfilament actin remodeling as a potential target for cancer drug development. Curr Cancer Drug Targets. 4:345–354. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Piktel E, Levental I, Durnaś B, Janmey PA and Bucki R: Plasma gelsolin: Indicator of inflammation and its potential as a diagnostic tool and therapeutic target. Int J Mol Sci. 19:25162018. View Article : Google Scholar : | |
|
Krishnakumar S, Sundaram A, Abhyankar D, Krishnamurthy V, Shanmugam MP, Gopal L, Sharma T and Biswas J: Major histocompatibility antigens and antigen-processing molecules in retinoblastoma. Cancer. 100:1059–1069. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Okayama A, Miyagi Y, Oshita F, Nishi M, Nakamura Y, Nagashima Y, Akimoto K, Ryo A and Hirano H: Proteomic analysis of proteins related to prognosis of lung adenocarcinoma. J Proteome Res. 13:4686–4694. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ryan D, Carberry S, Murphy AC, Lindner AU, Fay J, Hector S, McCawley N, Bacon O, Concannon CG, Kay EW, et al: Calnexin, an ER stress-induced protein, is a prognostic marker and potential therapeutic target in colorectal cancer. J Transl Med. 14:1962016. View Article : Google Scholar : PubMed/NCBI | |
|
Vogiatzi F, Brandt DT, Schneikert J, Fuchs J, Grikscheit K, Wanzel M, Pavlakis E, Charles JP, Timofeev O, Nist A, et al: Mutant p53 promotes tumor progression and metastasis by the endoplasmic reticulum UDPase ENTPD5. Proc Natl Acad Sci USA. 113:E8433–E8442. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Ma D, Wang X, Fang J, Liu X, Song J, Li X, Ren X, Li Q, Li Q, et al: Calnexin impairs the antitumor immunity of CD4+ and CD8+ T cells. Cancer Immunol Res. 7:123–135. 2018. View Article : Google Scholar | |
|
Dudek J, Benedix J, Cappel S, Greiner M, Jalal C, Müller L and Zimmermann R: Functions and pathologies of BiP and its interaction partners. Cell Mol Life Sci. 66:1556–1569. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Lee J, Liem D and Ping P: HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene. 618:14–23. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Herroon MK, Rajagurubandara E, Diedrich JD, Heath EI and Podgorski I: Adipocyte-activated oxidative and ER stress pathways promote tumor survival in bone via upregulation of Heme Oxygenase 1 and Survivin. Sci Rep. 8:402018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Do KC, Saxton B, Leng S, Filipczak P, Tessema M, Belinsky SA and Lin Y: Inhibition of the hexosamine biosynthesis pathway potentiates cisplatin cytotoxicity by decreasing BiP expression in non-small-cell lung cancer cells. Mol Carcinog. 58:1046–1055. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sauk JJ, Nikitakis N and Siavash H: Hsp47 a novel collagen binding serpin chaperone, autoantigen and therapeutic target. Front Biosci. 10:107–118. 2005. View Article : Google Scholar | |
|
Duarte BDP and Bonatto D: The heat shock protein 47 as a potential biomarker and a therapeutic agent in cancer research. J Cancer Res Clin Oncol. 144:2319–2328. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Vatolin S, Phillips JG, Jha BK, Govindgari S, Hu J, Grabowski D, Parker Y, Lindner DJ, Zhong F, Distelhorst CW, et al: Novel protein disulfide isomerase inhibitor with anticancer activity in multiple myeloma. Cancer Res. 76:3340–3350. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kuo T-F, Chen T-Y, Jiang S-T, Chen K-W, Chiang Y-M, Hsu Y-J, Liu Y-J, Chen H-M, Yokoyama KK, Tsai K-C, et al: Protein disulfide isomerase a4 acts as a novel regulator of cancer growth through the procaspase pathway. Oncogene. 36:5484–5496. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fucikova J, Kasikova L, Truxova I, Laco J, Skapa P, Ryska A and Spisek R: Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer. Immunol Lett. 193:25–34. 2018. View Article : Google Scholar | |
|
Sheng W, Chen C, Dong M, Wang G, Zhou J, Song H, Li Y, Zhang J and Ding S: Calreticulin promotes EGF-induced EMT in pancreatic cancer cells via Integrin/EGFR-ERK/MAPK signaling pathway. Cell Death Dis. 8:pp. e31472017, View Article : Google Scholar : PubMed/NCBI | |
|
Schcolnik-Cabrera A, Oldak B, Juárez M, Cruz-Rivera M, Flisser A and Mendlovic F: Calreticulin in phagocytosis and cancer: Opposite roles in immune response outcomes. Apoptosis. 24:245–255. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Jin G, Jin H, Wang N, Luo Q, Zhang Y, Gao D, Jiang K, Gu D, Shen Q, et al: Clusterin facilitates metastasis by EIF3I/Akt/MMP13 signaling in hepatocellular carcinoma. Oncotarget. 6:2903–2916. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shapiro B, Tocci P, Haase G, Gavert N and Ben-Ze'ev A: Clusterin, a gene enriched in intestinal stem cells, is required for L1-mediated colon cancer metastasis. Oncotarget. 6:34389–34401. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Men C, Xu Y, Zhao K, Luo L, Dong D and Yu Q: Clusterin promotes growth and invasion of clear cell renal carcinoma cell by upregulation of S100A4 expression. Cancer Biomark. 21:915–923. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tew KD, Manevich Y, Grek C, Xiong Y, Uys J and Townsend DM: The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med. 51:299–313. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, He W, Yang G, Wang J, Wang Z, Nesland JM, Holm R and Suo Z: Decreased expression of GST pi is correlated with a poor prognosis in human esophageal squamous carcinoma. BMC Cancer. 10:3522010. View Article : Google Scholar : PubMed/NCBI | |
|
Zannis-Hadjopoulos M, Yahyaoui W and Callejo M: 14-3-3 cruciform-binding proteins as regulators of eukaryotic DNA replication. Trends Biochem Sci. 33:44–50. 2008. View Article : Google Scholar | |
|
Bortner JD Jr, Das A, Umstead TM, Freeman WM, Somiari R, Aliaga C, Phelps DS and El-Bayoumy K: Down-regulation of 14-3-3 isoforms and annexin A5 proteins in lung adenocarcinoma induced by the tobacco-specific nitrosamine NNK in the A/J mouse revealed by proteomic analysis. J Proteome Res. 8:4050–4061. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Leal MF, Calcagno DQ, Demachki S, Assumpção PP, Chammas R, Burbano RR and Smith MA: Clinical implication of 14-3-3 epsilon expression in gastric cancer. World J Gastroenterol. 18:1531–1537. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu Y, Zhou Z, Li Z, Lu L, Li L, Li X, Wang X and Zhang M: Pretreatment 14-3-3 epsilon level is predictive for advanced extranodal NK/T cell lymphoma therapeutic response to asparaginase-based chemotherapy. Proteomics Clin Appl. 11:3–4. 2017. View Article : Google Scholar | |
|
Bavelloni A, Piazzi M, Raffini M, Faenza I and Blalock WL: Prohibitin 2: At a communications crossroads. IUBMB Life. 67:239–254. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mishra S and Nyomba BG: Prohibitin - At the crossroads of obesity-linked diabetes and cancer. Exp Biol Med (Maywood). 242:1170–1177. 2017. View Article : Google Scholar | |
|
Taniguchi K, Matsumura K, Kageyama S, Ii H, Ashihara E, Chano T, Kawauchi A, Yoshiki T and Nakata S: Prohibitin-2 is a novel regulator of p21WAF1/CIP1 induced by depletion of γ-glutamylcyclotransferase. Biochem Biophys Res Commun. 496:218–224. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Ai H, Li K, Yao X, Zhu W, Liu L, Yu C, Song Z, Bao Y, Huang Y, et al: Prohibitin 2 localizes in nucleolus to regulate ribosomal RNA transcription and facilitate cell proliferation in RD cells. Sci Rep. 8:14792018. View Article : Google Scholar : PubMed/NCBI | |
|
Shen Y, Gao Y, Yuan H, Cao J, Jia B, Li M, Peng Y, Du X, Zhang J and Shi J: Prohibitin-2 negatively regulates AKT2 expression to promote prostate cancer cell migration. Int J Mol Med. 41:1147–1155. 2018. | |
|
Yan C, Gong L, Chen L, Xu M, Abou-Hamdan H, Tang M, Désaubry L and Song Z: PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy. 16:419–434. 2020. View Article : Google Scholar : | |
|
Jubran R, Kocsis J, Garam N, Maláti É, Gombos T, Barabás L, Gráf L, Prohászka Z and Fishelson Z: Circulating mitochondrial stress 70 protein/mortalin and cytosolic Hsp70 in blood: Risk indicators in colorectal cancer. Int J Cancer. 141:2329–2335. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cruz IN, Coley HM, Kramer HB, Madhuri TK, Safuwan NAM, Angelino AR and Yang M: Proteomics analysis of ovarian cancer cell lines and tissues reveals drug resistance-associated proteins. Cancer Genomics Proteomics. 14:35–51. 2017. View Article : Google Scholar : | |
|
Niu X, Su L, Qi S, Gao Z, Zhang Q and Zhang S: GRP75 modulates oncogenic Dbl-driven endocytosis derailed via the CHIP-mediated ubiquitin degradation pathway. Cell Death Dis. 9:9712018. View Article : Google Scholar : PubMed/NCBI | |
|
Chang HJ, Lee MR, Hong S-H, Yoo BC, Shin Y-K, Jeong JY, Lim S-B, Choi HS, Jeong S-Y and Park J-G: Identification of mitochondrial FoF1-ATP synthase involved in liver metastasis of colorectal cancer. Cancer Sci. 98:1184–1191. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kühlbrandt W: Structure and mechanisms of F-type ATP synthases. Annu Rev Biochem. 88:515–549. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Zhan X, Li M, Li G, Zhang P, Xiao Z, Shao M, Peng F, Hu R and Chen Z: Mitochondrial proteomics of nasopha-ryngeal carcinoma metastasis. BMC Med Genomics. 5:622012. View Article : Google Scholar | |
|
Chen W-L, Kuo K-T, Chou T-Y, Chen C-L, Wang C-H, Wei Y-H and Wang L-S: The role of cytochrome c oxidase subunit Va in non-small cell lung carcinoma cells: Association with migration, invasion and prediction of distant metastasis. BMC Cancer. 12:2732012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Hu L, Zhang X, Zhao H, Xu H, Wei Y, Jiang H, Xie C, Zhou Y and Zhou F: Downregulation of mitochondrial single stranded DNA binding protein (SSBP1) induces mitochondrial dysfunction and increases the radiosensitivity in non-small cell lung cancer cells. J Cancer. 8:1400–1409. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rajapakse A, Suraweera A, Boucher D, Naqi A, O'Byrne K, Richard DJ and Croft LV: Redox Regulation in the Base Excision Repair Pathway: Old and New Players as Cancer Therapeutic Targets. Curr Med Chem. 27:1901–1921. 2020. View Article : Google Scholar | |
|
Croft LV, Bolderson E, Adams MN, El-Kamand S, Kariawasam R, Cubeddu L, Gamsjaeger R and Richard DJ: Human single-stranded DNA binding protein 1 (hSSB1, OBFC2B), a critical component of the DNA damage response. Semin Cell Dev Biol. 86:121–128. 2019. View Article : Google Scholar | |
|
Bozlu M, Orhan D, Baltaci S, Yaman O, Elhan AH, Tulunay O and Müftüoğlu YZ: The prognostic value of proliferating cell nuclear antigen, Ki-67 and nucleolar organizer region in transitional cell carcinoma of the bladder. Int Urol Nephrol. 33:59–66. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Maeda K, Chung Y-S, Onoda N, Ogawa M, Kato Y, Nitta A, Arimoto Y, Kondo Y, Arakawa T and Sowa M: Association of tumor cell proliferation with lymph node metastasis in early gastric cancer. Oncology. 53:1–5. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Ma S, Yang J, Li J and Song J: The clinical utility of the proliferating cell nuclear antigen expression in patients with hepatocellular carcinoma. Tumour Biol. 37:7405–7412. 2016. View Article : Google Scholar | |
|
Wang L, Kong W, Liu B and Zhang X: Proliferating cell nuclear antigen promotes cell proliferation and tumorigenesis by up-regulating STAT3 in non-small cell lung cancer. Biomed Pharmacother. 104:595–602. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kato K, Kawashiri S, Yoshizawa K, Kitahara H, Okamune A, Sugiura S, Noguchi N and Yamamoto E: Expression form of p53 and PCNA at the invasive front in oral squamous cell carcinoma: Correlation with clinicopathological features and prognosis. J Oral Pathol Med. 40:693–698. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Dahl JA and Collas P: Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells. 25:1037–1046. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Mahen R, Hattori H, Lee M, Sharma P, Jeyasekharan AD and Venkitaraman AR: A-type lamins maintain the positional stability of DNA damage repair foci in mammalian nuclei. PLoS One. 8:pp. e618932013, View Article : Google Scholar : PubMed/NCBI | |
|
Sakthivel KM and Sehgal P: A novel role of lamins from genetic disease to cancer biomarkers. Oncol Rev. 10:3092016.PubMed/NCBI | |
|
Kim J-K, Louhghalam A, Lee G, Schafer BW, Wirtz D and Kim D-H: Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat Commun. 8:21232017. View Article : Google Scholar : PubMed/NCBI | |
|
Taheri F, Isbilir B, Müller G, Krieger JW, Chirico G, Langowski J and Tóth K: Random motion of chromatin is influenced by lamin A interconnections. Biophys J. 114:2465–2472. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zuo L, Zhao H, Yang R, Wang L, Ma H, Xu X, Zhou P and Kong L: Lamin A/C might be involved in the EMT signalling pathway. Gene. 663:51–64. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dmello C, Srivastava SS, Tiwari R, Chaudhari PR, Sawant S and Vaidya MM: Multifaceted role of keratins in epithelial cell differentiation and transformation. J Biosci. 44:332019. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma P, Alsharif S, Fallatah A and Chung BM: Intermediate filaments as effectors of cancer development and metastasis: A focus on keratins, vimentin, and nestin. Cells. 8:4972019. View Article : Google Scholar : | |
|
Awe JA, Saranchuk J, Drachenberg D and Mai S: Filtration-based enrichment of circulating tumor cells from all prostate cancer risk groups. Urol Oncol. 35:300–309. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Erlandsson A, Forssell-Aronsson E, Seidal T and Bernhardt P: Binding of TS1, an anti-keratin 8 antibody, in small-cell lung cancer after 177Lu-DOTA-Tyr3-octreotate treatment: A histological study in xenografted mice. EJNMMI Res. 1:192011. View Article : Google Scholar | |
|
Sawant S, Vaidya M, Chaukar D, Gangadaran P, Singh AK, Rajadhyax S, Kannan S, Kane S, Pagare S and Kannan R: Clinicopathological features and prognostic implications of loss of K5 and gain of K1, K8 and K18 in oral potentially malignant lesions and squamous cell carcinomas: An immunohistochemical analysis. Edorium J Tumor Biol. 1:1–22. 2014. | |
|
Alam H, Kundu ST, Dalal SN and Vaidya MM: Loss of keratins 8 and 18 leads to alterations in α6β4-integrin-mediated signalling and decreased neoplastic progression in an oral-tumour-derived cell line. J Cell Sci. 124:2096–2106. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Sun L and Fang J: Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol Life Sci. 73:4493–4515. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou B-R and Bai Y: Chromatin structures condensed by linker histones. Essays Biochem. 63:75–87. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sridharan R, Gonzales-Cope M, Chronis C, Bonora G, McKee R, Huang C, Patel S, Lopez D, Mishra N, Pellegrini M, et al: Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nat Cell Biol. 15:872–882. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Tzivion G, Gupta VS, Kaplun L and Balan V: 14-3-3 proteins as potential oncogenes. Semin Cancer Biol. 16:203–213. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kurpińska A, Suraj J, Bonar E, Zakrzewska A, Stojak M, Sternak M, Jasztal A and Walczak M: Proteomic characterization of early lung response to breast cancer metastasis in mice. Exp Mol Pathol. 107:129–140. 2019. View Article : Google Scholar | |
|
Kawahara T, Hotta N, Ozawa Y, Kato S, Kano K, Yokoyama Y, Nagino M, Takahashi T and Yanagisawa K: Quantitative proteomic profiling identifies DPYSL3 as pancreatic ductal adenocarcinoma-associated molecule that regulates cell adhesion and migration by stabilization of focal adhesion complex. PLoS One. 8:e796542013. View Article : Google Scholar : PubMed/NCBI | |
|
Matsunuma R, Chan DW, Kim B-J, Singh P, Han A, Saltzman AB, Cheng C, Lei JT, Wang J, Roberto da Silva L, et al: DPYSL3 modulates mitosis, migration, and epithelial-to-mesenchymal transition in claudin-low breast cancer. Proc Natl Acad Sci USA. 115:E11978–E11987. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Jiang Y, Xie D, Liu M, Song N, Zhu J, Fan J and Zhu C: Inhibition of cell-adhesion protein DPYSL3 promotes metastasis of lung cancer. Respir Res. 19:412018. View Article : Google Scholar : PubMed/NCBI | |
|
Zarogoulidis P, Tsakiridis K, Karapantzou C, Lampaki S, Kioumis I, Pitsiou G, Papaiwannou A, Hohenforst-Schmidt W, Huang H, Kesisis G, et al: Use of proteins as biomarkers and their role in carcinogenesis. J Cancer. 6:9–18. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Frauchiger AL, Dummer R and Mangana J: Serum S100B levels in melanoma. Methods Mol Biol. 1929:691–700. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang T, Cheng J, You J, Yan B, Liu H and Li F: S100B promotes chemoresistance in ovarian cancer stem cells by regulating p53. Oncol Rep. 40:1574–1582. 2018.PubMed/NCBI | |
|
Darlix A, Lamy P-J, Lopez-Crapez E, Braccini AL, Firmin N, Romieu G, Thezenas S and Jacot W: Serum HER2 extra-cellular domain, S100β and CA 15-3 levels are independent prognostic factors in metastatic breast cancer patients. BMC Cancer. 16:4282016. View Article : Google Scholar | |
|
Gao H, Zhang IY, Zhang L, Song Y, Liu S, Ren H, Liu H, Zhou H, Su Y, Yang Y, et al: S100B suppression alters polarization of infiltrating myeloid-derived cells in gliomas and inhibits tumor growth. Cancer Lett. 439:91–100. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sadeghi M, Ordway B, Rafiei I, Borad P, Fang B, Koomen JL, Zhang C, Yoder S, Johnson J and Damaghi M: Integrative analysis of breast cancer cells reveals an epithelial-mesenchymal transition role in adaptation to acidic microenvironment. Front Oncol. 10:3042020. View Article : Google Scholar : PubMed/NCBI | |
|
Pampalakis G, Zingkou E, Sidiropoulos KG, Diamandis EP, Zoumpourlis V, Yousef GM and Sotiropoulou G: Biochemical pathways mediated by KLK6 protease in breast cancer. Mol Oncol. 13:2329–2343. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Seguella L, Capuano R, Pesce M, Annunziata G, Pesce M, de Conno B, Sarnelli G, Aurino L and Esposito G: S100B protein stimulates proliferation and angiogenic mediators release through RAGE/pAkt/mTOR pathway in human colon adenocarcinoma Caco-2 cells. Int J Mol Sci. 20:32402019. View Article : Google Scholar : | |
|
Méndez O, Peg V, Salvans C, Pujals M, Fernández Y, Abasolo I, Pérez J, Matres A, Valeri M, Gregori J, et al: Extracellular HMGA1 promotes tumor invasion and metastasis in triple-negative breast cancer. Clin Cancer Res. 24:6367–6382. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X-J, Chen Y-Y, Gong C-C and Pei D-S: The role of high-mobility group protein box 1 in lung cancer. J Cell Biochem. 119:6354–6365. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma AK, Sharma VR, Gupta GK, Ashraf GM and Kamal MA: Advanced glycation end products (AGEs), glutathione and breast cancer: Factors, mechanism and therapeutic interventions. Curr Drug Metab. 20:65–71. 2019. View Article : Google Scholar | |
|
Schröter D and Höhn A: Role of advanced glycation end products in carcinogenesis and their therapeutic implications. Curr Pharm Des. 24:5245–5251. 2018. View Article : Google Scholar | |
|
Palanissami G and Paul SFD: RAGE and its ligands: Molecular interplay between glycation, inflammation, and hallmarks of cancer - a review. Horm Cancer. 9:295–325. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmad S, Khan H, Siddiqui Z, Khan MY, Rehman S, Shahab U, Godovikova T, Silnikov V and Moinuddin: AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin Cancer Biol. 49:44–55. 2018. View Article : Google Scholar | |
|
Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M and Biswal S: Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 62:5196–5203. 2002.PubMed/NCBI | |
|
Sova M and Saso L: Design and development of Nrf2 modulators for cancer chemoprevention and therapy: A review. Drug Des Devel Ther. 12:3181–3197. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Taguchi K and Yamamoto M: The KEAP1-NRF2 system in cancer. Front Oncol. 7:852017. View Article : Google Scholar : PubMed/NCBI | |
|
Rojo de la Vega M, Chapman E and Zhang DD: NRF2 and the hallmarks of cancer. Cancer Cell. 34:21–43. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, Pass HI, Bhutkar AJ, Tsirigos A, Ueberheide B, et al: Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell. 178:316–329e18. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, Ziegler DV, Xu X, Ghosh T, Mondal T, et al: BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 178:330–345e22. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ryoo IG, Choi BH, Ku S-K and Kwak M-K: High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: Implications for cancer stem cell resistance. Redox Biol. 17:246–258. 2018. View Article : Google Scholar : PubMed/NCBI |