Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
November-2020 Volume 57 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 57 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Polycomb repressor complex 2 function in breast cancer (Review)

  • Authors:
    • Courtney J. Martin
    • Roger A. Moorehead
  • View Affiliations / Copyright

    Affiliations: Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada
    Copyright: © Martin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1085-1094
    |
    Published online on: September 17, 2020
       https://doi.org/10.3892/ijo.2020.5122
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Epigenetic modifications are important contributors to the regulation of genes within the chromatin. The polycomb repressive complex 2 (PRC2) is a multi‑subunit protein complex that is involved in silencing gene expression through the trimethylation of lysine 27 at histone 3 (H3K27me3). The dysregulation of this modification has been associated with tumorigenicity through the increased repression of tumour suppressor genes via condensing DNA to reduce access to the transcription start site (TSS) within tumor suppressor gene promoters. In the present review, the core proteins of PRC2, as well as key accessory proteins, will be described. In addition, mechanisms controlling the recruitment of the PRC2 complex to H3K27 will be outlined. Finally, literature identifying the role of PRC2 in breast cancer proliferation, apoptosis and migration, including the potential roles of long non‑coding RNAs and the miR‑200 family will be summarized as will the potential use of the PRC2 complex as a therapeutic target.
View Figures

Figure 1

Figure 2

View References

1 

Kim JM, Kim K, Punj V, Liang G, Ulmer TS, Lu W and An W: Linker histone H1. 2 establishes chromatin compaction and gene silencing through recognition of H3K27me3. Sci Rep. 5:167142015. View Article : Google Scholar

2 

Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS and Zhang Y: Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 298:1039–1043. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Czermin B, Melfi R, McCabe D, Seitz V, Imhof A and Pirrotta V: Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell. 111:185–196. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stützer A, Fischle W, Bonaldi T and Pasini D: Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell. 53:49–62. 2014. View Article : Google Scholar

5 

Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P and Reinberg D: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16:2893–2905. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Laugesen A, Højfeldt JW and Helin K: Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol Cell. 74:8–18. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Levine SS, Weiss A, Erdjument-Bromage H, Shao Z, Tempst P and Kingston RE: The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol. 22:6070–6078. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Lewis EB: A gene complex controlling segmentation in Drosophila. Genes, development and cancer. Springer; pp. 205–217. 1978, View Article : Google Scholar

9 

Margueron R and Reinberg D: The Polycomb complex PRC2 and its mark in life. Nature. 469:343–349. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Rajasekhar VK and Begemann M: Concise review: Roles of polycomb group proteins in development and disease: A stem cell perspective. Stem Cells. 25:2498–2510. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Kasinath V, Faini M, Poepsel S, Reif D, Feng XA, Stjepanovic G, Aebersold R and Nogales E: Structures of human PRC2 with its cofactors AEBP2 and JARID2. Science. 359:940–944. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Hauri S, Comoglio F, Seimiya M, Gerstung M, Glatter T, Hansen K, Aebersold R, Paro R, Gstaiger M and Beisel C: A high-density map for navigating the human polycomb complexome. Cell Rep. 17:583–595. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Kim H, Kang K and Kim J: AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2. Nucleic Acids Res. 37:2940–2950. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Li G, Margueron R, Ku M, Chambon P, Bernstein BE and Reinberg D: Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24:368–380. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A and Wysocka J: Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell. 139:1290–1302. 2009. View Article : Google Scholar

16 

Cao R and Zhang YI: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell. 15:57–67. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Denisenko O, Shnyreva M, Suzuki H and Bomsztyk K: Point mutations in the WD40 domain of Eed block its interaction with Ezh2. Mol Cell Biol. 18:5634–5642. 1998. View Article : Google Scholar : PubMed/NCBI

18 

Pasini D, Bracken AP, Jensen MR, Denchi EL and Helin K: Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23:4061–4071. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Moritz LE and Trievel RC: Structure, mechanism, and regulation of polycomb-repressive complex 2. J Biol Chem. 293:13805–13814. 2018. View Article : Google Scholar :

20 

Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, et al: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 419:624–629. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Jiao L and Liu X: Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science. 350:aac43832015. View Article : Google Scholar : PubMed/NCBI

22 

Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ III, Voigt P, Martin SR, Taylor WR, De Marco V, et al: Role of the polycomb protein EED in the propagation of repressive histone marks. Nature. 461:762–767. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Nekrasov M, Wild B and Müller J: Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep. 6:348–353. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Han Z, Xing X, Hu M, Zhang Y, Liu P and Chai J: Structural basis of EZH2 recognition by EED. Structure. 15:1306–1315. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Montgomery ND, Yee D, Chen A, Kalantry S, Chamberlain SJ, Otte AP and Magnuson T: The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr Biol. 15:942–947. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Pasini D, Bracken AP, Hansen JB, Capillo M and Helin K: The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol. 27:3769–3779. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Højfeldt JW, Laugesen A, Willumsen BM, Damhofer H, Hedehus L, Tvardovskiy A, Mohammad F, Jensen ON and Helin K: Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nat Struct Mol biol. 25:225–232. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, et al: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transfor-mation of breast epithelial cells. Proc Natl Acad Sci USA. 100:11606–11611. 2003. View Article : Google Scholar

29 

Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL, Dynlacht BD and Reinberg D: Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell. 32:503–518. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Lee CH, Holder M, Grau D, Saldaña-Meyer R, Yu JR, Ganai RA, Zhang J, Wang M, LeRoy G, Dobenecker MW, et al: Distinct stimulatory mechanisms regulate the catalytic activity of polycomb repressive complex 2. Mol Cell. 70:435–448.e5. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Chen S, Jiao L, Shubbar M, Yang X and Liu X: Unique structural platforms of Suz12 dictate distinct classes of PRC2 for chromatin binding. Mol Cell. 69:840–852.e5. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Schmitges FW, Prusty AB, Faty M, Stützer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S, et al: Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell. 42:330–341. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Pasini D, Cloos PAC, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, Bak M, Tommerup N, Rappsilber J and Helin K: JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature. 464:306–310. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Murzina NV, Pei XY, Zhang W, Sparkes M, Vicente-Garcia J, Pratap JV, McLaughlin SH, Ben-Shahar TR, Verreault A, Luisi BF and Laue ED: Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure. 16:1077–1085. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Zhang W, Tyl M, Ward R, Sobott F, Maman J, Murthy AS, Watson AA, Fedorov O, Bowman A, Owen-Hughes T, et al: Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1. Nat Struct Mol Biol. 20:29–35. 2013. View Article : Google Scholar :

36 

Kouznetsova VL, Tchekanov A, Li X, Yan X and Tsigelny IF: Polycomb repressive 2 complex-molecular mechanisms of function. Protein Sci. 28:1387–1399. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Landeira D, Sauer S, Poot R, Dvorkina M, Mazzarella L, Jørgensen HF, Pereira CF, Leleu M, Piccolo FM, Spivakov M, et al: Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat Cell Biol. 12:618–624. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Son J, Shen SS, Margueron R and Reinberg D: Nucleosome- binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin. Genes Dev. 27:2663–2677. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T, Nesterova TB, Anil-Kirmizitas B, Bassett A, Kooistra SM, Agger K, et al: Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun. 7:136612016. View Article : Google Scholar : PubMed/NCBI

40 

Endoh M, Endo TA, Endoh T, Isono K, Sharif J, Ohara O, Toyoda T, Ito T, Eskeland R, Bickmore WA, et al: Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet. 8:e10027742012. View Article : Google Scholar : PubMed/NCBI

41 

Kalb R, Latwiel S, Baymaz HI, Jansen PW, Müller CW, Vermeulen M and Müller J: Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol. 21:569–571. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Shen X, Kim W, Fujiwara Y, Simon MD, Liu Y, Mysliwiec MR, Yuan GC, Lee Y and Orkin SH: Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell. 139:1303–1314. 2009. View Article : Google Scholar

43 

Ballaré C, Lange M, Lapinaite A, Martin GM, Morey L, Pascual G, Liefke R, Simon B, Shi Y, Gozani O, et al: Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat Struct Mol Biol. 19:1257–1265. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Musselman CA, Avvakumov N, Watanabe R, Abraham CG, Lalonde ME, Hong Z, Allen C, Roy S, Nuñez JK, Nickoloff J, et al: Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat Struct Mol Biol. 19:1266–1272. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Boulay G, Rosnoblet C, Guérardel C, Angrand PO and Leprince D: Functional characterization of human Polycomb-like 3 isoforms identifies them as components of distinct EZH2 protein complexes. Biochem J. 434:333–342. 2011. View Article : Google Scholar

46 

Li H, Liefke R, Jiang J, Kurland JV, Tian W, Deng P, Zhang W, He Q, Patel DJ, Bulyk ML, et al: Polycomb-like proteins link the PRC2 complex to CpG islands. Nature. 549:287–291. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Hou Y, Liu W, Yi X, Yang Y, Su D, Huang W, Yu H, Teng X, Yang Y, Feng W, et al: PHF20L1 as a H3K27me2 reader coordinates with transcriptional repressors to promote breast tumorigenesis. Sci Adv. 6:eaaz03562020. View Article : Google Scholar : PubMed/NCBI

48 

Perino M, van Mierlo G, Karemaker ID, van Genesen S, Vermeulen M, Marks H, van Heeringen SJ and Veenstra GJC: MTF2 recruits polycomb repressive Complex 2 by helical-shape-selective DNA binding. Nat Genet. 50:1002–1010. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A, Rappsilber J, Lerdrup M and Helin K: A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol. 10:1291–1300. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Oksuz O, Narendra V, Lee CH, Descostes N, LeRoy G, Raviram R, Blumenberg L, Karch K, Rocha PP, Garcia BA, et al: Capturing the onset of PRC2-mediated repressive domain formation. Mol Cell. 70:1149–1162.e5. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, et al: Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 441:349–353. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Bracken AP, Dietrich N, Pasini D, Hansen KH and Helin K: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20:1123–1136. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, et al: Control of developmental regulators by Polycomb in human embryonic stem cells. Cell. 125:301–313. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, Biggin M and Pirrotta V: Genome-wide analysis of polycomb targets in drosophila melanogaster. Nat Genet. 38:700–705. 2006. View Article : Google Scholar : PubMed/NCBI

55 

Ren C, Morohashi K, Plotnikov AN, Jakoncic J, Smith SG, Li J, Zeng L, Rodriguez Y, Stojanoff V, Walsh M and Zhou MM: Small-molecule modulators of methyl-lysine binding for the CBX7 chromodomain. Chem Biol. 22:161–168. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Zhen CY, Tatavosian R, Huynh TN, Duc HN, Das R, Kokotovic M, Grimm JB, Lavis LD, Lee J, Mejia FJ, et al: Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin. Elife. 5:e176672016. View Article : Google Scholar : PubMed/NCBI

57 

Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LLP, Ito S, Cooper S, Kondo K, Koseki Y, et al: Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell. 157:1445–1459. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J, Blackledge NP, De Marco V, Elderkin S, Koseki H, et al: Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep. 7:1456–1470. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Bhatnagar S, Gazin C, Chamberlain L, Ou J, Zhu X, Tushir JS, Virbasius CM, Lin L, Zhu LJ, Wajapeyee N and Green MR: TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature. 516:116–120. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Sanulli S, Justin N, Teissandier A, Ancelin K, Portoso M, Caron M, Michaud A, Lombard B, da Rocha ST, Offer J, et al: Jarid2 methylation via the PRC2 complex regulates H3K27me3 deposition during cell differentiation. Mol Cell. 57:769–783. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Riising EM, Comet I, Leblanc B, Wu X, Johansen JV and Helin K: Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol Cell. 55:347–360. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Kahn TG, Dorafshan E, Schultheis D, Zare A, Stenberg P, Reim I, Pirrotta V and Schwartz YB: Interdependence of PRC1 and PRC2 for recruitment to Polycomb Response Elements. Nucleic Acids Res. 44:10132–10149. 2016.PubMed/NCBI

63 

Bauer M, Trupke J and Ringrose L: The quest for mammalian Polycomb response elements: Are we there yet? Chromosoma. 125:471–496. 2016. View Article : Google Scholar :

64 

Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, et al: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 448:553–560. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Brien GL, Gambero G, O'connell DJ, Jerman E, Turner SA, Egan CM, Dunne EJ, Jurgens MC, Wynne K, Piao L, et al: Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol. 19:1273–1281. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Cai L, Rothbart SB, Lu R, Xu B, Chen WY, Tripathy A, Rockowitz S, Zheng D, Patel DJ, Allis CD, et al: An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol Cell. 49:571–582. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E and Chang HY: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 129:1311–1323. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E and Chang HY: Long noncoding RNA as modular scaffold of histone modification complexes. Science. 329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI

70 

Zhou X, Ren Y, Zhang J, Zhang C, Zhang K, Han L, Kong L, Wei J, Chen L, Yang J, et al: HOTAIR is a therapeutic target in glioblastoma. Oncotarget. 6:8353–8365. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Bracken AP, Pasini D, Capra M, Prosperini E, Colli E and Helin K: EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22:5323–5335. 2003. View Article : Google Scholar : PubMed/NCBI

72 

Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP and Akslen LA: EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 24:268–273. 2006. View Article : Google Scholar

73 

Derfoul A, Juan AH, Difilippantonio MJ, Palanisamy N, Ried T and Sartorelli V: Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis. 32:1607–1614. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Kong X, Chen L, Jiao L, Jiang X, Lian F, Lu J, Zhu K, Du D, Liu J, Ding H, et al: Astemizole arrests the proliferation of cancer cells by disrupting the EZH2-EED interaction of poly-comb repressive complex 2. J Med Chem. 57:9512–9521. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Yu H, Simons DL, Segall I, Carcamo-Cavazos V, Schwartz EJ, Yan N, Zuckerman NS, Dirbas FM, Johnson DL, Holmes SP and Lee PP: PRC2/EED-EZH2 complex is up-regulated in breast cancer lymph node metastasis compared to primary tumor and correlates with tumor proliferation in situ. PLoS One. 7:e512392012. View Article : Google Scholar : PubMed/NCBI

76 

Curran S and Murray GI: Matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 189:300–308. 1999. View Article : Google Scholar : PubMed/NCBI

77 

Merdad A, Karim S, Schulten HJ, Dallol A, Buhmeida A, Al-Thubaity F, Gari MA, Chaudhary AG, Abuzenadah AM and Al-Qahtani MH: Expression of matrix metalloproteinases (MMPs) in primary human breast cancer: MMP-9 as a potential biomarker for cancer invasion and metastasis. Anticancer Res. 34:1355–1366. 2014.PubMed/NCBI

78 

Chien YC, Liu LC, Ye HY, Wu JY and Yu YL: EZH2 promotes migration and invasion of triple-negative breast cancer cells via regulating TIMP2-MMP-2/-9 pathway. Am J Cancer Res. 8:422–434. 2018.PubMed/NCBI

79 

Shin YJ and Kim JH: The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells. PLoS One. 7:e303932012. View Article : Google Scholar : PubMed/NCBI

80 

Yi X, Guo J, Guo J, Sun S, Yang P, Wang J, Li Y, Xie L, Cai J and Wang Z: EZH2-mediated epigenetic silencing of TIMP2 promotes ovarian cancer migration and invasion. Sci Rep. 7:35682017. View Article : Google Scholar : PubMed/NCBI

81 

Wang T, Mao B, Cheng C, Zou Z, Gao J, Yang Y, Lei T, Qi X, Yuan Z, Xu W and Lu Z: YAP promotes breast cancer metastasis by repressing growth differentiation factor-15. Biochim Biophys Acta Mol Basis Dis. 1864:1744–1753. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS and Haber DA: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA. 103:12405–12410. 2006. View Article : Google Scholar : PubMed/NCBI

83 

Song Q, Mao B, Cheng J, Gao Y, Jiang K, Chen J, Yuan Z and Meng S: YAP enhances autophagic flux to promote breast cancer cell survival in response to nutrient deprivation. PLoS One. 10:e01207902015. View Article : Google Scholar : PubMed/NCBI

84 

Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T, Gangeswaran R, Manson-Bishop C, Smith P, Danovi SA, et al: Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ. 15:1752–1759. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RK, Tan PB, Liu ET and Yu Q: Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21:1050–1063. 2007. View Article : Google Scholar : PubMed/NCBI

86 

Wu Z, Lee S, Qiao Y, Li Z, Lee PL, Lee YJ, Jiang X, Tan J, Aau M, Lim CZ and Yu Q: Polycomb protein EZH2 regulates cancer cell fate decision in response to DNA damage. Cell Death Differ. 18:1771–1779. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Wu ZL, Zheng SS, Li ZM, Qiao YY, Aau MY and Yu Q: Polycomb protein EZH2 regulates E2F1-dependent apoptosis through epigenetically modulating Bim expression. Cell Death Differ. 17:801–810. 2010. View Article : Google Scholar

88 

Zhang B, Liu XX, He JR, Zhou CX, Guo M, He M, Li MF, Chen GQ and Zhao Q: Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis. 32:2–9. 2011. View Article : Google Scholar

89 

Zhang Q, Padi SKR, Tindall DJ and Guo B: Polycomb protein EZH2 suppresses apoptosis by silencing the proapoptotic miR-31. Cell Death Dis. 5:e14862014. View Article : Google Scholar : PubMed/NCBI

90 

Pietersen AM, Horlings HM, Hauptmann M, Langerød A, Ajouaou A, Cornelissen-Steijger P, Wessels LF, Jonkers J, van de Vijver MJ and van Lohuizen M: EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res. 10:R1092008. View Article : Google Scholar : PubMed/NCBI

91 

Onder TT, Gupta PB, Mani SA, Yang J, Lander ES and Weinberg RA: Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68:3645–3654. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Lester RD, Jo M, Montel V, Takimoto S and Gonias SL: uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. J Cell Biol. 178:425–436. 2007. View Article : Google Scholar : PubMed/NCBI

93 

Schmalhofer O, Brabletz S and Brabletz T: E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer and Metastasis Rev. 28:151–166. 2009. View Article : Google Scholar

94 

Herranz N, Pasini D, Díaz VM, Francí C, Gutierrez A, Dave N, Escrivà M, Hernandez-Muñoz I, Di Croce L, Helin K, et al: Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol. 28:4772–4781. 2008. View Article : Google Scholar : PubMed/NCBI

95 

Anwar T, Arellano-Garcia C, Ropa J, Chen YC, Kim HS, Yoon E, Grigsby S, Basrur V, Nesvizhskii AI, Muntean A, et al: p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. Nat Commun. 9:28012018. View Article : Google Scholar : PubMed/NCBI

96 

Li J, Xi Y, Li W, McCarthy RL, Stratton SA, Zou W, Li W, Dent SY, Jain AK and Barton MC: TRIM28 interacts with EZH2 and SWI/SNF to activate genes that promote mammosphere formation. Oncogene. 36:2991–3001. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Mahara S, Lee PL, Feng M, Tergaonkar V, Chng WJ and Yu Q: HIFI-α activation underlies a functional switch in the paradoxical role of Ezh2/PRC2 in breast cancer. Proc Natl Acad Sci USA. 113:E3735–E3744. 2016. View Article : Google Scholar

98 

Chisholm KM, Wan Y, Li R, Montgomery KD, Chang HY and West RB: Detection of long non-coding RNA in archival tissue: Correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS One. 7:e479982012. View Article : Google Scholar : PubMed/NCBI

99 

Sørensen KP, Thomassen M, Tan Q, Bak M, Cold S, Burton M, Larsen MJ and Kruse TA: Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Br Cancer Res Treat. 142:529–536. 2013. View Article : Google Scholar

100 

Kim CY, Oh JH, Lee JY and Kim MH: The LncRNA HOTAIRM1 promotes tamoxifen resistance by mediating HOXA1 expression in ER+ Breast Cancer Cells. J Cancer. 11:3416–3423. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Hu P, Chu J, Wu Y, Sun L, Lv X, Zhu Y, Li J, Guo Q, Gong C, Liu B and Su S: NBAT1 suppresses breast cancer metastasis by regulating DKK1 via PRC2. Oncotarget. 6:32410–32425. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Zhang J, Sui S, Wu H, Zhang J, Zhang X, Xu S and Pang D: The transcriptional landscape of lncRNAs reveals the oncogenic function of LINC00511 in ER-negative breast cancer. Cell Death Dis. 10:5992019. View Article : Google Scholar : PubMed/NCBI

103 

Sha S, Yuan D, Liu Y, Han B and Zhong N: Targeting long non-coding RNA DANCR inhibits triple negative breast cancer progression. Biol Open. 6:1310–1316. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Jia J, Li F, Tang XS, Xu S, Gao Y, Shi Q, Guo W, Wang X, He D and Guo P: Long noncoding RNA DANCR promotes invasion of prostate cancer through epigenetically silencing expression of TIMP2/3. Oncotarget. 7:37868–37881. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Saini HK, Enright AJ and Griffiths-Jones S: Annotation of mammalian primary microRNAs. BMC Genomics. 9:5642008. View Article : Google Scholar : PubMed/NCBI

106 

Park SM, Gaur AB, Lengyel E and Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22:894–907. 2008. View Article : Google Scholar : PubMed/NCBI

107 

Hill L, Browne G and Tulchinsky E: ZEB/miR-200 feedback loop: At the crossroads of signal transduction in cancer. Int J Cancer. 132:745–754. 2013. View Article : Google Scholar

108 

Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI

109 

Mei J, Hao L, Wang H, Xu R, Liu Y, Zhu Y and Liu C: Systematic characterization of non-coding RNAs in triple-negative breast cancer. Cell Prolif. 53:e128012020. View Article : Google Scholar : PubMed/NCBI

110 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

111 

Jones R, Watson K, Bruce A, Nersesian S, Kitz J and Moorehead R: Re-expression of miR-200c suppresses proliferation, colony formation and in vivo tumor growth of murine Claudin-low mammary tumor cells. Oncotarget. 8:23727–23749. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Watson KL, Jones RA, Bruce A and Moorehead RA: The miR-200b/200a/429 cluster prevents metastasis and induces dormancy in a murine claudin-low mammary tumor cell line. Exp Cell Res. 369:17–26. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Bockmeyer CL, Christgen M, Müller M, Fischer S, Ahrens P, Länger F, Kreipe H and Lehmann U: MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer ResTreat. 130:735–745. 2011. View Article : Google Scholar

114 

Cochrane DR, Cittelly DM, Howe EN, Spoelstra NS, McKinsey EL, LaPara K, Elias A, Yee D and Richer JK: MicroRNAs link estrogen receptor alpha status and Dicer levels in breast cancer. Horm Cancer. 1:306–319. 2010. View Article : Google Scholar

115 

Korpal M, Lee ES, Hu G and Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 283:14910–14914. 2008. View Article : Google Scholar : PubMed/NCBI

116 

Mekala JR, Naushad SM, Ponnusamy L, Arivazhagan G, Sakthiprasad V and Pal-Bhadra M: Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer. Gene. 641:248–258. 2018. View Article : Google Scholar

117 

Humphries B, Wang Z, Oom AL, Fisher T, Tan D, Cui Y, Jiang Y and Yang C: MicroRNA-200b targets protein kinase Calpha and suppresses triple-negative breast cancer metastasis. Carcinogenesis. 35:2254–2263. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF and Goodall GJ: A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68:7846–7854. 2008. View Article : Google Scholar : PubMed/NCBI

119 

Howe EN, Cochrane DR and Richer JK: The miR-200 and miR-221/222 microRNA families: Opposing effects on epithelial identity. J Mammary Gland Biol Neoplasia. 17:65–77. 2012. View Article : Google Scholar : PubMed/NCBI

120 

Radisky DC: miR-200c at the nexus of epithelial-mesenchymal transition, resistance to apoptosis, and the breast cancer stem cell phenotype. Breast Cancer Res. 13:1102011. View Article : Google Scholar : PubMed/NCBI

121 

Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN and Struhl K: Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 39:761–772. 2010. View Article : Google Scholar : PubMed/NCBI

122 

Peng F, Jiang J, Yu Y, Tian R, Guo X, Li X, Shen M, Xu M, Zhu F, Shi C, et al: Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis. Br J Cancer. 109:3092–3104. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Siitonen SM, Kononen JT, Helin HJ, Rantala IS, Holli KA and Isola JJ: Reduced E-cadherin expression is associated with invasiveness and unfavorable prognosis in breast cancer. Am J Clin Pathol. 105:394–402. 1996. View Article : Google Scholar : PubMed/NCBI

124 

Lim YY, Wright JA, Attema JL, Gregory PA, Bert AG, Smith E, Thomas D, Lopez AF, Drew PA, Khew-Goodall Y and Goodall GJ: Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci. 126:2256–2266. 2013. View Article : Google Scholar : PubMed/NCBI

125 

Ning X, Shi Z, Liu X, Zhang A, Han L, Jiang K, Kang C and Zhang Q: DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett. 359:198–205. 2015. View Article : Google Scholar : PubMed/NCBI

126 

Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A, Ustun C, Rao R, Fernandez P, Chen J, et al: Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood. 114:2733–2743. 2009. View Article : Google Scholar : PubMed/NCBI

127 

Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, Marquez VE and Jones PA: DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther. 8:1579–1588. 2009. View Article : Google Scholar : PubMed/NCBI

128 

Ma A, Stratikopoulos E, Park KS, Wei J, Martin TC, Yang X, Schwarz M, Leshchenko V, Rialdi A, Dale B, et al: Discovery of a first-in-class EZH2 selective degrader. Nat Chem Biol. 16:214–222. 2020. View Article : Google Scholar :

129 

Gulati N, Béguelin W and Giulino-Roth L: Enhancer of zeste homolog 2 (EZH2) inhibitors. Leuk Lymphoma. 59:1574–1585. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Richart L and Margueron R: Drugging histone methyltransferases in cancer. Curr Opin Chem Biol. 56:51–62. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Hoy SM: Tazemetostat: First approval. Drugs. 80:513–521. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Kim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD and Orkin SH: Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat Chem Biol. 9:643–650. 2013. View Article : Google Scholar : PubMed/NCBI

133 

Li Y, Ren Y, Wang Y, Tan Y, Wang Q, Cai J, Zhou J, Yang C, Zhao K, Yi K, et al: A compound AC1Q3QWB selectively disrupts HOTAIR-mediated recruitment of PRC2 and enhances cancer therapy of DZNep. Theranostics. 9:4608–4623. 2019. View Article : Google Scholar : PubMed/NCBI

134 

Özeş AR, Wang Y, Zong X, Fang F, Pilrose J and Nephew KP: Therapeutic targeting using tumor specific peptides inhibits long non-coding RNA HOTAIR activity in ovarian and breast cancer. Sci Rep. 7:8942017. View Article : Google Scholar

135 

Vaidya AM, Sun Z, Ayat N, Schilb A, Liu X, Jiang H, Sun D, Scheidt J, Qian V, He S, et al: Systemic delivery of tumor-targeting siRNA nanoparticles against an oncogenic LncRNA facilitates effective triple-negative breast cancer therapy. Bioconjug Chem. 30:907–919. 2019. View Article : Google Scholar : PubMed/NCBI

136 

Seoane JA, Kirkland JG, Caswell-Jin JL, Crabtree GR and Curtis C: Chromatin regulators mediate anthracycline sensitivity in breast cancer. Nat Med. 25:1721–1727. 2019. View Article : Google Scholar : PubMed/NCBI

137 

Hirukawa A, Singh S, Wang J, Rennhack JP, Swiatnicki M, Sanguin-Gendreau V, Zuo D, Daldoul K, Lavoie C, Park M, et al: Reduction of Global H3K27me3 Enhances HER2/ErbB2 targeted therapy. Cell Rep. 29:249–257. 2019. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Martin CJ and Moorehead RA: Polycomb repressor complex 2 function in breast cancer (Review). Int J Oncol 57: 1085-1094, 2020.
APA
Martin, C.J., & Moorehead, R.A. (2020). Polycomb repressor complex 2 function in breast cancer (Review). International Journal of Oncology, 57, 1085-1094. https://doi.org/10.3892/ijo.2020.5122
MLA
Martin, C. J., Moorehead, R. A."Polycomb repressor complex 2 function in breast cancer (Review)". International Journal of Oncology 57.5 (2020): 1085-1094.
Chicago
Martin, C. J., Moorehead, R. A."Polycomb repressor complex 2 function in breast cancer (Review)". International Journal of Oncology 57, no. 5 (2020): 1085-1094. https://doi.org/10.3892/ijo.2020.5122
Copy and paste a formatted citation
x
Spandidos Publications style
Martin CJ and Moorehead RA: Polycomb repressor complex 2 function in breast cancer (Review). Int J Oncol 57: 1085-1094, 2020.
APA
Martin, C.J., & Moorehead, R.A. (2020). Polycomb repressor complex 2 function in breast cancer (Review). International Journal of Oncology, 57, 1085-1094. https://doi.org/10.3892/ijo.2020.5122
MLA
Martin, C. J., Moorehead, R. A."Polycomb repressor complex 2 function in breast cancer (Review)". International Journal of Oncology 57.5 (2020): 1085-1094.
Chicago
Martin, C. J., Moorehead, R. A."Polycomb repressor complex 2 function in breast cancer (Review)". International Journal of Oncology 57, no. 5 (2020): 1085-1094. https://doi.org/10.3892/ijo.2020.5122
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team