Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
October-2020 Volume 57 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2020 Volume 57 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article

A novel HDAC1 inhibitor, CBUD‑1001, exerts anticancer effects by modulating the apoptosis and EMT of colorectal cancer cells

  • Authors:
    • Se Lim Kim
    • Minh Thanh La
    • Min Woo Shin
    • Sang‑Wook Kim
    • Hee‑Kwon Kim
  • View Affiliations / Copyright

    Affiliations: Department of Internal Medicine, Research Institute of Clinical Medicine of Jeonbuk National University‑Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea, Department of Nuclear Medicine, Molecular Imaging and Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
  • Pages: 1027-1038
    |
    Published online on: August 10, 2020
       https://doi.org/10.3892/ijo.2020.5109
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies and is a leading cause of cancer‑related mortality worldwide. Histone deacetylases (HDACs) are a class of enzymes responsible for the epigenetic regulation of gene expression. Some HDAC inhibitors have been shown to be efficient agents for cancer treatment. The aim of the present study was to discover a novel, potent HDAC inhibitor and demonstrate its anticancer effect and molecular mechanisms in CRC cells. A novel fluorinated aminophenyl‑benzamide‑based compound, CBUD‑1001, was designed to specifically target HDAC1, and it was then synthesized and evaluated. CBUD‑1001 exerted a potent inhibitory effect on HDAC enzyme activity and exhibited anticancer potency against CRC cell lines. Molecular docking analysis rationalized the high potency of CBUD‑1001 by validating its conformation in the HDAC active site. Further investigation using CRC cells demonstrated that CBUD‑1001 inhibited HDAC activity by hyper‑acetylating histones H3 and H4, and it exerted an apoptotic effect by activating a mitochondrial‑dependent pathway. Of note, it was found that CBUD‑1001 attenuates the cell motility of CRC cells by downregulating the EMT signaling pathway. Thus, CBUD‑1001 may prove to be a promising novel drug candidate for CRC therapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar

2 

Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global patterns and trends in colorectal cancer incidence and mortality. Gut. 66:683–691. 2017. View Article : Google Scholar

3 

Haggar FA and Boushey RP: Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 22:191–197. 2009. View Article : Google Scholar

4 

Lao VV and Grady WM: Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 8:686–700. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Bertrand P: Inside HDAC with HDAC inhibitors. Eur J Med Chem. 45:2095–2116. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Jackson MD and Denu JM: Structural identification of 2′- and 3′-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta-NAD+-dependent histone/protein deacetylases. J Biol Chem. 277:18535–18544. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Lombardi PM, Cole KE, Dowling DP and Christianson DW: Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr Opin Struct Biol. 21:735–743. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Haberland M, Montgomery RL and Olson EN: The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat Rev Genet. 10:32–42. 2009. View Article : Google Scholar

9 

Kelly RD and Cowley SM: The physiological roles of histone deacetylase (HDAC) 1 and 2: Complex co-stars with multiple leading parts. Biochem Soc Trans. 41:741–749. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Lagger G, Doetzlhofer A, Schuettengruber B, Haidweger E, Simboeck E, Tischler J, Chiocca S, Suske G, Rotheneder H, Wintersberger E and Seiser C: The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol. 23:2669–2679. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Ropero S and Esteller M: The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 1:19–25. 20072007. View Article : Google Scholar : PubMed/NCBI

12 

Hill R, Bodzak E, Blough MD and Lee PW: p53 Binding to the p21 promoter is dependent on the nature of DNA damage. Cell Cycle. 7:2535–2543. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Li Y and Seto E: HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med. 6:a0268312016. View Article : Google Scholar : PubMed/NCBI

14 

Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP and Göttlicher M: Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 5:455–463. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Stypula-Cyrus Y, Damania D, Kunte DP, Cruz MD, Subramanian H, Roy HK and Backman V: HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure. PLoS One. 8:e646002013. View Article : Google Scholar : PubMed/NCBI

16 

Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S, Jung A, Kirchner T and Brabletz T: A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology. 131:830–840. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Barrallo-Gimeno A and Nieto MA: The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development. 132:3151–3161. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Peinado H, Ballestar E, Esteller M and Cano A: Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol. 24:306–319. 2004. View Article : Google Scholar

19 

Jurkin J, Zupkovitz G, Lagger S, Grausenburger R, Hagelkruys A, Kenner L and Seiser C: Distinct and redundant functions of histone deacetylases HDAC1 and HDAC2 in proliferation and tumorigenesis. Cell Cycle. 10:406–412. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Mariadason JM: HDACs and HDAC inhibitors in colon cancer. Epigenetics. 3:28–37. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Sun PC, Tzao C, Chen BH, Liu CW, Yu CP and Jin JS: Suberoylanilide hydroxamic acid induces apoptosis and sub-G1 arrest of 320 HSR colon cancer cells. J Biomed Sci. 17:762010. View Article : Google Scholar : PubMed/NCBI

22 

Wang TY, Jia YL, Zhang X, Sun QL, Li YC, Zhang JH, Zhao CP, Wang XY and Wang L: Treating colon cancer cells with FK228 reveals a link between histone lysine acetylation and extensive changes in the cellular proteome. Sci Rep. 5:184432015. View Article : Google Scholar : PubMed/NCBI

23 

Zhijun H, Shusheng W, Han M, Jianping L, Li-Sen Q and Dechun L: Pre-clinical characterization of 4SC-202, a novel class I HDAC inhibitor, against colorectal cancer cells. Tumour Biol. 37:10257–10267. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Ji M, Lee EJ, Kim KB, Kim Y, Sung R, Lee SJ, Kim DS and Park SM: HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells. Oncol Rep. 33:2299–2308. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Patel MM and Patel BM: Repurposing of sodium valproate in colon cancer associated with diabetes mellitus: Role of HDAC inhibition. Eur J Pharm Sci. 121:188–199. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Bracker TU, Sommer A, Fichtner I, Faus H, Haendler B and Hess-Stumpp H: Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int J Oncol. 35:909–920. 2009.PubMed/NCBI

27 

Jin JS, Tsao TY, Sun PC, Yu CP and Tzao C: SAHA inhibits the growth of colon tumors by decreasing histone deacetylase and the expression of cyclin D1 and survivin. Pathol Oncol Res. 18:713–7120. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Chou CW, Wu MS, Huang WC and Chen CC: HDAC inhibition decreases the expression of EGFR in colorectal cancer cells. PLoS One. 6:e180872011. View Article : Google Scholar : PubMed/NCBI

29 

Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, et al: Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 409:581–589. 2008. View Article : Google Scholar

30 

Kelly WK, O'Connor OA, Krug LM, Chiao JH, Heaney M, Curley T, MacGregore-Cortelli B, Tong W, Secrist JP, Schwartz L, et al: Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol. 23:3923–3931. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Flis S, Gnyszka A, Flis K and Spławiński J: MS275 enhances cytotoxicity induced by 5-fluorouracil in the colorectal cancer cells. Eur J Pharmacol. 627:26–32. 2010. View Article : Google Scholar

32 

Zhang L, Zhang J, Jiang Q, Zhang L and Song W: Zinc binding groups for histone deacetylase inhibitors. J Enzyme Inhib Med Chem. 33:714–721. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Lu H, Chen YD, Yang B and You QD: Design, synthesis and biological evaluation of novel histone deacetylase inhibitors based on virtual screening. Acta Pharmaceutica Sinica B. 1:240–247. 2011. View Article : Google Scholar

34 

Vaisburg A, Paquin I, Bernstein N, Frechette S, Gaudette F, Leit S, Moradei O, Raeppel S, Zhou N, Bouchain G, et al: N-(2-Amino-phenyl)-4-(heteroarylmethyl)-benzamides as new histone deacetylase inhibitors. Bioorg Med Chem Lett. 17:6729–6733. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Methot JL, Chakravarty PK, Chenard M, Close J, Cruz JC, Dahlberg WK, Fleming J, Hamblett CL, Hamill JE, Harrington P, et al: Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1: 2). Bioorg Med Chem Lett. 18:973–978. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Lauffer BEL, Mintzer R, Fong RN, Mukund S, Tam C, Zilberleyb I, Flicke B, Ritscher A, Fedorowicz G, Vallero R, et al: Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J Biol Chem. 288:26926–26943. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Zamzami N, Marchetti P, Castedo M, Zanin C, V Vayssière JL, Petit PX and Kroemer G: Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med. 181:1661–1672. 1995. View Article : Google Scholar : PubMed/NCBI

38 

Seto E and Yoshida M: Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 6:a0187132014. View Article : Google Scholar : PubMed/NCBI

39 

Spurling CC, Godman CA, Noonan EJ, Rasmussen TP, Rosenberg DW and Giardina C: HDAC3 overexpression and colon cancer cell proliferation and differentiation. Mol Carcinog. 47:137–147. 2008. View Article : Google Scholar

40 

Chen HP, Zhao YT and Zhao TC: Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncog. 20:35–47. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Audia JE and Campbell RM: Histone modifications and cancer. Cold Spring Harb Perspect Biol. 8:a0195212016. View Article : Google Scholar : PubMed/NCBI

42 

De Souza C and Chatterji BP: HDAC inhibitors as novel anti-cancer therapeutics. Recent Pat Anticancer Drug Discov. 10:145–162. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Bozorgi AH, Bagheri M, Aslebagh R and Rajabi MS: A structure-activity relationship survey of histone deacetylase (HDAC) inhibitors. Chemometr Intell Lab. 125:132–138. 2013. View Article : Google Scholar

44 

Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M, Raju GC and Hooi SC: Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ. 12:395–404. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Weichert W, Roske A, Niesporek S, Noske A, Buckendahl AC, Dietel M, Gekeler V, Boehm M, Beckers T and Denkert C: Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: Specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res. 14:1669–1677. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Senese S, Zaragoza K, Minardi S, Muradore I, Ronzoni S, Passafaro A, Bernard L, Draetta GF, Alcalay M, Seiser C and Chiocca S: Role for histone deacetylase 1 in human tumor cell proliferation. Mol Cell Biol. 27:4784–4795. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Glaser KB, Li J, Staver MJ, Wei RQ, Albert DH and Davidsen SK: Role of class I and class II histone deacetylases in carcinoma cells using siRNA. Biochem Biophys Res Commun. 310:529–536. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Santoro F, Botrugno OA, Dal Zuffo R, Pallavicini I, Matthews GM, Cluse L, Barozzi I, Senese S, Fornasari L, Moretti S, et al: A dual role for Hdac1: Oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood. 121:3459–3468. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Huang L, Sowa Y, Sakai T and Pardee AB: Activation of the p21WAF1/CIP1 promoter independent of p53 by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) through the Sp1 sites. Oncogene. 19:5712–5719. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Rikiishi H: Autophagic and apoptotic effects of HDAC inhibitors on cancer cells. J Biomed Biotechnol. 2011:8302602011. View Article : Google Scholar : PubMed/NCBI

51 

Green DR and Reed JC: Mitochondria and apoptosis. Science. 281:1309–1312. 1998. View Article : Google Scholar : PubMed/NCBI

52 

Yang E and Korsmeyer SJ: Molecular thanatopsis: A discourse on the BCL2 family and cell death. Blood. 88:386–401. 1996. View Article : Google Scholar : PubMed/NCBI

53 

Kroemer G and Reed JC: Mitochondrial control of cell death. Nat Med. 6:513–519. 2000. View Article : Google Scholar : PubMed/NCBI

54 

Adams JM and Cory S: The Bcl-2 protein family: Arbiters of cell survival. Science. 281:1322–1326. 1998. View Article : Google Scholar : PubMed/NCBI

55 

Gross A, McDonnell JM and Korsmeyer SJ: BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13:1899–1911. 1999. View Article : Google Scholar : PubMed/NCBI

56 

Lencz T, Guha S, Liu C, Rosenfeld J, Mukherjee S, DeRosse P, John M, Cheng L, Zhang C, Badner JA, et al: Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder. Nat Commun. 4:27392013. View Article : Google Scholar : PubMed/NCBI

57 

Eckelman BP, Salvesen GS and Scott FL: Human inhibitor of apoptosis proteins: Why XIAP is the black sheep of the family. EMBO Rep. 7:988–994. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Grutter MG: Caspases: Key players in programmed cell death. Curr Opin Struct Biol. 10:649–655. 2000. View Article : Google Scholar : PubMed/NCBI

59 

Lee JM, Dedhar S, Kalluri R and Thompson EW: The epithelial-mesenchymal transition: New insights in signaling, development, and disease. J Cell Biol. 172:973–981. 2006. View Article : Google Scholar : PubMed/NCBI

60 

Zhang Y and Weinberg RA: Epithelial-to-mesenchymal transition in cancer: Complexity and opportunities. Front Med. 12:361–373. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Sakamoto T, Kobayashi S, Yamada D, Nagano H, Tomokuni A, Tomimaru Y, Noda T, Gotoh K, Asaoka T, Wada H, et al: A Histone deacetylase inhibitor suppresses epithelial-mesenchymal transition and attenuates chemoresistance in biliary tract cancer. PLoS One. 11:e01459852016. View Article : Google Scholar : PubMed/NCBI

62 

Mateen S, Raina K, Agarwal C, Chan D and Agarwal R: Silibinin synergizes with histone deacetylase and DNA methyltransferase inhibitors in upregulating E-cadherin expression together with inhibition of migration and invasion of human non-small cell lung cancer cells. J Pharmacol Exp Ther. 345:206–214. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Feng J, Cen J, Li J, Zhao R, Zhu C, Wang Z, Xie J and Tang W: Histone deacetylase inhibitor valproic acid (VPA) promotes the epithelial mesenchymal transition of colorectal cancer cells via up regulation of Snail. Cell Adh Migr. 9:495–501. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kim S, La MT, Shin M, Kim SW and Kim HK: A novel HDAC1 inhibitor, CBUD‑1001, exerts anticancer effects by modulating the apoptosis and EMT of colorectal cancer cells. Int J Oncol 57: 1027-1038, 2020.
APA
Kim, S., La, M.T., Shin, M., Kim, S., & Kim, H. (2020). A novel HDAC1 inhibitor, CBUD‑1001, exerts anticancer effects by modulating the apoptosis and EMT of colorectal cancer cells. International Journal of Oncology, 57, 1027-1038. https://doi.org/10.3892/ijo.2020.5109
MLA
Kim, S., La, M. T., Shin, M., Kim, S., Kim, H."A novel HDAC1 inhibitor, CBUD‑1001, exerts anticancer effects by modulating the apoptosis and EMT of colorectal cancer cells". International Journal of Oncology 57.4 (2020): 1027-1038.
Chicago
Kim, S., La, M. T., Shin, M., Kim, S., Kim, H."A novel HDAC1 inhibitor, CBUD‑1001, exerts anticancer effects by modulating the apoptosis and EMT of colorectal cancer cells". International Journal of Oncology 57, no. 4 (2020): 1027-1038. https://doi.org/10.3892/ijo.2020.5109
Copy and paste a formatted citation
x
Spandidos Publications style
Kim S, La MT, Shin M, Kim SW and Kim HK: A novel HDAC1 inhibitor, CBUD‑1001, exerts anticancer effects by modulating the apoptosis and EMT of colorectal cancer cells. Int J Oncol 57: 1027-1038, 2020.
APA
Kim, S., La, M.T., Shin, M., Kim, S., & Kim, H. (2020). A novel HDAC1 inhibitor, CBUD‑1001, exerts anticancer effects by modulating the apoptosis and EMT of colorectal cancer cells. International Journal of Oncology, 57, 1027-1038. https://doi.org/10.3892/ijo.2020.5109
MLA
Kim, S., La, M. T., Shin, M., Kim, S., Kim, H."A novel HDAC1 inhibitor, CBUD‑1001, exerts anticancer effects by modulating the apoptosis and EMT of colorectal cancer cells". International Journal of Oncology 57.4 (2020): 1027-1038.
Chicago
Kim, S., La, M. T., Shin, M., Kim, S., Kim, H."A novel HDAC1 inhibitor, CBUD‑1001, exerts anticancer effects by modulating the apoptosis and EMT of colorectal cancer cells". International Journal of Oncology 57, no. 4 (2020): 1027-1038. https://doi.org/10.3892/ijo.2020.5109
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team