Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
September-2020 Volume 57 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2020 Volume 57 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review)

  • Authors:
    • Wararat Chiangjong
    • Somchai Chutipongtanate
    • Suradej Hongeng
  • View Affiliations / Copyright

    Affiliations: Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand, Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
    Copyright: © Chiangjong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 678-696
    |
    Published online on: July 10, 2020
       https://doi.org/10.3892/ijo.2020.5099
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer is currently ineffectively treated using therapeutic drugs, and is also able to resist drug action, resulting in increased side effects following drug treatment. A novel therapeutic strategy against cancer cells is the use of anticancer peptides (ACPs). The physicochemical properties, amino acid composition and the addition of chemical groups on the ACP sequence influences their conformation, net charge and orientation of the secondary structure, leading to an effect on targeting specificity and ACP‑cell interaction, as well as peptide penetrating capability, stability and efficacy. ACPs have been developed from both naturally occurring and modified peptides by substituting neutral or anionic amino acid residues with cationic amino acid residues, or by adding a chemical group. The modified peptides lead to an increase in the effectiveness of cancer therapy. Due to this effectiveness, ACPs have recently been improved to form drugs and vaccines, which have sequentially been evaluated in various phases of clinical trials. The development of the ACPs remains focused on generating newly modified ACPs for clinical application in order to decrease the incidence of new cancer cases and decrease the mortality rate. The present review could further facilitate the design of ACPs and increase efficacious ACP therapy in the near future.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Wang SH and Yu J: Structure-based design for binding peptides in anti-cancer therapy. Biomaterials. 156:1–15. 2018. View Article : Google Scholar

2 

Wang X, Zhang L, Ding N, Yang X, Zhang J, He J, Li Z and Sun LQ: Identification and characterization of DNAzymes targeting DNA methyltransferase I for suppressing bladder cancer proliferation. Biochem Biophys Res Commun. 461:329–333. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Ingram JR, Blomberg OS, Rashidian M, Ali L, Garforth S, Fedorov E, Fedorov AA, Bonanno JB, Le Gall C, Crowley S, et al: Anti-CTLA-4 therapy requires an Fc domain for efficacy. Proc Natl Acad Sci USA. 115:3912–3917. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Di JX and Zhang HY: C188-9 a small-molecule STAT3 inhibitor, exerts an antitumor effect on head and neck squamous cell carcinoma. Anticancer Drugs. 30:846–853. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Brun S, Bassissi F, Serdjebi C, Novello M, Tracz J, Autelitano F, Guillemot M, Fabre P, Courcambeck J, Ansaldi C, et al: GNS561, a new lysosomotropic small molecule, for the treatment of intrahe-patic cholangiocarcinoma. Invest New Drugs. 37:1135–1145. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K and Webster TJ: A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomedicine. 14:1633–1657. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Tyagi A, Tuknait A, Anand P, Gupta S, Sharma M, Mathur D, Joshi A, Singh S, Gautam A and Raghava GP: CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Res. 43(Database Issue): D837–D843. 2015. View Article : Google Scholar :

8 

Thundimadathil J: Cancer treatment using peptides: Current therapies and future prospects. J Amino Acids. 2012:9673472012. View Article : Google Scholar

9 

Vlieghe P, Lisowski V, Martinez J and Khrestchatisky M: Synthetic therapeutic peptides: Science and market. Drug Discov Today. 15:40–56. 2010. View Article : Google Scholar

10 

Otvos L Jr: Peptide-based drug design: Here and now. Methods Mol Biol. 494:1–8. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Hoskin DW and Ramamoorthy A: Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 1778:357–375. 2008. View Article : Google Scholar

12 

Rodrigues EG, Dobroff AS, Taborda CP and Travassos LR: Antifungal and antitumor models of bioactive protective peptides. An Acad Bras Cienc. 81:503–520. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Droin N, Hendra JB, Ducoroy P and Solary E: Human defensins as cancer biomarkers and antitumour molecules. J Proteomics. 72:918–927. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Simons K and Ikonen E: How cells handle cholesterol. Science. 290:1721–1726. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Sok M, Sentjurc M and Schara M: Membrane fluidity characteristics of human lung cancer. Cancer Lett. 139:215–220. 1999. View Article : Google Scholar : PubMed/NCBI

16 

Zwaal RF and Schroit AJ: Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 89:1121–1132. 1997. View Article : Google Scholar : PubMed/NCBI

17 

Schweizer F: Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol. 625:190–194. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Utsugi T, Schroit AJ, Connor J, Bucana CD and Fidler IJ: Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. 51:3062–3066. 1991.PubMed/NCBI

19 

Harris F, Dennison SR, Singh J and Phoenix DA: On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev. 33:190–234. 2013. View Article : Google Scholar

20 

Li G, Huang Y, Feng Q and Chen Y: Tryptophan as a probe to study the anticancer mechanism of action and specificity of alpha-helical anticancer peptides. Molecules. 19:12224–12241. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Marqus S, Pirogova E and Piva TJ: Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci. 24:212017. View Article : Google Scholar : PubMed/NCBI

22 

Roudi R, Syn NL and Roudbary M: Antimicrobial peptides as biologic and immunotherapeutic agents against Cancer: A comprehensive overview. Front Immunol. 8:13202017. View Article : Google Scholar : PubMed/NCBI

23 

Alves AC, Ribeiro D, Nunes C and Reis S: Biophysics in cancer: The relevance of drug-membrane interaction studies. Biochim Biophys Acta. 1858:2231–2244. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Yamaji-Hasegawa A and Tsujimoto M: Asymmetric distribution of phospholipids in biomembranes. Biol Pharm Bull. 29:1547–1553. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Clark MR: Flippin' lipids. Nat Immunol. 12:373–375. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Deliconstantinos G: Physiological aspects of membrane lipid fluidity in malignancy. Anticancer Res. 7:1011–1021. 1987.PubMed/NCBI

27 

Ran S, Downes A and Thorpe PE: Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 62:6132–6140. 2002.PubMed/NCBI

28 

Stafford JH and Thorpe PE: Increased exposure of phosphati-dylethanolamine on the surface of tumor vascular endothelium. Neoplasia. 13:299–308. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Barcelo-Coblijn G, Martin ML, de Almeida RF, Noguera-Salva MA, Marcilla-Etxenike A, Guardiola-Serrano F, Lüth A, Kleuser B, Halver JE and Escribá PV: Sphingomyelin and sphin-gomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc Natl Acad Sci USA. 108:19569–19574. 2011. View Article : Google Scholar

30 

Preetha A, Huilgol N and Banerjee R: Comparison of paclitaxel penetration in normal and cancerous cervical model monolayer membranes. Colloids Surf B Biointerfaces. 53:179–186. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Zhao L, Feng SS and Go ML: Investigation of molecular interactions between paclitaxel and DPPC by Langmuir film balance and differential scanning calorimetry. J Pharm Sci. 93:86–98. 2004. View Article : Google Scholar

32 

Logozzi M, Spugnini E, Mizzoni D, Di Raimo R and Fais S: Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev. 38:93–101. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Cardone RA, Casavola V and Reshkin SJ: The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer. 5:786–795. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Jobin ML and Alves ID: On the importance of electrostatic interactions between cell penetrating peptides and membranes: A pathway toward tumor cell selectivity? Biochimie. 107:154–159. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Peyressatre M, Prevel C, Pellerano M and Morris MC: Targeting cyclin-dependent kinases in human cancers: From small molecules to Peptide inhibitors. Cancers (Basel). 7:179–237. 2015. View Article : Google Scholar

36 

Raucher D and Ryu JS: Cell-penetrating peptides: Strategies for anticancer treatment. Trends Mol Med. 21:560–570. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Li J, Tan S, Chen X, Zhang CY and Zhang Y: Peptide aptamers with biological and therapeutic applications. Curr Med Chem. 18:4215–4222. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Fuertes MA, Castilla J, Alonso C and Perez JM: Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem. 10:257–266. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Horwitz SB: Taxol (paclitaxel): Mechanisms of action. Ann Oncol. 5(Suppl 6): S3–S6. 1994.PubMed/NCBI

40 

Huang Y, Li X, Sha H, Zhang L, Bian X, Han X and Liu B: Tumor-penetrating peptide fused to a pro-apoptotic peptide facilitates effective gastric cancer therapy. Oncol Rep. 37:2063–2070. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Zhang B, Shi W, Li J, Liao C, Yang L, Huang W and Qian H: Synthesis and biological evaluation of novel peptides based on antimicrobial peptides as potential agents with antitumor and multidrug resistance-reversing activities. Chem Biol Drug Des. 90:972–980. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Ramsey JD and Flynn NH: Cell-penetrating peptides transport therapeutics into cells. Pharmacol Ther. 154:78–86. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Kapoor P, Singh H, Gautam A, Chaudhary K, Kumar R and Raghava GP: TumorHoPe: A database of tumor homing peptides. PLoS One. 7:e351872012. View Article : Google Scholar : PubMed/NCBI

44 

Ghasemy S, Garcia-Pindado J, Aboutalebi F, Dormiani K, Teixido M and Malakoutikhah M: Fine-tuning the physicochemical properties of peptide-based blood-brain barrier shuttles. Bioorg Med Chem. 26:2099–2106. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Buckton LK and McAlpine SR: Improving the cell permeability of polar cyclic peptides by replacing residues with alkylated amino acids, asparagines, and d-Amino Acids. Org Lett. 20:506–509. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Perry SR, Hill TA, de Araujo AD, Hoang HN and Fairlie DP: Contiguous hydrophobic and charged surface patches in short helix-constrained peptides drive cell permeability. Org Biomol Chem. 16:367–371. 2018. View Article : Google Scholar

47 

Shoombuatong W, Schaduangrat N and Nantasenamat C: Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI J. 17:734–752. 2018.PubMed/NCBI

48 

Dai YX, Cai XG, Shi W, Bi XZ, Su X, Pan MB, Li HL, Lin HY, Huang WL and Qian H: Pro-apoptotic cationic host defense peptides rich in lysine or arginine to reverse drug resistance by disrupting tumor cell membrane. Amino Acids. 49:1601–1610. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Navarro S, Aleu J, Jimenez M, Boix E, Cuchillo CM and Nogues MV: The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell Mol Life Sci. 65:324–337. 2008. View Article : Google Scholar

50 

Midoux P, Kichler A, Boutin V, Maurizot JC and Monsigny M: Membrane permeabilization and efficient gene transfer by a peptide containing several histidines. Bioconjug Chem. 9:260–267. 1998. View Article : Google Scholar : PubMed/NCBI

51 

Yamaguchi Y, Yamamoto K, Sato Y, Inoue S, Morinaga T and Hirano E: Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation. Biomed Res. 37:153–159. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Oancea E, Teruel MN, Quest AF and Meyer T: Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J Cell Biol. 140:485–498. 1998. View Article : Google Scholar : PubMed/NCBI

53 

Shamova O, Orlov D, Stegemann C, Czihal P, Hoffmann R, Brogden K, Kolodkin N, Sakuta G, Tossi A, Sahl HG, et al: ChBac3.4: A Novel proline-rich antimicrobial peptide from goat leukocytes. Int J Pept Res Ther. 15:107–119. 2009. View Article : Google Scholar

54 

Maddocks ODK, Athineos D, Cheung EC, Lee P, Zhang T, van den Broek NJF, Mackay GM, Labuschagne CF, Gay D, Kruiswijk F, et al: Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature. 544:372–376. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Kiyuna T, Miyake K, Miyake M, Chmielowski B, Nelson SD, et al: Targeting methionine with oral recombinant methioninase (o-rMETase) arrests a patient-derived orthotopic xenograft (PDOX) model of BRAF-V600E mutant melanoma: Implications for chronic clinical cancer therapy and prevention. Cell Cycle. 17:356–361. 2018. View Article : Google Scholar :

56 

Gueron G, Anselmino N, Chiarella P, Ortiz EG, Lage Vickers S, Paez AV, Giudice J, Contin MD, Leonardi D, Jaworski F, et al: Game-changing restraint of Ros-damaged phenylalanine, upon tumor metastasis. Cell Death Dis. 9:1402018. View Article : Google Scholar : PubMed/NCBI

57 

Dennison SR, Whittaker M, Harris F and Phoenix DA: Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr Protein Pept Sci. 7:487–499. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Marchand C, Krajewski K, Lee HF, Antony S, Johnson AA, Amin R, Roller P, Kvaratskhelia M and Pommier Y: Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Res. 34:5157–5165. 2006. View Article : Google Scholar : PubMed/NCBI

59 

Barras D, Chevalier N, Zoete V, Dempsey R, Lapouge K, Olayioye MA, Michielin O and Widmann C: A WXW motif is required for the anticancer activity of the TAT-RasGAP317-326 peptide. J Biol Chem. 289:23701–23711. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Ahmaditaba MA, Shahosseini S, Daraei B, Zarghi A and Houshdar Tehrani MH: Design, synthesis, and biological evaluation of new peptide analogues as selective cox-2 inhibitors. Arch Pharm (Weinheim). 350:e17001582017. View Article : Google Scholar

61 

Bhunia D, Mondal P, Das G, Saha A, Sengupta P, Jana J, Mohapatra S, Chatterjee S and Ghosh S: Spatial position regulates power of tryptophan: Discovery of a major-groove-specific nuclear-localizing, cell-penetrating tetrapeptide. J Am Chem Soc. 140:1697–1714. 2018. View Article : Google Scholar

62 

Huang YB, Wang XF, Wang HY, Liu Y and Chen Y: Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol Cancer Ther. 10:416–426. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Yang QZ, Wang C, Lang L, Zhou Y, Wang H and Shang DJ: Design of potent, non-toxic anticancer peptides based on the structure of the antimicrobial peptide, temporin-1CEa. Arch Pharm Res. 36:1302–1310. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Dennison SR, Harris F, Bhatt T, Singh J and Phoenix DA: A theoretical analysis of secondary structural characteristics of anticancer peptides. Mol Cell Biochem. 333:129–135. 2010. View Article : Google Scholar

65 

Wu JM, Jan PS, Yu HC, Haung HY, Fang HJ, Chang YI, Cheng JW and Chen HM: Structure and function of a custom anticancer peptide, CB1a. Peptides. 30:839–848. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Lins L and Brasseur R: Tilted peptides: A structural motif involved in protein membrane insertion? J Pept Sci. 14:416–422. 2008. View Article : Google Scholar

67 

Lins L, Decaffmeyer M, Thomas A and Brasseur R: Relationships between the orientation and the structural properties of peptides and their membrane interactions. Biochim Biophys Acta. 1778:1537–1544. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Mandal PK, Gao F, Lu Z, Ren Z, Ramesh R, Birtwistle JS, Kaluarachchi KK, Chen X, Bast RC Jr, Liao WS, et al: Potent and selective phosphopeptide mimetic prodrugs targeted to the Src homology 2 (SH2) domain of signal transducer and activator of transcription 3. J Med Chem. 54:3549–3563. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Gabernet G, Gautschi D, Muller AT, Neuhaus CS, Armbrecht L, Dittrich PS, Hiss JA and Schneider G: In silico design and optimization of selective membranolytic anticancer peptides. Sci Rep. 9:112822019. View Article : Google Scholar : PubMed/NCBI

70 

Singh M, Kumar V, Sikka K, Thakur R, Harioudh MK, Mishra DP, Ghosh JK and Siddiqi MI: Computational design of biologically active anticancer peptides and their interactions with heterogeneous POPC/POPS Lipid membranes. J Chem Inf Model. 60:332–341. 2020. View Article : Google Scholar

71 

Ray T, Kar D and Pal A, Mukherjee S, Das C and Pal A: Molecular targeting of breast and colon cancer cells by PAR1 mediated apoptosis through a novel pro-apoptotic peptide. Apoptosis. 23:679–694. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Bohmova E, Machova D, Pechar M, Pola R, Venclikova K, Janouskova O and Etrych T: Cell-penetrating peptides: A useful tool for the delivery of various cargoes into cells. Physiol Res. 67(Suppl 2): S267–S279. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Levely ME, Mitchell MA and Nicholas JA: Synthetic immunogens constructed from T-cell and B-cell stimulating peptides (T:B chimeras): Preferential stimulation of unique T- and B-cell specificities is influenced by immunogen configuration. Cell Immunol. 125:65–78. 1990. View Article : Google Scholar : PubMed/NCBI

74 

Asao T, Takahashi F and Takahashi K: Resistance to molecu-larly targeted therapy in non-small-cell lung cancer. Respir Investig. 57:20–26. 2019. View Article : Google Scholar

75 

Zhang H, Han D, Lv T, Liu K, Yang Y, Xu X and Chen Y: Novel peptide myristoly-CM4 induces selective cytotoxicity in leukemia K562/MDR and Jurkat cells by necrosis and/or apop-tosis pathway. Drug Des Devel Ther. 13:2153–2167. 2019. View Article : Google Scholar :

76 

Chen YQ, Min C, Sang M, Han YY, Ma X, Xue XQ and Zhang SQ: A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells. Peptides. 31:1504–1510. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Jiang R, Du X and Lonnerdal B: Comparison of bioactivities of talactoferrin and lactoferrins from human and bovine milk. J Pediatr Gastroenterol Nutr. 59:642–652. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Tyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam A and Raghava GP: In silico models for designing and discovering novel anticancer peptides. Sci Rep. 3:29842013. View Article : Google Scholar : PubMed/NCBI

79 

Hajisharifi Z, Piryaiee M, Mohammad Beigi M, Behbahani M and Mohabatkar H: Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their muta-genicity via Ames test. J Theor Biol. 341:34–40. 2014. View Article : Google Scholar

80 

Chen W, Feng PM, Lin H and Chou KC: iRSpot-PseDNC: Identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res. 41:e682013. View Article : Google Scholar : PubMed/NCBI

81 

Grisoni F, Neuhaus C, Gabernet G, Muller A, Hiss J and Schneider G: Designing anticancer peptides by constructive machine learning. ChemMedChem. 13:1300–1302. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Kozlowska K, Nowak J, Kwiatkowski B and Cichorek M: ESR study of plasmatic membrane of the transplantable melanoma cells in relation to their biological properties. Exp Toxicol Pathol. 51:89–92. 1999. View Article : Google Scholar : PubMed/NCBI

83 

Mai JC, Mi Z, Kim SH, Ng B and Robbins PD: A proapoptotic peptide for the treatment of solid tumors. Cancer Res. 61:7709–7712. 2001.PubMed/NCBI

84 

Zhang W, Li J, Liu LW, Wang KR, Song JJ, Yan JX, Li ZY, Zhang BZ and Wang R: A novel analog of antimicrobial peptide Polybia-MPI, with thioamide bond substitution, exhibits increased therapeutic efficacy against cancer and diminished toxicity in mice. Peptides. 31:1832–1838. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Sinthuvanich C, Veiga AS, Gupta K, Gaspar D, Blumenthal R and Schneider JP: Anticancer β-hairpin peptides: Membrane-induced folding triggers activity. J Am Chem Soc. 134:6210–6217. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Gaspar D, Veiga AS, Sinthuvanich C, Schneider JP and Castanho MA: Anticancer peptide SVS-1: Efficacy precedes membrane neutralization. Biochemistry. 51:6263–6265. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Negi B, Kumar D and Rawat DS: Marine peptides as anticancer agents: A remedy to mankind by nature. Curr Protein Pept Sci. 18:885–904. 2017. View Article : Google Scholar

88 

Lemeshko VV: Electrical potentiation of the membrane permeabilization by new peptides with anticancer properties. Biochim Biophys Acta. 1828:1047–1056. 2013. View Article : Google Scholar

89 

Liu X, Cao R, Wang S, Jia J and Fei H: Amphipathicity determines different cytotoxic mechanisms of lysine- or arginine-rich cationic hydrophobic peptides in cancer cells. J Med Chem. 59:5238–5247. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Hu C, Chen X, Zhao W, Chen Y and Huang Y: Design and modification of anticancer peptides. Drug Des. 5:1000138–1000147. 2016. View Article : Google Scholar

91 

Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM and Khaled AR: The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 19:3794–3804. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Bidwell GL III and Raucher D: Therapeutic peptides for cancer therapy. Part I-peptide inhibitors of signal transduction cascades. Expert Opin Drug Deliv. 6:1033–1047. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Raucher D, Moktan S, Massodi I and Bidwell GL III: Therapeutic peptides for cancer therapy. Part II-cell cycle inhibitory peptides and apoptosis-inducing peptides. Expert Opin Drug Deliv. 6:1049–1064. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Ulasov IV, Borovjagin AV, Timashev P, Cristofanili M and Welch DR: KISS1 in breast cancer progression and autophagy. Cancer Metastasis Rev. 38:493–506. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Lamidi OF, Sani M, Lazzari P, Zanda M and Fleming IN: The tubulysin analogue KEMTUB10 induces apoptosis in breast cancer cells via p53, Bim and Bcl-2. J Cancer Res Clin Oncol. 141:1575–1583. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Wang C, Chen YW, Zhang L, Gong XG, Zhou Y and Shang DJ: Melanoma cell surface-expressed phosphatidylserine as a therapeutic target for cationic anticancer peptide, temporin-1CEa. J Drug Target. 24:548–556. 2016. View Article : Google Scholar

97 

Cao XW, Yang XZ, Du X, Fu LY, Zhang TZ, Shan HW, Zhao J and Wang FJ: Structure optimisation to improve the delivery efficiency and cell selectivity of a tumour-targeting cell-penetrating peptide. J Drug Target. 26:777–792. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Shull AY, Hu CA and Teng Y: Zebrafish as a model to evaluate peptide-related cancer therapies. Amino Acids. 49:1907–1913. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Leite ML, da Cunha NB and Costa FF: Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther. 183:160–176. 2018. View Article : Google Scholar

100 

Sun T, Zhang YS, Pang B, Hyun DC, Yang M and Xia Y: Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 53:12320–12364. 2014.PubMed/NCBI

101 

Dossa F, Acuna SA, Rickles AS, Berho M, Wexner SD, Quereshy FA, Baxter NN and Chadi SA: Association between adjuvant chemotherapy and overall survival in patients with rectal cancer and pathological complete response after neoadjuvant chemotherapy and resection. JAMA Oncol. 4:930–937. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Xu J, Khan AR, Fu M, Wang R, Ji J and Zhai G: Cell-penetrating peptide: A means of breaking through the physiological barriers of different tissues and organs. J Control Release. 309:106–124. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Duarte D, Fraga AG, Pedrosa J, Martel F and Vale N: Increasing the potential of cell-penetrating peptides for cancer therapy using a new pentagonal scaffold. Eur J Pharmacol. 860:1725542019. View Article : Google Scholar : PubMed/NCBI

104 

Park SE, Sajid MI, Parang K and Tiwari RK: Cyclic cell-penetrating peptides as efficient intracellular drug delivery tools. Mol Pharm. 16:3727–3743. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Copolovici DM, Langel K, Eriste E and Langel U: Cell-penetrating peptides:Design, synthesis, and applications. ACS Nano. 8:1972–1994. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Rothbard JB, Jessop TC, Lewis RS, Murray BA and Wender PA: Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J Am Chem Soc. 126:9506–9507. 2004. View Article : Google Scholar : PubMed/NCBI

107 

Guidotti G, Brambilla L and Rossi D: Cell-penetrating peptides: From basic research to clinics. Trends Pharmacol Sci. 38:406–424. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Pujals S and Giralt E: Proline-rich, amphipathic cell-penetrating peptides. Adv Drug Deliv Rev. 60:473–484. 2008. View Article : Google Scholar : PubMed/NCBI

109 

Marks JR, Placone J, Hristova K and Wimley WC: Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J Am Chem Soc. 133:8995–9004. 2011. View Article : Google Scholar : PubMed/NCBI

110 

Koren E and Torchilin VP: Cell-penetrating peptides: Breaking through to the other side. Trends Mol Med. 18:385–393. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Kamei N, Onuki Y, Takayama K and Takeda-Morishita M: Mechanistic study of the uptake/permeation of cell-penetrating peptides across a caco-2 monolayer and their stimulatory effect on epithelial insulin transport. J Pharm Sci. 102:3998–4008. 2013. View Article : Google Scholar : PubMed/NCBI

112 

Chen Y, Xie X, Wu A, Wang L, Hu Y, Zhang H and Li Y: A synthetic cell-penetrating peptide derived from nuclear localization signal of EPS8 exerts anticancer activity against acute myeloid leukemia. J Exp Clin Cancer Res. 37:122018. View Article : Google Scholar : PubMed/NCBI

113 

Lyu L, Huang LQ, Huang T, Xiang W, Yuan JD and Zhang CH: Cell-penetrating peptide conjugates of gambogic acid enhance the antitumor effect on human bladder cancer EJ cells through ROS-mediated apoptosis. Drug Des Devel Ther. 12:743–756. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Benergossi J, Calixto G, Fonseca-Santos B, Aida KL, de Cassia Negrini T, Duque C, Gremiao MP and Chorilli M: Highlights in peptide nanoparticle carriers intended to oral diseases. Curr Top Med Chem. 15:345–355. 2015. View Article : Google Scholar : PubMed/NCBI

115 

Meng F, Han N and Yeo Y: Organic nanoparticle systems for spatiotemporal control of multimodal chemotherapy. Expert Opin Drug Deliv. 14:427–446. 2017. View Article : Google Scholar :

116 

Conibear AC, Schmid A, Kamalov M, Becker CFW and Bello C: Recent advances in peptide-based approaches for cancer treatment. Curr Med Chem. 27:1174–1205. 2017. View Article : Google Scholar : PubMed/NCBI

117 

Asadzadeh Z, Mohammadi H, Safarzadeh E, Hemmatzadeh M, Mahdian-Shakib A, Jadidi-Niaragh F, Azizi G and Baradaran B: The paradox of Th17 cell functions in tumor immunity. Cell Immunol. 322:15–25. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Darabi A, Thuring C and Paulsson KM: HLA-I antigen presentation and tapasin influence immune responses against malignant brain tumors-considerations for successful immunotherapy. Anticancer Agents Med Chem. 14:1094–1100. 2014. View Article : Google Scholar

119 

Li M, Shi HS, Zhang HL, Luo ZC, Wan Y, Lu L, Luo ST and Yang L: bFGF peptide combined with the pVAX-8CpG plasmid as adjuvant is a novel anticancer vaccine inducing effective immune responses against Lewis lung carcinoma. Mol Med Rep. 5:625–630. 2012. View Article : Google Scholar

120 

Wang W, Li Y, Wang Y, Ren S, Li Y and Wang B: Polyactin A is a novel and potent immunological adjuvant for peptide-based cancer vaccine. Int Immunopharmacol. 54:95–102. 2018. View Article : Google Scholar

121 

Jin H, Wan C, Zou Z, Zhao G, Zhang L, Geng Y, Chen T, Huang A, Jiang F, Feng JP, et al: Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel. ACS Nano. 12:3295–3310. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Kakwere H, Ingham ES, Allen R, Mahakian LM, Tam SM, Zhang H, Silvestrini MT, Lewis JS and Ferrara KW: Toward personalized peptide-based cancer nanovaccines: A facile and versatile synthetic approach. Bioconjug Chem. 28:2756–2771. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Apostolopoulos V and McKenzie IF: Cellular mucins: Targets for immunotherapy. Crit Rev Immunol. 14:293–309. 1994. View Article : Google Scholar : PubMed/NCBI

124 

Obara W, Eto M, Mimata H, Kohri K, Mitsuhata N, Miura I, Shuin T, Miki T, Koie T, Fujimoto H, et al: A phase I/II study of cancer peptide vaccine S-288310 in patients with advanced urothelial carcinoma of the bladder. Ann Oncol. 28:798–803. 2017. View Article : Google Scholar

125 

Antonilli M, Rahimi H, Visconti V, Napoletano C, Ruscito I, Zizzari IG, Caponnetto S, Barchiesi G, Iadarola R, Pierelli L, et al: Triple peptide vaccination as consolidation treatment in women affected by ovarian and breast cancer: Clinical and immunological data of a phase I/II clinical trial. Int J Oncol. 48:1369–1378. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Asahara S, Takeda K, Yamao K, Maguchi H and Yamaue H: Phase I/II clinical trial using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with advanced pancreatic cancer. J Transl Med. 11:2912013. View Article : Google Scholar : PubMed/NCBI

127 

Rausch S, Gouttefangeas C, Hennenlotter J, Laske K, Walter K, Feyerabend S, Chandran PA, Kruck S, Singh-Jasuja H, Frick A, et al: Results of a Phase 1/2 Study in Metastatic Renal Cell Carcinoma Patients Treated with a Patient-specific Adjuvant Multi-peptide Vaccine after Resection of Metastases. Eur Urol Focus. 5:604–607. 2019. View Article : Google Scholar

128 

Dutoit V, Migliorini D, Ranzanici G, Marinari E, Widmer V, Lobrinus JA, Momjian S, Costello J, Walker PR, Okada H, et al: Antigenic expression and spontaneous immune responses support the use of a selected peptide set from the IMA950 glio-blastoma vaccine for immunotherapy of grade II and III glioma. Oncoimmunology. 7:e13919722018. View Article : Google Scholar

129 

Lilleby W, Gaudernack G, Brunsvig PF, Vlatkovic L, Schulz M, Mills K, Hole KH and Inderberg EM: Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol Immunother. 66:891–901. 2017. View Article : Google Scholar : PubMed/NCBI

130 

Talebi S, Bolhassani A, Azad TM, Arashkia A and Modaresi MH: Immuno-stimulating peptide derived from HMGB1 is more effective than the N-terminal domain of Gp96 as an endogenous adjuvant for improvement of protein vaccines. Protein Pept Lett. 24:190–196. 2017. View Article : Google Scholar

131 

Glover S, Delaney M, Dematte C, Kornberg L, Frasco M, Tran-Son-Tay R and Benya RV: Phosphorylation of focal adhesion kinase tyrosine 397 critically mediates gastrin-releasing peptide's morphogenic properties. J Cell Physiol. 199:77–88. 2004. View Article : Google Scholar : PubMed/NCBI

132 

Schally AV, Zhang X, Cai R, Hare JM, Granata R and Bartoli M: Actions and potential therapeutic applications of growth hormone-releasing hormone agonists. Endocrinology. 160:1600–1612. 2019. View Article : Google Scholar : PubMed/NCBI

133 

Munoz-Moreno L, Bajo AM, Prieto JC and Carmena MJ: Growth hormone-releasing hormone (GHRH) promotes metastatic phenotypes through EGFR/HER2 transactivation in prostate cancer cells. Mol Cell Endocrinol. 446:59–69. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Jimenez JJ, DelCanto GM, Popovics P, Perez A, Vila Granda A, Vidaurre I, Cai RZ, Rick FG, Swords RT and Schally AV: A new approach to the treatment of acute myeloid leukaemia targeting the receptor for growth hormone-releasing hormone. Br J Haematol. 181:476–485. 2018. View Article : Google Scholar : PubMed/NCBI

135 

Chin YT, Wang LM, Hsieh MT, Shih YJ, Nana AW, Changou CA, Yang YSH, Chiu HC, Fu E, Davis PJ, et al: Leptin OB3 peptide suppresses leptin-induced signaling and progression in ovarian cancer cells. J Biomed Sci. 24:512017. View Article : Google Scholar : PubMed/NCBI

136 

Zhang M, Zhang M, Wang J, Cai Q, Zhao R, Yu Y, Tai H, Zhang X and Xu C: Retro-inverso follicle-stimulating hormone peptide-mediated polyethylenimine complexes for targeted ovarian cancer gene therapy. Drug Deliv. 25:995–1003. 2018. View Article : Google Scholar : PubMed/NCBI

137 

Sogaard CK, Moestue SA, Rye MB, Kim J, Nepal A, Liabakk NB, Bachke S, Bathen TF, Otterlei M and Hill DK: APIM-peptide targeting PCNA improves the efficacy of docetaxel treatment in the TRAMP mouse model of prostate cancer. Oncotarget. 9:11752–11766. 2018. View Article : Google Scholar : PubMed/NCBI

138 

Farokhzad OC and Langer R: Impact of nanotechnology on drug delivery. ACS Nano. 3:16–20. 2009. View Article : Google Scholar : PubMed/NCBI

139 

Liu X, Peng J, He J, Li Q, Zhou J, Liang X and Tang S: Selection and identification of novel peptides specifically targeting human cervical cancer. Amino Acids. 50:577–592. 2018. View Article : Google Scholar : PubMed/NCBI

140 

Serrill JD, Wan X, Hau AM, Jang HS, Coleman DJ, Indra AK, Alani AW, McPhail KL and Ishmael JE: Coibamide A, a natural lariat depsipeptide, inhibits VEGFA/VEGFR2 expression and suppresses tumor growth in glioblastoma xenografts. Invest New Drugs. 34:24–40. 2016. View Article : Google Scholar

141 

Chakrabarti S, Guha S and Majumder K: Food-derived bioac-tive peptides in human health: Challenges and opportunities. Nutrients. 10:17382018. View Article : Google Scholar

142 

Sable R, Parajuli P and Jois S: Peptides, Peptidomimetics, and polypeptides from marine sources: A wealth of natural sources for pharmaceutical applications. Mar Drugs. 15:1242017. View Article : Google Scholar :

143 

O'Brien-Simpson NM, Hoffmann R, Chia CSB and Wade JD: Editorial: Antimicrobial and Anticancer Peptides. Front Chem. 6:132018. View Article : Google Scholar : PubMed/NCBI

144 

Sultan S, Huma N, Butt MS, Aleem M and Abbas M: Therapeutic potential of dairy bioactive peptides: A contemporary perspective. Crit Rev Food Sci Nutr. 58:105–115. 2018. View Article : Google Scholar

145 

Felicio MR, Silva ON, Goncalves S, Santos NC and Franco OL: Peptides with dual antimicrobial and anticancer activities. Front Chem. 5:52017. View Article : Google Scholar : PubMed/NCBI

146 

Mohanty DP, Mohapatra S, Misra S and Sahu PS: Milk derived bioactive peptides and their impact on human health-A review. Saudi J Biol Sci. 23:577–583. 2016. View Article : Google Scholar : PubMed/NCBI

147 

Gonzalez-Montoya M, Hernandez-Ledesma B, Silvan JM, Mora-Escobedo R and Martinez-Villaluenga C: Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chem. 242:75–82. 2018. View Article : Google Scholar

148 

Prateep A, Sumkhemthong S, Suksomtip M, Chanvorachote P and Chaotham C: Peptides extracted from edible mushroom: Lentinus squarrosulus induces apoptosis in human lung cancer cells. Pharm Biol. 55:1792–1799. 2017. View Article : Google Scholar : PubMed/NCBI

149 

Newman DJ and Cragg GM: Natural products as sources of new drugs over the last 25 years. J Nat Prod. 70:461–477. 2007. View Article : Google Scholar : PubMed/NCBI

150 

Fahs S, Patil-Sen Y and Snape TJ: Foldamers as anticancer therapeutics: Targeting protein-protein interactions and the cell membrane. Chembiochem. 16:1840–1853. 2015. View Article : Google Scholar : PubMed/NCBI

151 

Dhar A, Mallick S, Ghosh P, Maiti A, Ahmed I, Bhattacharya S, Mandal T, Manna A, Roy K, Singh S, et al: Simultaneous inhibition of key growth pathways in melanoma cells and tumor regression by a designed bidentate constrained helical peptide. Biopolymers. 102:344–358. 2014. View Article : Google Scholar : PubMed/NCBI

152 

Tanishiki N, Yano Y and Matsuzaki K: Endowment of pH responsivity to anticancer peptides by introducing 2,3-diami-nopropionic acid residues. Chembiochem. 20:2109–2117. 2019. View Article : Google Scholar : PubMed/NCBI

153 

Dennison SR, Harris F, Mura M and Phoenix DA: An atlas of anionic antimicrobial peptides from amphibians. Curr Protein Pept Sci. 19:823–838. 2018. View Article : Google Scholar : PubMed/NCBI

154 

Khamessi O, Ben Mabrouk H, ElFessi-Magouri R and Kharrat R: RK1, the first very short peptide from Buthus occi-tanus tunetanus inhibits tumor cell migration, proliferation and angiogenesis. Biochem Biophys Res Commun. 499:1–7. 2018. View Article : Google Scholar : PubMed/NCBI

155 

Choi YJ, Park SJ, Park YS, Park HS, Yang KM and Heo K: EpCAM peptide-primed dendritic cell vaccination confers significant anti-tumor immunity in hepatocellular carcinoma cells. PLoS One. 13:e01906382018. View Article : Google Scholar : PubMed/NCBI

156 

Matsueda S, Itoh K and Shichijo S: Antitumor activity of antibody against cytotoxic T lymphocyte epitope peptide of lymphocyte-specific protein tyrosine kinase. Cancer Sci. 109:611–617. 2018. View Article : Google Scholar : PubMed/NCBI

157 

Peng X, Zhou C, Hou X, Liu Y, Wang Z, Peng X, Zhang Z, Wang R and Kong D: Molecular characterization and bioactivity evaluation of two novel bombinin peptides from the skin secretion of Oriental fire-bellied toad, Bombina orientalis. Amino Acids. 50:241–253. 2018. View Article : Google Scholar

158 

Xie X, Zhou W, Hu Y, Chen Y, Zhang H and Li Y: A dual-function epidermal growth factor receptor pathway substrate 8 (Eps8)-derived peptide exhibits a potent cytotoxic T lymphocyte-activating effect and a specific inhibitory activity. Cell Death Dis. 9:3792018. View Article : Google Scholar : PubMed/NCBI

159 

Wu ZZ, Ding GF, Huang FF, Yang ZS, Yu FM, Tang YP, Jia YL, Zheng YY and Chen R: Anticancer activity of anthopleura anjunae oligopeptides in prostate cancer DU-145 cells. Mar Drugs. 16:pii: E125. 2018. View Article : Google Scholar

160 

Shen Y, Maupetit J, Derreumaux P and Tuffery P: Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J Chem Theory Comput. 10:4745–4758. 2014. View Article : Google Scholar

161 

Thevenet P, Shen Y, Maupetit J, Guyon F, Derreumaux P and Tuffery P: PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res. 40:W288–W293. 2012. View Article : Google Scholar : PubMed/NCBI

162 

Hao Y, Yang N, Teng D, Wang X, Mao R and Wang J: A review of the design and modification of lactoferricins and their derivatives. Biometals. 31:331–341. 2018. View Article : Google Scholar : PubMed/NCBI

163 

Dathe M, Schumann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzaki K, Murase O and Bienert M: Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry. 35:12612–12622. 1996. View Article : Google Scholar : PubMed/NCBI

164 

Sun S, Zhao G, Huang Y, Cai M, Yan Q, Wang H and Chen Y: Enantiomeric effect of d-Amino acid substitution on the mechanism of action of α-helical membrane-active peptides. Int J Mol Sci. 19:672017. View Article : Google Scholar

165 

Hicks RP: Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted C(α) amino acids. Bioorg Med Chem. 24:4056–4065. 2016. View Article : Google Scholar : PubMed/NCBI

166 

Zhou J, Yang X, Zhang W, Wang J, Wei C, Gu F, Lei T and Qin Y: Construction of an Anticancer Fusion Peptide (ACFP) derived from milk proteins and an assay of anti-ovarian cancer cells in vitro. Anticancer Agents Med Chem. 17:635–643. 2017. View Article : Google Scholar

167 

Bracci L, Mandarini E, Brunetti J, Depau L, Pini A, Terzuoli L, Scali S and Falciani C: The GAG-specific branched peptide NT4 reduces angiogenesis and invasiveness of tumor cells. PLoS One. 13:e01947442018. View Article : Google Scholar : PubMed/NCBI

168 

Chu HL, Yip BS, Chen KH, Yu HY, Chih YH, Cheng HT, Chou YT and Cheng JW: Novel antimicrobial peptides with high anticancer activity and selectivity. PLoS One. 10:e01263902015. View Article : Google Scholar : PubMed/NCBI

169 

He B, Yang D, Qin M, Zhang Y, He B, Dai W, Wang X, Zhang Q, Zhang H and Yin C: Increased cellular uptake of peptide-modified PEGylated gold nanoparticles. Biochem Biophys Res Commun. 494:339–345. 2017. View Article : Google Scholar : PubMed/NCBI

170 

Tsuchiya N, Hosono A, Yoshikawa T, Shoda K, Nosaka K, Shimomura M, Hara J, Nitani C, Manabe A, Yoshihara H, et al: Phase I study of glypican-3-derived peptide vaccine therapy for patients with refractory pediatric solid tumors. Oncoimmunology. 7:e13778722017. View Article : Google Scholar

171 

Liang AL, Qian HL, Zhang TT, Zhou N, Wang HJ, Men XT, Qi W, Zhang PP, Fu M, Liang X, et al: Bifunctional fused polypeptide inhibits the growth and metastasis of breast cancer. Drug Des Devel Ther. 9:5671–5686. 2015.PubMed/NCBI

172 

Herbert KJ, Ashton TM, Prevo R, Pirovano G and Higgins GS: T-LAK cell-originated protein kinase (TOPK): An emerging target for cancer-specific therapeutics. Cell Death Dis. 9:10892018. View Article : Google Scholar : PubMed/NCBI

173 

Wu D, Gao Y, Qi Y, Chen L, Ma Y and Li Y: Peptide-based cancer therapy: Opportunity and challenge. Cancer Lett. 351:13–22. 2014. View Article : Google Scholar : PubMed/NCBI

174 

Zachos I, Konstantinopoulos PA, Tzortzis V, Gravas S, Karatzas A, Karamouzis MV, Melekos M and Papavassiliou AG: Systemic therapy of metastatic bladder cancer in the molecular era: Current status and future promise. Expert Opin Investig Drugs. 19:875–887. 2010. View Article : Google Scholar : PubMed/NCBI

175 

Amir E, Hughes S, Blackhall F, Thatcher N, Ostoros G, Timar J, Tovari J, Kovacs G and Dome B: Targeting blood vessels for the treatment of non-small cell lung cancer. Curr Cancer Drug Targets. 8:392–403. 2008. View Article : Google Scholar : PubMed/NCBI

176 

Kim-Schulze S, Taback B and Kaufman HL: Cytokine therapy for cancer. Surg Oncol Clin N Am. 16:793–818. viii2007. View Article : Google Scholar : PubMed/NCBI

177 

Niu F, Yan J, Ma B, Li S, Shao Y, He P, Zhang W, He W, Ma PX and Lu W: Lanthanide-doped nanoparticles conjugated with an anti-CD33 antibody and a p53-activating peptide for acute myeloid leukemia therapy. Biomaterials. 167:132–142. 2018. View Article : Google Scholar : PubMed/NCBI

178 

Vats K, Sharma R, Sarma HD, Satpati D and Dash A: 68Ga-labeled HBED-CC variant of uPAR targeting peptide AE105 compared with 68Ga-NODAGA-AE105. Anticancer Agents Med Chem. 18:1289–1294. 2018. View Article : Google Scholar

179 

Ahmadpour S, Noaparast Z, Abedi SM and Hosseinimehr SJ: 99mTc-(tricine)-HYNIC-Lys-FROP peptide for breast tumor targeting. Anticancer Agents Med Chem. 18:1295–1302. 2018. View Article : Google Scholar

180 

Zhang J, Spring H and Schwab M: Neuroblastoma tumor cell-binding peptides identified through random peptide phage display. Cancer Lett. 171:153–164. 2001. View Article : Google Scholar : PubMed/NCBI

181 

Soudy R, Etayash H, Bahadorani K, Lavasanifar A and Kaur K: Breast cancer targeting peptide binds keratin 1: A new molecular marker for targeted drug delivery to breast cancer. Mol Pharm. 14:593–604. 2017. View Article : Google Scholar : PubMed/NCBI

182 

Du Y, Wang L, Wang W, Guo T, Zhang M, Zhang P, Zhang Y, Wu K, Li A, Wang X, et al: Novel application of cell penetrating R11 peptide for diagnosis of bladder cancer. J Biomed Nanotechnol. 14:161–167. 2018. View Article : Google Scholar : PubMed/NCBI

183 

Sato S, Nakamura T, Katagiri T, Tsuchikawa T, Kushibiki T, Hontani K, Takahashi M, Inoko K, Takano H, Abe H, et al: Molecular targeting of cell-permeable peptide inhibits pancreatic ductal adeno-carcinoma cell proliferation. Oncotarget. 8:113662–113672. 2017. View Article : Google Scholar

184 

Kang T, Huang Y, Zhu Q, Cheng H, Pei Y, Feng J, Xu M, Jiang G, Song Q, Jiang T, et al: Necroptotic cancer cells-mimicry nanovaccine boosts anti-tumor immunity with tailored immune-stimulatory modality. Biomaterials. 164:80–97. 2018. View Article : Google Scholar : PubMed/NCBI

185 

Garay H, Espinosa LA, Perera Y, Sanchez A, Diago D, Perea SE, Besada V, Reyes O and Gonzalez LJ: Characterization of low-abundance species in the active pharmaceutical ingredient of CIGB-300: A clinical-grade anticancer synthetic peptide. J Pept Sci. 24:e30812018. View Article : Google Scholar : PubMed/NCBI

186 

Perea SE, Reyes O, Baladron I, Perera Y, Farina H, Gil J, Rodriguez A, Bacardi D, Marcelo JL, Cosme K, et al: CIGB-300, a novel proapoptotic peptide that impairs the CK2 phosphorylation and exhibits anticancer properties both in vitro and in vivo. Mol Cell Biochem. 316:163–167. 2008. View Article : Google Scholar : PubMed/NCBI

187 

Rodriguez-Ulloa A, Ramos Y, Gil J, Perera Y, Castellanos-Serra L, Garcia Y, Betancourt L, Besada V, Gonzalez LJ, Fernandez-de-Cossio J, et al: Proteomic profile regulated by the anticancer peptide CIGB-300 in non-small cell lung cancer (NSCLC) cells. J Proteome Res. 9:5473–5483. 2010. View Article : Google Scholar : PubMed/NCBI

188 

Hirabayashi K, Yanagisawa R, Saito S, Higuchi Y, Koya T, Sano K, Koido S, Okamoto M, Sugiyama H, Nakazawa Y, et al: Feasibility and immune response of WT1 peptide vaccination in combination with OK-432 for paediatric solid tumors. Anticancer Res. 38:2227–2234. 2018.PubMed/NCBI

189 

Yanagisawa R, Koizumi T, Koya T, Sano K, Koido S, Nagai K, Kobayashi M, Okamoto M, Sugiyama H and Shimodaira S: WT1-pulsed dendritic cell vaccine combined with chemotherapy for resected pancreatic cancer in a phase I study. Anticancer Res. 38:2217–2225. 2018.PubMed/NCBI

190 

Ohno S, Takano F, Ohta Y, Kyo S, Myojo S, Dohi S, Sugiyama H, Ohta T and Inoue M: Frequency of myeloid dendritic cells can predict the efficacy of Wilms' tumor 1 peptide vaccination. Anticancer Res. 31:2447–2452. 2011.PubMed/NCBI

191 

Ohno S, Kyo S, Myojo S, Dohi S, Ishizaki J, Miyamoto K, Morita S, Sakamoto J, Enomoto T, Kimura T, et al: Wilms' tumor 1 (WT1) peptide immunotherapy for gynecological malignancy. Anticancer Res. 29:4779–4784. 2009.PubMed/NCBI

192 

Ishikawa H, Imano M, Shiraishi O, Yasuda A, Peng YF, Shinkai M, Yasuda T, Imamoto H and Shiozaki H: Phase I clinical trial of vaccination with LY6K-derived peptide in patients with advanced gastric cancer. Gastric Cancer. 17:173–180. 2014. View Article : Google Scholar

193 

Vasef MA, Ross JS and Cohen MB: Telomerase activity in human solid tumors. Diagnostic utility and clinical applications. Am J Clin Pathol. 112(1 Suppl): S68–S75. 1999.PubMed/NCBI

194 

Bernhardt SL, Gjertsen MK, Trachsel S, Moller M, Eriksen JA, Meo M, Buanes T and Gaudernack G: Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase I/II study. Br J Cancer. 95:1474–1482. 2006. View Article : Google Scholar : PubMed/NCBI

195 

Kokhaei P, Palma M, Hansson L, Osterborg A, Mellstedt H and Choudhury A: Telomerase (hTERT 611-626) serves as a tumor antigen in B-cell chronic lymphocytic leukemia and generates spontaneously antileukemic, cytotoxic T cells. Exp Hematol. 35:297–304. 2007. View Article : Google Scholar : PubMed/NCBI

196 

Aspeslagh S, Awada A, Matos-Pita A, Aftimos P, Bahleda R, Varga A and Soria JC: Phase I dose-escalation study of plitidepsin in combination with bevacizumab in patients with refractory solid tumors. Anticancer Drugs. 27:1021–1027. 2016. View Article : Google Scholar : PubMed/NCBI

197 

Engel JB, Tinneberg HR, Rick FG, Berkes E and Schally AV: Targeting of peptide cytotoxins to LHRH receptors for treatment of cancer. Curr Drug Targets. 17:488–494. 2016. View Article : Google Scholar : PubMed/NCBI

198 

Noguchi M, Matsumoto K, Uemura H, Arai G, Eto M, Naito S, Ohyama C, Nasu Y, Tanaka M, Moriya F, et al: An open-label, randomized phase II trial of personalized peptide vaccination in patients with bladder cancer that progressed after platinum-based chemotherapy. Clin Cancer Res. 22:54–60. 2016. View Article : Google Scholar

199 

Toh U, Saku S, Okabe M, Iwakuma N, Kimitsuki Y, Akashi M, Ogo E, Yamada A, Shichijo S, Itoh K, et al: Development of peptide vaccines for triple-negative breast cancer treatment. Gan To Kagaku Ryoho. 43:1249–1251. 2016.In Japanese. PubMed/NCBI

200 

Brown TA, Byrd K, Vreeland TJ, Clifton GT, Jackson DO, Hale DF, Herbert GS, Myers JW, Greene JM, Berry JS, et al: Final analysis of a phase I/IIa trial of the folate-binding protein-derived E39 peptide vaccine to prevent recurrence in ovarian and endometrial cancer patients. Cancer Med. 8:4678–4687. 2019. View Article : Google Scholar : PubMed/NCBI

201 

Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J, Gailani F, Riley L, Conlon K, Pockaj B, et al: gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 364:2119–2127. 2011. View Article : Google Scholar : PubMed/NCBI

202 

Mikecin AM, Walker LR, Kuna M and Raucher D: Thermally targeted p21 peptide enhances bortezomib cytotoxicity in androgen-independent prostate cancer cell lines. Anticancer Drugs. 25:189–199. 2014. View Article : Google Scholar

203 

Korani M, Korani S, Zendehdel E, Nikpoor AR, Jaafari MR, Orafai HM, Johnston TP and Sahebkar A: Enhancing the therapeutic efficacy of bortezomib in cancer therapy using polymeric nanostructures. Curr Pharm Des. 25:4883–4892. 2019. View Article : Google Scholar : PubMed/NCBI

204 

Zhou Y, Liu X, Xue J, Liu L, Liang T, Li W, Yang X, Hou X and Fang H: Discovery of peptide boronate derivatives as histone deacetylase and proteasome dual inhibitors for overcoming bortezomib resistance of multiple myeloma. J Med Chem. 63:4701–4715. 2020. View Article : Google Scholar : PubMed/NCBI

205 

Garofalo M, Grazioso G, Cavalli A and Sgrignani J: How computational chemistry and drug delivery techniques can support the development of new anticancer drugs. Molecules. 25:17562020. View Article : Google Scholar :

206 

Adlakha S, Sharma A, Vaghasiya K, Ray E and Verma RK: Inhalation delivery of host defence peptides (HDP) using nano-formulation strategies: A pragmatic approach for therapy of pulmonary ailments. Curr Protein Pept Sci. 21:369–378. 2020. View Article : Google Scholar

207 

Tu Y, Tao J, Wang F, Liu P, Han Z, Li Z, Ma Y and Gu Y: A novel peptide targeting gastrin releasing peptide receptor for pancreatic neoplasm detection. Biomater Sci. 8:2682–2693. 2020. View Article : Google Scholar : PubMed/NCBI

208 

Ohana J, Sandler U, Kass G, Stemmer SM and Devary Y: dTCApFs, a derivative of a novel human hormone peptide, induces apoptosis in cancer cells through a mechanism involving loss of Golgi function. Mol Clin Oncol. 7:991–999. 2017.PubMed/NCBI

209 

Stemmer SM, Benjaminov O, Silverman MH, Sandler U, Purim O, Sender N, Meir C, Oren-Apoteker P, Ohana J and Devary Y: A phase I clinical trial of dTCApFs, a derivative of a novel human hormone peptide, for the treatment of advanced/metastatic solid tumors. Mol Clin Oncol. 8:22–29. 2018.PubMed/NCBI

210 

Murali R and Kieber-Emmons T: Cancer immunotherapeutics: Evolution of monoclonal antibodies to peptide immunogens. Monoclon Antib Immunodiagn Immunother. 33:179–182. 2014. View Article : Google Scholar : PubMed/NCBI

211 

Tan Z and Zhang S: Past, present, and future of targeting ras for cancer therapies. Mini Rev Med Chem. 16:345–357. 2016. View Article : Google Scholar

212 

Li QX, Yu DH, Liu G, Ke N, McKelvy J and Wong-Staal F: Selective anticancer strategies via intervention of the death pathways relevant to cell transformation. Cell Death Differ. 15:1197–1210. 2008. View Article : Google Scholar : PubMed/NCBI

213 

Micale N, Scarbaci K, Troiano V, Ettari R, Grasso S and Zappala M: Peptide-based proteasome inhibitors in anticancer drug design. Med Res Rev. 34:1001–1069. 2014. View Article : Google Scholar : PubMed/NCBI

214 

Wang X, Chen X, Yang X, Gao W, He B, Dai W, Zhang H, Wang X, Wang J, Zhang X, et al: A nanomedicine based combination therapy based on QLPVM peptide functionalized liposomal tamoxifen and doxorubicin against Luminal A breast cancer. Nanomedicine. 12:387–397. 2016. View Article : Google Scholar

215 

Cheng T and Zhan X: Pattern recognition for predictive, preventive, and personalized medicine in cancer. EPMA J. 8:51–60. 2017. View Article : Google Scholar : PubMed/NCBI

216 

Vadevoo SMP, Gurung S, Khan F, Haque ME, Gunassekaran GR, Chi L, Permpoon U and Lee B: Peptide-based targeted therapeutics and apoptosis imaging probes for cancer therapy. Arch Pharm Res. 42:150–158. 2019. View Article : Google Scholar : PubMed/NCBI

217 

Sun X, Li Y, Liu T, Li Z, Zhang X and Chen X: Peptide-based imaging agents for cancer detection. Adv Drug Deliv Rev. 110-111:38–51. 2017. View Article : Google Scholar :

218 

Ehlerding EB, Sun L, Lan X, Zeng D and Cai W: Dual-targeted molecular imaging of cancer. J Nucl Med. 59:390–395. 2018. View Article : Google Scholar : PubMed/NCBI

219 

Wang Q, Li SB, Zhao YY, Dai DN, Du H, Lin YZ, Ye JC, Zhao J, Xiao W, Mei Y, et al: Identification of a sodium pump Na(+)/K(+) ATPase alpha1-targeted peptide for PET imaging of breast cancer. J Control Release. 281:178–188. 2018. View Article : Google Scholar : PubMed/NCBI

220 

Perez SA, von Hofe E, Kallinteris NL, Gritzapis AD, Peoples GE, Papamichail M and Baxevanis CN: A new era in anticancer peptide vaccines. Cancer. 116:2071–2080. 2010.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chiangjong W, Chutipongtanate S and Hongeng S: Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 57: 678-696, 2020.
APA
Chiangjong, W., Chutipongtanate, S., & Hongeng, S. (2020). Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). International Journal of Oncology, 57, 678-696. https://doi.org/10.3892/ijo.2020.5099
MLA
Chiangjong, W., Chutipongtanate, S., Hongeng, S."Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review)". International Journal of Oncology 57.3 (2020): 678-696.
Chicago
Chiangjong, W., Chutipongtanate, S., Hongeng, S."Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review)". International Journal of Oncology 57, no. 3 (2020): 678-696. https://doi.org/10.3892/ijo.2020.5099
Copy and paste a formatted citation
x
Spandidos Publications style
Chiangjong W, Chutipongtanate S and Hongeng S: Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 57: 678-696, 2020.
APA
Chiangjong, W., Chutipongtanate, S., & Hongeng, S. (2020). Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). International Journal of Oncology, 57, 678-696. https://doi.org/10.3892/ijo.2020.5099
MLA
Chiangjong, W., Chutipongtanate, S., Hongeng, S."Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review)". International Journal of Oncology 57.3 (2020): 678-696.
Chicago
Chiangjong, W., Chutipongtanate, S., Hongeng, S."Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review)". International Journal of Oncology 57, no. 3 (2020): 678-696. https://doi.org/10.3892/ijo.2020.5099
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team