|
1
|
Kim JM, Kim K, Punj V, Liang G, Ulmer TS,
Lu W and An W: Linker histone H1. 2 establishes chromatin
compaction and gene silencing through recognition of H3K27me3. Sci
Rep. 5:167142015. View Article : Google Scholar
|
|
2
|
Cao R, Wang L, Wang H, Xia L,
Erdjument-Bromage H, Tempst P, Jones RS and Zhang Y: Role of
histone H3 lysine 27 methylation in Polycomb-group silencing.
Science. 298:1039–1043. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Czermin B, Melfi R, McCabe D, Seitz V,
Imhof A and Pirrotta V: Drosophila enhancer of Zeste/ESC complexes
have a histone H3 methyltransferase activity that marks chromosomal
Polycomb sites. Cell. 111:185–196. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ferrari KJ, Scelfo A, Jammula S, Cuomo A,
Barozzi I, Stützer A, Fischle W, Bonaldi T and Pasini D:
Polycomb-dependent H3K27me1 and H3K27me2 regulate active
transcription and enhancer fidelity. Mol Cell. 53:49–62. 2014.
View Article : Google Scholar
|
|
5
|
Kuzmichev A, Nishioka K, Erdjument-Bromage
H, Tempst P and Reinberg D: Histone methyltransferase activity
associated with a human multiprotein complex containing the
Enhancer of Zeste protein. Genes Dev. 16:2893–2905. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Laugesen A, Højfeldt JW and Helin K:
Molecular mechanisms directing PRC2 recruitment and H3K27
methylation. Mol Cell. 74:8–18. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Levine SS, Weiss A, Erdjument-Bromage H,
Shao Z, Tempst P and Kingston RE: The core of the polycomb
repressive complex is compositionally and functionally conserved in
flies and humans. Mol Cell Biol. 22:6070–6078. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lewis EB: A gene complex controlling
segmentation in Drosophila. Genes, development and cancer.
Springer; pp. 205–217. 1978, View Article : Google Scholar
|
|
9
|
Margueron R and Reinberg D: The Polycomb
complex PRC2 and its mark in life. Nature. 469:343–349. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Rajasekhar VK and Begemann M: Concise
review: Roles of polycomb group proteins in development and
disease: A stem cell perspective. Stem Cells. 25:2498–2510. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kasinath V, Faini M, Poepsel S, Reif D,
Feng XA, Stjepanovic G, Aebersold R and Nogales E: Structures of
human PRC2 with its cofactors AEBP2 and JARID2. Science.
359:940–944. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hauri S, Comoglio F, Seimiya M, Gerstung
M, Glatter T, Hansen K, Aebersold R, Paro R, Gstaiger M and Beisel
C: A high-density map for navigating the human polycomb complexome.
Cell Rep. 17:583–595. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kim H, Kang K and Kim J: AEBP2 as a
potential targeting protein for Polycomb Repression Complex PRC2.
Nucleic Acids Res. 37:2940–2950. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Li G, Margueron R, Ku M, Chambon P,
Bernstein BE and Reinberg D: Jarid2 and PRC2, partners in
regulating gene expression. Genes Dev. 24:368–380. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Peng JC, Valouev A, Swigut T, Zhang J,
Zhao Y, Sidow A and Wysocka J: Jarid2/Jumonji coordinates control
of PRC2 enzymatic activity and target gene occupancy in pluripotent
cells. Cell. 139:1290–1302. 2009. View Article : Google Scholar
|
|
16
|
Cao R and Zhang YI: SUZ12 is required for
both the histone methyltransferase activity and the silencing
function of the EED-EZH2 complex. Mol Cell. 15:57–67. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Denisenko O, Shnyreva M, Suzuki H and
Bomsztyk K: Point mutations in the WD40 domain of Eed block its
interaction with Ezh2. Mol Cell Biol. 18:5634–5642. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Pasini D, Bracken AP, Jensen MR, Denchi EL
and Helin K: Suz12 is essential for mouse development and for EZH2
histone methyltransferase activity. EMBO J. 23:4061–4071. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Moritz LE and Trievel RC: Structure,
mechanism, and regulation of polycomb-repressive complex 2. J Biol
Chem. 293:13805–13814. 2018. View Article : Google Scholar :
|
|
20
|
Varambally S, Dhanasekaran SM, Zhou M,
Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt
RG, Otte AP, et al: The polycomb group protein EZH2 is involved in
progression of prostate cancer. Nature. 419:624–629. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Jiao L and Liu X: Structural basis of
histone H3K27 trimethylation by an active polycomb repressive
complex 2. Science. 350:aac43832015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Margueron R, Justin N, Ohno K, Sharpe ML,
Son J, Drury WJ III, Voigt P, Martin SR, Taylor WR, De Marco V, et
al: Role of the polycomb protein EED in the propagation of
repressive histone marks. Nature. 461:762–767. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Nekrasov M, Wild B and Müller J:
Nucleosome binding and histone methyltransferase activity of
Drosophila PRC2. EMBO Rep. 6:348–353. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Han Z, Xing X, Hu M, Zhang Y, Liu P and
Chai J: Structural basis of EZH2 recognition by EED. Structure.
15:1306–1315. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Montgomery ND, Yee D, Chen A, Kalantry S,
Chamberlain SJ, Otte AP and Magnuson T: The murine polycomb group
protein Eed is required for global histone H3 lysine-27
methylation. Curr Biol. 15:942–947. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Pasini D, Bracken AP, Hansen JB, Capillo M
and Helin K: The polycomb group protein Suz12 is required for
embryonic stem cell differentiation. Mol Cell Biol. 27:3769–3779.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Højfeldt JW, Laugesen A, Willumsen BM,
Damhofer H, Hedehus L, Tvardovskiy A, Mohammad F, Jensen ON and
Helin K: Accurate H3K27 methylation can be established de novo by
SUZ12-directed PRC2. Nat Struct Mol biol. 25:225–232. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kleer CG, Cao Q, Varambally S, Shen R, Ota
I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, et al: EZH2
is a marker of aggressive breast cancer and promotes neoplastic
transfor-mation of breast epithelial cells. Proc Natl Acad Sci USA.
100:11606–11611. 2003. View Article : Google Scholar
|
|
29
|
Margueron R, Li G, Sarma K, Blais A,
Zavadil J, Woodcock CL, Dynlacht BD and Reinberg D: Ezh1 and Ezh2
maintain repressive chromatin through different mechanisms. Mol
Cell. 32:503–518. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lee CH, Holder M, Grau D, Saldaña-Meyer R,
Yu JR, Ganai RA, Zhang J, Wang M, LeRoy G, Dobenecker MW, et al:
Distinct stimulatory mechanisms regulate the catalytic activity of
polycomb repressive complex 2. Mol Cell. 70:435–448.e5. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chen S, Jiao L, Shubbar M, Yang X and Liu
X: Unique structural platforms of Suz12 dictate distinct classes of
PRC2 for chromatin binding. Mol Cell. 69:840–852.e5. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Schmitges FW, Prusty AB, Faty M, Stützer
A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S, et al:
Histone methylation by PRC2 is inhibited by active chromatin marks.
Mol Cell. 42:330–341. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Pasini D, Cloos PAC, Walfridsson J, Olsson
L, Bukowski JP, Johansen JV, Bak M, Tommerup N, Rappsilber J and
Helin K: JARID2 regulates binding of the Polycomb repressive
complex 2 to target genes in ES cells. Nature. 464:306–310. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Murzina NV, Pei XY, Zhang W, Sparkes M,
Vicente-Garcia J, Pratap JV, McLaughlin SH, Ben-Shahar TR,
Verreault A, Luisi BF and Laue ED: Structural basis for the
recognition of histone H4 by the histone-chaperone RbAp46.
Structure. 16:1077–1085. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang W, Tyl M, Ward R, Sobott F, Maman J,
Murthy AS, Watson AA, Fedorov O, Bowman A, Owen-Hughes T, et al:
Structural plasticity of histones H3-H4 facilitates their
allosteric exchange between RbAp48 and ASF1. Nat Struct Mol Biol.
20:29–35. 2013. View Article : Google Scholar :
|
|
36
|
Kouznetsova VL, Tchekanov A, Li X, Yan X
and Tsigelny IF: Polycomb repressive 2 complex-molecular mechanisms
of function. Protein Sci. 28:1387–1399. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Landeira D, Sauer S, Poot R, Dvorkina M,
Mazzarella L, Jørgensen HF, Pereira CF, Leleu M, Piccolo FM,
Spivakov M, et al: Jarid2 is a PRC2 component in embryonic stem
cells required for multi-lineage differentiation and recruitment of
PRC1 and RNA Polymerase II to developmental regulators. Nat Cell
Biol. 12:618–624. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Son J, Shen SS, Margueron R and Reinberg
D: Nucleosome- binding activities within JARID2 and EZH1 regulate
the function of PRC2 on chromatin. Genes Dev. 27:2663–2677. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Cooper S, Grijzenhout A, Underwood E,
Ancelin K, Zhang T, Nesterova TB, Anil-Kirmizitas B, Bassett A,
Kooistra SM, Agger K, et al: Jarid2 binds mono-ubiquitylated H2A
lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and
PRC2. Nat Commun. 7:136612016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Endoh M, Endo TA, Endoh T, Isono K, Sharif
J, Ohara O, Toyoda T, Ito T, Eskeland R, Bickmore WA, et al:
Histone H2A mono-ubiquitination is a crucial step to mediate
PRC1-dependent repression of developmental genes to maintain ES
cell identity. PLoS Genet. 8:e10027742012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kalb R, Latwiel S, Baymaz HI, Jansen PW,
Müller CW, Vermeulen M and Müller J: Histone H2A monoubiquitination
promotes histone H3 methylation in Polycomb repression. Nat Struct
Mol Biol. 21:569–571. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Shen X, Kim W, Fujiwara Y, Simon MD, Liu
Y, Mysliwiec MR, Yuan GC, Lee Y and Orkin SH: Jumonji modulates
polycomb activity and self-renewal versus differentiation of stem
cells. Cell. 139:1303–1314. 2009. View Article : Google Scholar
|
|
43
|
Ballaré C, Lange M, Lapinaite A, Martin
GM, Morey L, Pascual G, Liefke R, Simon B, Shi Y, Gozani O, et al:
Phf19 links methylated Lys36 of histone H3 to regulation of
Polycomb activity. Nat Struct Mol Biol. 19:1257–1265. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Musselman CA, Avvakumov N, Watanabe R,
Abraham CG, Lalonde ME, Hong Z, Allen C, Roy S, Nuñez JK, Nickoloff
J, et al: Molecular basis for H3K36me3 recognition by the Tudor
domain of PHF1. Nat Struct Mol Biol. 19:1266–1272. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Boulay G, Rosnoblet C, Guérardel C,
Angrand PO and Leprince D: Functional characterization of human
Polycomb-like 3 isoforms identifies them as components of distinct
EZH2 protein complexes. Biochem J. 434:333–342. 2011. View Article : Google Scholar
|
|
46
|
Li H, Liefke R, Jiang J, Kurland JV, Tian
W, Deng P, Zhang W, He Q, Patel DJ, Bulyk ML, et al: Polycomb-like
proteins link the PRC2 complex to CpG islands. Nature. 549:287–291.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hou Y, Liu W, Yi X, Yang Y, Su D, Huang W,
Yu H, Teng X, Yang Y, Feng W, et al: PHF20L1 as a H3K27me2 reader
coordinates with transcriptional repressors to promote breast
tumorigenesis. Sci Adv. 6:eaaz03562020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Perino M, van Mierlo G, Karemaker ID, van
Genesen S, Vermeulen M, Marks H, van Heeringen SJ and Veenstra GJC:
MTF2 recruits polycomb repressive Complex 2 by
helical-shape-selective DNA binding. Nat Genet. 50:1002–1010. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hansen KH, Bracken AP, Pasini D, Dietrich
N, Gehani SS, Monrad A, Rappsilber J, Lerdrup M and Helin K: A
model for transmission of the H3K27me3 epigenetic mark. Nat Cell
Biol. 10:1291–1300. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Oksuz O, Narendra V, Lee CH, Descostes N,
LeRoy G, Raviram R, Blumenberg L, Karch K, Rocha PP, Garcia BA, et
al: Capturing the onset of PRC2-mediated repressive domain
formation. Mol Cell. 70:1149–1162.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Boyer LA, Plath K, Zeitlinger J, Brambrink
T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, et
al: Polycomb complexes repress developmental regulators in murine
embryonic stem cells. Nature. 441:349–353. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bracken AP, Dietrich N, Pasini D, Hansen
KH and Helin K: Genome-wide mapping of Polycomb target genes
unravels their roles in cell fate transitions. Genes Dev.
20:1123–1136. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lee TI, Jenner RG, Boyer LA, Guenther MG,
Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K,
et al: Control of developmental regulators by Polycomb in human
embryonic stem cells. Cell. 125:301–313. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Schwartz YB, Kahn TG, Nix DA, Li XY,
Bourgon R, Biggin M and Pirrotta V: Genome-wide analysis of
polycomb targets in drosophila melanogaster. Nat Genet. 38:700–705.
2006. View
Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ren C, Morohashi K, Plotnikov AN, Jakoncic
J, Smith SG, Li J, Zeng L, Rodriguez Y, Stojanoff V, Walsh M and
Zhou MM: Small-molecule modulators of methyl-lysine binding for the
CBX7 chromodomain. Chem Biol. 22:161–168. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhen CY, Tatavosian R, Huynh TN, Duc HN,
Das R, Kokotovic M, Grimm JB, Lavis LD, Lee J, Mejia FJ, et al:
Live-cell single-molecule tracking reveals co-recognition of
H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin. Elife.
5:e176672016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Blackledge NP, Farcas AM, Kondo T, King
HW, McGouran JF, Hanssen LLP, Ito S, Cooper S, Kondo K, Koseki Y,
et al: Variant PRC1 complex-dependent H2A ubiquitylation drives
PRC2 recruitment and polycomb domain formation. Cell.
157:1445–1459. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cooper S, Dienstbier M, Hassan R,
Schermelleh L, Sharif J, Blackledge NP, De Marco V, Elderkin S,
Koseki H, et al: Targeting polycomb to pericentric heterochromatin
in embryonic stem cells reveals a role for H2AK119u1 in PRC2
recruitment. Cell Rep. 7:1456–1470. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bhatnagar S, Gazin C, Chamberlain L, Ou J,
Zhu X, Tushir JS, Virbasius CM, Lin L, Zhu LJ, Wajapeyee N and
Green MR: TRIM37 is a new histone H2A ubiquitin ligase and breast
cancer oncoprotein. Nature. 516:116–120. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sanulli S, Justin N, Teissandier A,
Ancelin K, Portoso M, Caron M, Michaud A, Lombard B, da Rocha ST,
Offer J, et al: Jarid2 methylation via the PRC2 complex regulates
H3K27me3 deposition during cell differentiation. Mol Cell.
57:769–783. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Riising EM, Comet I, Leblanc B, Wu X,
Johansen JV and Helin K: Gene silencing triggers polycomb
repressive complex 2 recruitment to CpG islands genome wide. Mol
Cell. 55:347–360. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kahn TG, Dorafshan E, Schultheis D, Zare
A, Stenberg P, Reim I, Pirrotta V and Schwartz YB: Interdependence
of PRC1 and PRC2 for recruitment to Polycomb Response Elements.
Nucleic Acids Res. 44:10132–10149. 2016.PubMed/NCBI
|
|
63
|
Bauer M, Trupke J and Ringrose L: The
quest for mammalian Polycomb response elements: Are we there yet?
Chromosoma. 125:471–496. 2016. View Article : Google Scholar :
|
|
64
|
Mikkelsen TS, Ku M, Jaffe DB, Issac B,
Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP,
et al: Genome-wide maps of chromatin state in pluripotent and
lineage-committed cells. Nature. 448:553–560. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Brien GL, Gambero G, O'connell DJ, Jerman
E, Turner SA, Egan CM, Dunne EJ, Jurgens MC, Wynne K, Piao L, et
al: Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase
NO66 to embryonic stem cell genes during differentiation. Nat
Struct Mol Biol. 19:1273–1281. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Cai L, Rothbart SB, Lu R, Xu B, Chen WY,
Tripathy A, Rockowitz S, Zheng D, Patel DJ, Allis CD, et al: An
H3K36 methylation-engaging Tudor motif of polycomb-like proteins
mediates PRC2 complex targeting. Mol Cell. 49:571–582. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Rinn JL, Kertesz M, Wang JK, Squazzo SL,
Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E and
Chang HY: Functional demarcation of active and silent chromatin
domains in human HOX loci by noncoding RNAs. Cell. 129:1311–1323.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tsai MC, Manor O, Wan Y, Mosammaparast N,
Wang JK, Lan F, Shi Y, Segal E and Chang HY: Long noncoding RNA as
modular scaffold of histone modification complexes. Science.
329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gupta RA, Shah N, Wang KC, Kim J, Horlings
HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long
non-coding RNA HOTAIR reprograms chromatin state to promote cancer
metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhou X, Ren Y, Zhang J, Zhang C, Zhang K,
Han L, Kong L, Wei J, Chen L, Yang J, et al: HOTAIR is a
therapeutic target in glioblastoma. Oncotarget. 6:8353–8365. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Bracken AP, Pasini D, Capra M, Prosperini
E, Colli E and Helin K: EZH2 is downstream of the pRB-E2F pathway,
essential for proliferation and amplified in cancer. EMBO J.
22:5323–5335. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bachmann IM, Halvorsen OJ, Collett K,
Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP and
Akslen LA: EZH2 expression is associated with high proliferation
rate and aggressive tumor subgroups in cutaneous melanoma and
cancers of the endometrium, prostate, and breast. J Clin Oncol.
24:268–273. 2006. View Article : Google Scholar
|
|
73
|
Derfoul A, Juan AH, Difilippantonio MJ,
Palanisamy N, Ried T and Sartorelli V: Decreased microRNA-214
levels in breast cancer cells coincides with increased cell
proliferation, invasion and accumulation of the Polycomb Ezh2
methyltransferase. Carcinogenesis. 32:1607–1614. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kong X, Chen L, Jiao L, Jiang X, Lian F,
Lu J, Zhu K, Du D, Liu J, Ding H, et al: Astemizole arrests the
proliferation of cancer cells by disrupting the EZH2-EED
interaction of poly-comb repressive complex 2. J Med Chem.
57:9512–9521. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yu H, Simons DL, Segall I, Carcamo-Cavazos
V, Schwartz EJ, Yan N, Zuckerman NS, Dirbas FM, Johnson DL, Holmes
SP and Lee PP: PRC2/EED-EZH2 complex is up-regulated in breast
cancer lymph node metastasis compared to primary tumor and
correlates with tumor proliferation in situ. PLoS One.
7:e512392012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Curran S and Murray GI: Matrix
metalloproteinases in tumour invasion and metastasis. J Pathol.
189:300–308. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Merdad A, Karim S, Schulten HJ, Dallol A,
Buhmeida A, Al-Thubaity F, Gari MA, Chaudhary AG, Abuzenadah AM and
Al-Qahtani MH: Expression of matrix metalloproteinases (MMPs) in
primary human breast cancer: MMP-9 as a potential biomarker for
cancer invasion and metastasis. Anticancer Res. 34:1355–1366.
2014.PubMed/NCBI
|
|
78
|
Chien YC, Liu LC, Ye HY, Wu JY and Yu YL:
EZH2 promotes migration and invasion of triple-negative breast
cancer cells via regulating TIMP2-MMP-2/-9 pathway. Am J Cancer
Res. 8:422–434. 2018.PubMed/NCBI
|
|
79
|
Shin YJ and Kim JH: The role of EZH2 in
the regulation of the activity of matrix metalloproteinases in
prostate cancer cells. PLoS One. 7:e303932012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yi X, Guo J, Guo J, Sun S, Yang P, Wang J,
Li Y, Xie L, Cai J and Wang Z: EZH2-mediated epigenetic silencing
of TIMP2 promotes ovarian cancer migration and invasion. Sci Rep.
7:35682017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang T, Mao B, Cheng C, Zou Z, Gao J, Yang
Y, Lei T, Qi X, Yuan Z, Xu W and Lu Z: YAP promotes breast cancer
metastasis by repressing growth differentiation factor-15. Biochim
Biophys Acta Mol Basis Dis. 1864:1744–1753. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Overholtzer M, Zhang J, Smolen GA, Muir B,
Li W, Sgroi DC, Deng CX, Brugge JS and Haber DA: Transforming
properties of YAP, a candidate oncogene on the chromosome 11q22
amplicon. Proc Natl Acad Sci USA. 103:12405–12410. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Song Q, Mao B, Cheng J, Gao Y, Jiang K,
Chen J, Yuan Z and Meng S: YAP enhances autophagic flux to promote
breast cancer cell survival in response to nutrient deprivation.
PLoS One. 10:e01207902015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yuan M, Tomlinson V, Lara R, Holliday D,
Chelala C, Harada T, Gangeswaran R, Manson-Bishop C, Smith P,
Danovi SA, et al: Yes-associated protein (YAP) functions as a tumor
suppressor in breast. Cell Death Differ. 15:1752–1759. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tan J, Yang X, Zhuang L, Jiang X, Chen W,
Lee PL, Karuturi RK, Tan PB, Liu ET and Yu Q: Pharmacologic
disruption of Polycomb-repressive complex 2-mediated gene
repression selectively induces apoptosis in cancer cells. Genes
Dev. 21:1050–1063. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wu Z, Lee S, Qiao Y, Li Z, Lee PL, Lee YJ,
Jiang X, Tan J, Aau M, Lim CZ and Yu Q: Polycomb protein EZH2
regulates cancer cell fate decision in response to DNA damage. Cell
Death Differ. 18:1771–1779. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wu ZL, Zheng SS, Li ZM, Qiao YY, Aau MY
and Yu Q: Polycomb protein EZH2 regulates E2F1-dependent apoptosis
through epigenetically modulating Bim expression. Cell Death
Differ. 17:801–810. 2010. View Article : Google Scholar
|
|
88
|
Zhang B, Liu XX, He JR, Zhou CX, Guo M, He
M, Li MF, Chen GQ and Zhao Q: Pathologically decreased miR-26a
antagonizes apoptosis and facilitates carcinogenesis by targeting
MTDH and EZH2 in breast cancer. Carcinogenesis. 32:2–9. 2011.
View Article : Google Scholar
|
|
89
|
Zhang Q, Padi SKR, Tindall DJ and Guo B:
Polycomb protein EZH2 suppresses apoptosis by silencing the
proapoptotic miR-31. Cell Death Dis. 5:e14862014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Pietersen AM, Horlings HM, Hauptmann M,
Langerød A, Ajouaou A, Cornelissen-Steijger P, Wessels LF, Jonkers
J, van de Vijver MJ and van Lohuizen M: EZH2 and BMI1 inversely
correlate with prognosis and TP53 mutation in breast cancer. Breast
Cancer Res. 10:R1092008. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Onder TT, Gupta PB, Mani SA, Yang J,
Lander ES and Weinberg RA: Loss of E-cadherin promotes metastasis
via multiple downstream transcriptional pathways. Cancer Res.
68:3645–3654. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lester RD, Jo M, Montel V, Takimoto S and
Gonias SL: uPAR induces epithelial-mesenchymal transition in
hypoxic breast cancer cells. J Cell Biol. 178:425–436. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Schmalhofer O, Brabletz S and Brabletz T:
E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer.
Cancer and Metastasis Rev. 28:151–166. 2009. View Article : Google Scholar
|
|
94
|
Herranz N, Pasini D, Díaz VM, Francí C,
Gutierrez A, Dave N, Escrivà M, Hernandez-Muñoz I, Di Croce L,
Helin K, et al: Polycomb complex 2 is required for E-cadherin
repression by the Snail1 transcription factor. Mol Cell Biol.
28:4772–4781. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Anwar T, Arellano-Garcia C, Ropa J, Chen
YC, Kim HS, Yoon E, Grigsby S, Basrur V, Nesvizhskii AI, Muntean A,
et al: p38-mediated phosphorylation at T367 induces EZH2
cytoplasmic localization to promote breast cancer metastasis. Nat
Commun. 9:28012018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li J, Xi Y, Li W, McCarthy RL, Stratton
SA, Zou W, Li W, Dent SY, Jain AK and Barton MC: TRIM28 interacts
with EZH2 and SWI/SNF to activate genes that promote mammosphere
formation. Oncogene. 36:2991–3001. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Mahara S, Lee PL, Feng M, Tergaonkar V,
Chng WJ and Yu Q: HIFI-α activation underlies a functional switch
in the paradoxical role of Ezh2/PRC2 in breast cancer. Proc Natl
Acad Sci USA. 113:E3735–E3744. 2016. View Article : Google Scholar
|
|
98
|
Chisholm KM, Wan Y, Li R, Montgomery KD,
Chang HY and West RB: Detection of long non-coding RNA in archival
tissue: Correlation with polycomb protein expression in primary and
metastatic breast carcinoma. PLoS One. 7:e479982012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Sørensen KP, Thomassen M, Tan Q, Bak M,
Cold S, Burton M, Larsen MJ and Kruse TA: Long non-coding RNA
HOTAIR is an independent prognostic marker of metastasis in
estrogen receptor-positive primary breast cancer. Br Cancer Res
Treat. 142:529–536. 2013. View Article : Google Scholar
|
|
100
|
Kim CY, Oh JH, Lee JY and Kim MH: The
LncRNA HOTAIRM1 promotes tamoxifen resistance by mediating HOXA1
expression in ER+ Breast Cancer Cells. J Cancer. 11:3416–3423.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Hu P, Chu J, Wu Y, Sun L, Lv X, Zhu Y, Li
J, Guo Q, Gong C, Liu B and Su S: NBAT1 suppresses breast cancer
metastasis by regulating DKK1 via PRC2. Oncotarget. 6:32410–32425.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zhang J, Sui S, Wu H, Zhang J, Zhang X, Xu
S and Pang D: The transcriptional landscape of lncRNAs reveals the
oncogenic function of LINC00511 in ER-negative breast cancer. Cell
Death Dis. 10:5992019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Sha S, Yuan D, Liu Y, Han B and Zhong N:
Targeting long non-coding RNA DANCR inhibits triple negative breast
cancer progression. Biol Open. 6:1310–1316. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Jia J, Li F, Tang XS, Xu S, Gao Y, Shi Q,
Guo W, Wang X, He D and Guo P: Long noncoding RNA DANCR promotes
invasion of prostate cancer through epigenetically silencing
expression of TIMP2/3. Oncotarget. 7:37868–37881. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Saini HK, Enright AJ and Griffiths-Jones
S: Annotation of mammalian primary microRNAs. BMC Genomics.
9:5642008. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Park SM, Gaur AB, Lengyel E and Peter ME:
The miR-200 family determines the epithelial phenotype of cancer
cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes
Dev. 22:894–907. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Hill L, Browne G and Tulchinsky E:
ZEB/miR-200 feedback loop: At the crossroads of signal transduction
in cancer. Int J Cancer. 132:745–754. 2013. View Article : Google Scholar
|
|
108
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Mei J, Hao L, Wang H, Xu R, Liu Y, Zhu Y
and Liu C: Systematic characterization of non-coding RNAs in
triple-negative breast cancer. Cell Prolif. 53:e128012020.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Jones R, Watson K, Bruce A, Nersesian S,
Kitz J and Moorehead R: Re-expression of miR-200c suppresses
proliferation, colony formation and in vivo tumor growth of murine
Claudin-low mammary tumor cells. Oncotarget. 8:23727–23749. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Watson KL, Jones RA, Bruce A and Moorehead
RA: The miR-200b/200a/429 cluster prevents metastasis and induces
dormancy in a murine claudin-low mammary tumor cell line. Exp Cell
Res. 369:17–26. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Bockmeyer CL, Christgen M, Müller M,
Fischer S, Ahrens P, Länger F, Kreipe H and Lehmann U: MicroRNA
profiles of healthy basal and luminal mammary epithelial cells are
distinct and reflected in different breast cancer subtypes. Breast
Cancer ResTreat. 130:735–745. 2011. View Article : Google Scholar
|
|
114
|
Cochrane DR, Cittelly DM, Howe EN,
Spoelstra NS, McKinsey EL, LaPara K, Elias A, Yee D and Richer JK:
MicroRNAs link estrogen receptor alpha status and Dicer levels in
breast cancer. Horm Cancer. 1:306–319. 2010. View Article : Google Scholar
|
|
115
|
Korpal M, Lee ES, Hu G and Kang Y: The
miR-200 family inhibits epithelial-mesenchymal transition and
cancer cell migration by direct targeting of E-cadherin
transcriptional repressors ZEB1 and ZEB2. J Biol Chem.
283:14910–14914. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Mekala JR, Naushad SM, Ponnusamy L,
Arivazhagan G, Sakthiprasad V and Pal-Bhadra M: Epigenetic
regulation of miR-200 as the potential strategy for the therapy
against triple-negative breast cancer. Gene. 641:248–258. 2018.
View Article : Google Scholar
|
|
117
|
Humphries B, Wang Z, Oom AL, Fisher T, Tan
D, Cui Y, Jiang Y and Yang C: MicroRNA-200b targets protein kinase
Calpha and suppresses triple-negative breast cancer metastasis.
Carcinogenesis. 35:2254–2263. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Bracken CP, Gregory PA, Kolesnikoff N,
Bert AG, Wang J, Shannon MF and Goodall GJ: A double-negative
feedback loop between ZEB1-SIP1 and the microRNA-200 family
regulates epithelial-mesenchymal transition. Cancer Res.
68:7846–7854. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Howe EN, Cochrane DR and Richer JK: The
miR-200 and miR-221/222 microRNA families: Opposing effects on
epithelial identity. J Mammary Gland Biol Neoplasia. 17:65–77.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Radisky DC: miR-200c at the nexus of
epithelial-mesenchymal transition, resistance to apoptosis, and the
breast cancer stem cell phenotype. Breast Cancer Res. 13:1102011.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Iliopoulos D, Lindahl-Allen M, Polytarchou
C, Hirsch HA, Tsichlis PN and Struhl K: Loss of miR-200 inhibition
of Suz12 leads to polycomb-mediated repression required for the
formation and maintenance of cancer stem cells. Mol Cell.
39:761–772. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Peng F, Jiang J, Yu Y, Tian R, Guo X, Li
X, Shen M, Xu M, Zhu F, Shi C, et al: Direct targeting of
SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma
tumourigenesis and metastasis. Br J Cancer. 109:3092–3104. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Siitonen SM, Kononen JT, Helin HJ, Rantala
IS, Holli KA and Isola JJ: Reduced E-cadherin expression is
associated with invasiveness and unfavorable prognosis in breast
cancer. Am J Clin Pathol. 105:394–402. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Lim YY, Wright JA, Attema JL, Gregory PA,
Bert AG, Smith E, Thomas D, Lopez AF, Drew PA, Khew-Goodall Y and
Goodall GJ: Epigenetic modulation of the miR-200 family is
associated with transition to a breast cancer stem-cell-like state.
J Cell Sci. 126:2256–2266. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Ning X, Shi Z, Liu X, Zhang A, Han L,
Jiang K, Kang C and Zhang Q: DNMT1 and EZH2 mediated methylation
silences the microRNA-200b/a/429 gene and promotes tumor
progression. Cancer Lett. 359:198–205. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Fiskus W, Wang Y, Sreekumar A, Buckley KM,
Shi H, Jillella A, Ustun C, Rao R, Fernandez P, Chen J, et al:
Combined epigenetic therapy with the histone methyltransferase EZH2
inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor
panobinostat against human AML cells. Blood. 114:2733–2743. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Miranda TB, Cortez CC, Yoo CB, Liang G,
Abe M, Kelly TK, Marquez VE and Jones PA: DZNep is a global histone
methylation inhibitor that reactivates developmental genes not
silenced by DNA methylation. Mol Cancer Ther. 8:1579–1588. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Ma A, Stratikopoulos E, Park KS, Wei J,
Martin TC, Yang X, Schwarz M, Leshchenko V, Rialdi A, Dale B, et
al: Discovery of a first-in-class EZH2 selective degrader. Nat Chem
Biol. 16:214–222. 2020. View Article : Google Scholar :
|
|
129
|
Gulati N, Béguelin W and Giulino-Roth L:
Enhancer of zeste homolog 2 (EZH2) inhibitors. Leuk Lymphoma.
59:1574–1585. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Richart L and Margueron R: Drugging
histone methyltransferases in cancer. Curr Opin Chem Biol.
56:51–62. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Hoy SM: Tazemetostat: First approval.
Drugs. 80:513–521. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Kim W, Bird GH, Neff T, Guo G, Kerenyi MA,
Walensky LD and Orkin SH: Targeted disruption of the EZH2-EED
complex inhibits EZH2-dependent cancer. Nat Chem Biol. 9:643–650.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Li Y, Ren Y, Wang Y, Tan Y, Wang Q, Cai J,
Zhou J, Yang C, Zhao K, Yi K, et al: A compound AC1Q3QWB
selectively disrupts HOTAIR-mediated recruitment of PRC2 and
enhances cancer therapy of DZNep. Theranostics. 9:4608–4623. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Özeş AR, Wang Y, Zong X, Fang F, Pilrose J
and Nephew KP: Therapeutic targeting using tumor specific peptides
inhibits long non-coding RNA HOTAIR activity in ovarian and breast
cancer. Sci Rep. 7:8942017. View Article : Google Scholar
|
|
135
|
Vaidya AM, Sun Z, Ayat N, Schilb A, Liu X,
Jiang H, Sun D, Scheidt J, Qian V, He S, et al: Systemic delivery
of tumor-targeting siRNA nanoparticles against an oncogenic LncRNA
facilitates effective triple-negative breast cancer therapy.
Bioconjug Chem. 30:907–919. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Seoane JA, Kirkland JG, Caswell-Jin JL,
Crabtree GR and Curtis C: Chromatin regulators mediate
anthracycline sensitivity in breast cancer. Nat Med. 25:1721–1727.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Hirukawa A, Singh S, Wang J, Rennhack JP,
Swiatnicki M, Sanguin-Gendreau V, Zuo D, Daldoul K, Lavoie C, Park
M, et al: Reduction of Global H3K27me3 Enhances
HER2/ErbB2 targeted therapy. Cell Rep. 29:249–257. 2019. View Article : Google Scholar
|