|
1
|
Vander Heiden MG and DeBerardinis RJ:
Understanding the intersections between metabolism and cancer
biology. Cell. 168:657–669. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Vijayakrishnapillai LMK, Desmarais JS,
Groeschen MN and Perlin MH: Deletion of ptn1, a PTEN/TEP1
orthologue, in ustilago maydis reduces pathogenicity and teliospore
development. J Fungi (Basel). 5:12018. View Article : Google Scholar
|
|
3
|
Huang S, Yang C, Li M, Wang B, Chen H, Fu
D and Chong T: Effect of dual mTOR inhibitor on TGFβ1-induced
fibrosis in primary human urethral scar fibroblasts. Biomed
Pharmacother. 106:1182–1187. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mossmann D, Park S and Hall MN: mTOR
signalling and cellular metabolism are mutual determinants in
cancer. Nat Rev Cancer. 18:744–757. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kenerson HL, Aicher LD, True LD and Yeung
RS: Activated mammalian target of rapamycin pathway in the
pathogenesis of tuberous sclerosis complex renal tumors. Cancer
Res. 62:5645–5650. 2002.PubMed/NCBI
|
|
6
|
Dowling RJ, Topisirovic I, Fonseca BD and
Sonenberg N: Dissecting the role of mTOR: Lessons from mTOR
inhibitors. Biochim Biophys Acta. 1804:433–439. 2010. View Article : Google Scholar
|
|
7
|
Kim DH, Sarbassov DD, Ali SM, King JE,
Latek RR, Erdjument-Bromage H, Tempst P and Sabatini DM: mTOR
inter-acts with raptor to form a nutrient-sensitive complex that
signals to the cell growth machinery. Cell. 110:163–175. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hara K, Maruki Y, Long X, Yoshino KI,
Oshiro N, Hidayat S, Tokunaga C, Avruch J and Yonezawa K: Raptor, a
binding partner of target of rapamycin (TOR), mediates TOR action.
Cell. 110:177–189. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Saxton RA and Sabatini DM: mTOR signaling
in growth, metabolism, and disease. Cell. 169:361–371. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Liu GY and Sabatini DM: mTOR at the nexus
of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol.
21:183–203. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hayase S, Kumamoto K, Saito K, Kofunato Y,
Sato Y, Okayama H, Miyamoto K, Ohki S and Takenoshita S: L-type
amino acid transporter 1 expression is upregulated and associated
with cellular proliferation in colorectal cancer. Oncol Lett.
14:7410–7416. 2017.
|
|
12
|
Villar VH, Nguyen TL, Delcroix V, Terés S,
Bouchecareilh M, Salin B, Bodineau C, Vacher P, Priault M,
Soubeyran P and Durán RV: mTORC1 inhibition in cancer cells
protects from glutaminolysis-mediated apoptosis during nutrient
limitation. Nat Commun. 8:141242017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
van der Vos KE, Eliasson P,
Proikas-Cezanne T, Vervoort SJ, van Boxtel R, Putker M, van Zutphen
IJ, Mauthe M, Zellmer S, Pals C, et al: Modulation of glutamine
metabolism by the PI(3) K-PKB-FOXO network regulates autophagy. Nat
Cell Biol. 14:829–837. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wise DR and Thompson CB: Glutamine
addiction: A new therapeutic target in cancer. Trends Biochem Sci.
35:427–433. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li J, Huang Q, Long X, Zhang J, Huang X,
Aa J, Yang H, Chen Z and Xing J: CD147 reprograms fatty acid
metabolism in hepatocellular carcinoma cells through
Akt/mTOR/SREBP1c and P38/PPARα pathways. J Hepatol. 63:1378–1389.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Harachi M, Masui K, Okamura Y, Tsukui R,
Mischel PS and Shibata N: mTOR complexes as a nutrient sensor for
driving cancer progression. Int J Mol Sci. 19:32672018. View Article : Google Scholar :
|
|
17
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ganapathy-Kanniappan S: Molecular
intricacies of aerobic glycolysis in cancer: Current insights into
the classic metabolic phenotype. Crit Rev Biochem Mol Biol.
53:667–682. 2018. View Article : Google Scholar
|
|
19
|
Chen XS, Li LY, Guan YD, Yang JM and Cheng
Y: Anticancer strategies based on the metabolic profile of tumor
cells: Therapeutic targeting of the Warburg effect. Acta Pharmacol
Sin. 37:1013–1019. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lei S, Yang J, Chen C, Sun J, Yang L, Tang
H, Yang T, Chen A, Zhao H, Li Y and Du X: FLIP(L) is critical for
aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer
Res. 35:792016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Shi Y, Liu S, Ahmad S and Gao Q: Targeting
key transporters in tumor glycolysis as a novel anticancer
strategy. Curr Top Med Chem. 18:454–466. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Liu B and Yu S: Amentoflavone suppresses
hepatocellular carcinoma by repressing hexokinase 2 expression
through inhibiting JAK2/STAT3 signaling. Biomed Pharmacother.
107:243–253. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gao X and Han H: Jolkinolide B inhibits
glycolysis by down-regulating hexokinase 2 expression through
inactivating the Akt/mTOR pathway in non-small cell lung cancer
cells. J Cell Biochem. 119:4967–4974. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Liu B, Huang ZB, Chen X, See YX, Chen ZK
and Yao HK: Mammalian target of rapamycin 2 (MTOR2) and C-MYC
modulate glucosamine-6-phosphate synthesis in glioblastoma (GBM)
cells through glutamine: Fructose-6-phosphate aminotransferase 1
(GFAT1). Cell Mol Neurobiol. 39:415–434. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ghashghaeinia M, Koberle M, Mrowietz U and
Bernhardt I: Proliferating tumor cells mimick glucose metabolism of
mature human erythrocytes. Cell Cycle. 18:1316–1334. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Prakasam G, Singh RK, Iqbal MA, Saini SK,
Tiku AB and Bamezai RNK: Pyruvate kinase M knockdown-induced
signaling via AMP-activated protein kinase promotes mitochondrial
biogenesis, autophagy, and cancer cell survival. J Biol Chem.
292:15561–15576. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang R, Jiao H, Zhao J, Wang X and Lin H:
L-arginine enhances protein synthesis by phosphorylating mTOR (Thr
2446) in a nitric oxide-dependent manner in C2C12 cells. Oxid Med
Cell Longev. 2018:75691272018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ka M, Smith AL and Kim WY: MTOR controls
genesis and autophagy of GABAergic interneurons during brain
development. Autophagy. 13:1348–1363. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Caron A, Briscoe DM, Richard D and
Laplante M: DEPTOR at the nexus of cancer, metabolism, and
immunity. Physiol Rev. 98:1765–1803. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Payen VL, Porporato PE, Baselet B and
Sonveaux P: Metabolic changes associated with tumor metastasis,
part 1: Tumor pH, glycolysis and the pentose phosphate pathway.
Cell Mol Life Sci. 73:1333–1348. 2016. View Article : Google Scholar
|
|
31
|
Li L, Kang L, Zhao W, Feng Y, Liu W, Wang
T, Mai H, Huang J, Chen S, Liang Y, et al: miR-30a-5p suppresses
breast tumor growth and metastasis through inhibition of
LDHA-mediated Warburg effect. Cancer Lett. 400:89–98. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zoncu R, Efeyan A and Sabatini DM: mTOR:
From growth signal integration to cancer, diabetes and ageing. Nat
Rev Mol Cell Biol. 12:21–35. 2011. View Article : Google Scholar
|
|
33
|
Wyant GA, Abu-Remaileh M, Wolfson RL, Chen
WW, Freinkman E, Danai LV, Vander Heiden MG and Sabatini DM: mTORC1
activator SLC38A9 is required to efflux essential amino acids from
lysosomes and use protein as a nutrient. Cell. 171:642–654 e612.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Feng M, Xiong G, Cao Z, Yang G, Zheng S,
Qiu J, You L, Zheng L, Zhang T and Zhao Y: LAT2 regulates
glutamine-dependent mTOR activation to promote glycolysis and
chemoresistance in pancreatic cancer. J Exp Clin Cancer Res.
37:2742018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yoshida S, Pacitto R, Yao Y, Inoki K and
Swanson JA: Growth factor signaling to mTORC1 by amino acid-laden
macropinosomes. J Cell Biol. 211:159–172. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Alessi DR, James SR, Downes CP, Holmes AB,
Gaffney PR, Reese CB and Cohen P: Characterization of a
3-phos-phoinositide-dependent protein kinase which phosphorylates
and activates protein kinase Balpha. Curr Biol. 7:261–269. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Iqbal MA, Siddiqui FA, Gupta V,
Chattopadhyay S, Gopinath P, Kumar B, Manvati S, Chaman N and
Bamezai RNK: Insulin enhances metabolic capacities of cancer cells
by dual regulation of glycolytic enzyme pyruvate kinase M2. Mol
Cancer. 12:722013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Neil J, Shannon C, Mohan A, Laurent D,
Murali R and Jhanwar-Uniyal M: ATP-site binding inhibitor
effectively targets mTORC1 and mTORC2 complexes in glioblastoma.
Int J Oncol. 48:1045–1052. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yang H, Jiang X, Li B, Yang HJ, Miller M,
Yang A, Dhar A and Pavletich NP: Mechanisms of mTORC1 activation by
RHEB and inhibition by PRAS40. Nature. 552:368–373. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ma Y, Vassetzky Y and Dokudovskaya S:
mTORC1 pathway in DNA damage response. Biochim Biophys Acta Mol
Cell Res. 1865:1293–1311. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Dewar JM and Walter JC: Mechanisms of DNA
replication termination. Nat Rev Mol Cell Biol. 18:507–516. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hsieh HJ, Zhang W, Lin SH, Yang WH, Wang
JZ, Shen J, Zhang Y, Lu Y, Wang H, Yu J, et al: Systems biology
approach reveals a link between mTORC1 and G2/M DNA damage
check-point recovery. Nat Commun. 9:39822018. View Article : Google Scholar
|
|
43
|
Silvera D, Ernlund A, Arju R, Connolly E,
Volta V, Wang J and Schneider RJ: mTORC1 and -2 coordinate
transcriptional and translational reprogramming in resistance to
DNA damage and replicative stress in breast cancer cells. Mol Cell
Biol. 37:e005772017. View Article : Google Scholar :
|
|
44
|
Javary J, Allain-Courtois N, Saucisse N,
Costet P, Heraud C, Benhamed F, Pierre R, Bure C, Pallares-Lupon N,
Do Cruzeiro M, et al: Liver reptin/RUVBL2 controls glucose and
lipid metabolism with opposite actions on mTORC1 and mTORC2
signalling. Gut. 67:2192–2203. 2018. View Article : Google Scholar
|
|
45
|
Byun JK, Choi YK, Kim JH, Jeong JY, Jeon
HJ, Kim MK, Hwang I, Lee SY, Lee YM, Lee IK and Park KG: A positive
feedback loop between sestrin2 and mTORC2 is required for the
survival of glutamine-depleted lung cancer cells. Cell Rep.
20:586–599. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yuan T, Lupse B, Maedler K and Ardestani
A: mTORC2 signaling: A path for pancreatic β cell's growth and
function. J Mol Biol. 430:904–918. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhang J, Jia L, Liu T, Yip YL, Tang WC,
Lin W, Deng W, Lo KW, You C, Lung ML, et al: mTORC2-mediated PDHE1α
nuclear translocation links EBV-LMP1 reprogrammed glucose
metabolism to cancer metastasis in nasopharyngeal carcinoma.
Oncogene. 38:4669–4684. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li W, Wong CC, Zhang X, Kang W, Nakatsu G,
Zhao Q, Chen H, Go MYY, Chiu PWY, Wang X, et al: CAB39L elicited an
anti-Warburg effect via a LKB1-AMPK-PGC1α axis to inhibit gastric
tumorigenesis. Oncogene. 37:6383–6398. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Varshney R, Gupta S and Roy P:
Cytoprotective effect of kaempferol against palmitic acid-induced
pancreatic β-cell death through modulation of autophagy via
AMPK/mTOR signaling pathway. Mol Cell Endocrinol. 448:1–20. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Faubert B, Boily G, Izreig S, Griss T,
Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, et
al: AMPK is a negative regulator of the Warburg effect and
suppresses tumor growth in vivo. Cell Metab. 17:113–124. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Daurio NA, Tuttle SW, Worth AJ, Song EY,
Davis JM, Snyder NW, Blair IA and Koumenis C: AMPK activation and
metabolic repro-gramming by tamoxifen through estrogen
receptor-independent mechanisms suggests new uses for this
therapeutic modality in cancer treatment. Cancer Res. 76:3295–3306.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Han J, Zhang L, Guo H, Wysham WZ, Roque
DR, Willson AK, Sheng X, Zhou C and Bae-Jump VL: Glucose promotes
cell proliferation, glucose uptake and invasion in endometrial
cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecol Oncol.
138:668–675. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liu Y, Tong L, Luo Y, Li X, Chen G and
Wang Y: Resveratrol inhibits the proliferation and induces the
apoptosis in ovarian cancer cells via inhibiting glycolysis and
targeting AMPK/mTOR signaling pathway. J Cell Biochem.
119:6162–6172. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liang J and Mills GB: AMPK: A contextual
oncogene or tumor suppressor? Cancer Res. 73:2929–2935. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hauge M, Bruserud O and Hatfield KJ:
Targeting of cell metabolism in human acute myeloid leukemia-more
than targeting of isocitrate dehydrogenase mutations and
PI3K/AKT/mTOR signaling? Eur J Haematol. 96:211–221. 2016.
View Article : Google Scholar
|
|
56
|
Yang X, Cheng Y, Li P, Tao J, Deng X,
Zhang X, Gu M, Lu Q and Yin C: A lentiviral sponge for miRNA-21
dimin-ishes aerobic glycolysis in bladder cancer T24 cells via the
PTEN/PI3K/AKT/mTOR axis. Tumour Biol. 36:383–391. 2015. View Article : Google Scholar
|
|
57
|
Wang P, Guan Q, Zhou D, Yu Z, Song Y and
Qiu W: miR-21 inhibitors modulate biological functions of gastric
cancer cells via PTEN/PI3K/mTOR pathway. DNA Cell Biol. 37:38–45.
2018. View Article : Google Scholar
|
|
58
|
Wang WJ, Yang W, Ouyang ZH, Xue JB, Li XL,
Zhang J, He WS, Chen WK, Yan YG and Wang C: MiR-21 promotes ECM
degradation through inhibiting autophagy via the PTEN/akt/mTOR
signaling pathway in human degenerated NP cells. Biomed
Pharmacother. 99:725–734. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Makinoshima H, Takita M, Saruwatari K,
Umemura S, Obata Y, Ishii G, Matsumoto S, Sugiyama E, Ochiai A, Abe
R, et al: Signaling through the phosphatidylinositol 3-kinase
(PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for
aerobic glycolysis mediated by glucose transporter in epidermal
growth factor receptor (EGFR)-mutated lung adeno-carcinoma. J Biol
Chem. 290:17495–17504. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fruman DA and Rommel C: PI3K and cancer:
Lessons, challenges and opportunities. Nat Rev Drug Discov.
13:140–156. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li Q, Tang H, Hu F and Qin C: Silencing of
FOXO6 inhibits the proliferation, invasion, and glycolysis in
colorectal cancer cells. J Cell Biochem. 120:3853–3860. 2019.
View Article : Google Scholar
|
|
62
|
Gong T, Cui L, Wang H, Wang H and Han N:
Knockdown of KLF5 suppresses hypoxia-induced resistance to
cisplatin in NSCLC cells by regulating HIF-1α-dependent glycolysis
through inactivation of the PI3K/Akt/mTOR pathway. J Transl Med.
16:1642018. View Article : Google Scholar
|
|
63
|
Xu DH, Li Q, Hu H, Ni B, Liu X, Huang C,
Zhang ZZ and Zhao G: Transmembrane protein GRINA modulates aerobic
glycolysis and promotes tumor progression in gastric cancer. J Exp
Clin Cancer Res. 37:3082018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Li X, Zhang Y, Ma W, Fu Q, Liu J, Yin G,
Chen P, Dai D, Chen W, Qi L, et al: Enhanced glucose metabolism
mediated by CD147 contributes to immunosuppression in
hepatocellular carcinoma. Cancer Immunol Immunother. 69:535–548.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li Z, Liu J, Que L and Tang X: The
immunoregulatory protein B7-H3 promotes aerobic glycolysis in oral
squamous carcinoma via PI3K/Akt/mTOR pathway. J Cancer.
10:5770–5784. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Li R, Weng L, Liu B, Zhu L, Zhang X, Tian
G, Hu L, Li Q, Jiang S and Shang M: TRIM59 predicts poor prognosis
and promotes pancreatic cancer progression via the
PI3K/AKT/mTOR-glycolysis signaling axis. J Cell Biochem.
121:1986–1997. 2020. View Article : Google Scholar
|
|
67
|
Peng W, Huang W, Ge X, Xue L, Zhao W and
Xue J: Type Ig phosphatidylinositol phosphate kinase promotes tumor
growth by facilitating Warburg effect in colorectal cancer.
EBioMedicine. 44:375–386. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li D, Ji H, Niu X, Yin L, Wang Y, Gu Y,
Wang J, Zhou X, Zhang H and Zhang Q: Tumor-associated macrophages
secrete CC-chemokine ligand 2 and induce tamoxifen resistance by
activating PI3K/Akt/mTOR in breast cancer. Cancer Sci. 111:47–58.
2020. View Article : Google Scholar
|
|
69
|
Gasparri ML, Besharat ZM, Farooqi AA,
Khalid S, Taghavi K, Besharat RA, Sabato C, Papadia A, Panici PB,
Mueller MD and Ferretti E: MiRNAs and their interplay with
PI3K/AKT/mTOR pathway in ovarian cancer cells: A potential role in
platinum resistance. J Cancer Res Clin Oncol. 144:2313–2318. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Deng J, Bai X, Feng X, Ni J, Beretov J,
Graham P and Li Y: Inhibition of PI3K/Akt/mTOR signaling pathway
alleviates ovarian cancer chemoresistance through reversing
epithelial-mesenchymal transition and decreasing cancer stem cell
marker expression. BMC Cancer. 19:6182019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Massari F, Ciccarese C, Santoni M,
Iacovelli R, Mazzucchelli R, Piva F, Scarpelli M, Berardi R,
Tortora G, Lopez-Beltran A, et al: Metabolic phenotype of bladder
cancer. Cancer Treat Rev. 45:46–57. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang Y, Han X, Fu M, Wang J, Song Y, Liu
Y, Zhang J, Zhou J and Ge J: Qiliqiangxin attenuates
hypoxia-induced injury in primary rat cardiac microvascular
endothelial cells via promoting HIF-1α-dependent glycolysis. J Cell
Mol Med. 22:2791–2803. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Koh YW, Lee SJ and Park SY: Differential
expression and prognostic significance of GLUT1 according to
histologic type of non-small-cell lung cancer and its association
with volume-dependent parameters. Lung Cancer. 104:31–37. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hamann I, Krys D, Glubrecht D, Bouvet V,
Marshall A, Vos L, Mackey JR, Wuest M and Wuest F: Expression and
function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast
cancer-effects of hypoxia. FASEB J. 32:5104–5118. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Buller CL, Loberg RD, Fan MH, Zhu Q, Park
JL, Vesely E, Inoki K, Guan KL and Brosius FC III: A
GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose
trans-porter expression. Am J Physiol Cell Physiol. 295:C836–C843.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Jiang X, Kenerson H, Aicher L, Miyaoka R,
Eary J, Bissler J and Yeung RS: The tuberous sclerosis complex
regulates trafficking of glucose transporters and glucose uptake.
Am J Pathol. 172:1748–1756. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wu XL, Wang LK, Yang DD, Qu M, Yang YJ,
Guo F, Han L and Xue J: Effects of Glut1 gene silencing on
proliferation, differentiation, and apoptosis of colorectal cancer
cells by targeting the TGF-β/PI3K-AKT-mTOR signaling pathway. J
Cell Biochem. 119:2356–2367. 2018. View Article : Google Scholar
|
|
78
|
Barron CC, Bilan PJ, Tsakiridis T and
Tsiani E: Facilitative glucose transporters: Implications for
cancer detection, prognosis and treatment. Metabolism. 65:124–139.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Do SK, Jeong JY, Lee SY, Choi JE, Hong MJ,
Kang HG, Lee WK, Seok Y, Lee EB, Shin KM, et al: Glucose
transporter 1 gene variants predict the prognosis of patients with
early-stage non-small cell lung cancer. Ann Surg Oncol.
25:3396–3403. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zha X, Hu Z, Ji S, Jin F, Jiang K, Li C,
Zhao P, Tu Z, Chen X, Di L, et al: NFκB up-regulation of glucose
transporter 3 is essential for hyperactive mammalian target of
rapamycin-induced aerobic glycolysis and tumor growth. Cancer Lett.
359:97–106. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
DeWaal D, Nogueira V, Terry AR, Patra KC,
Jeon SM, Guzman G, Au J, Long CP, Antoniewicz MR and Hay N:
Hexokinase-2 depletion inhibits glycolysis and induces oxidative
phosphorylation in hepatocellular carcinoma and sensitizes to
metformin. Nat Commun. 9:4462018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hay N: Reprogramming glucose metabolism in
cancer: Can it be exploited for cancer therapy? Nat Rev Cancer.
16:635–649. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Esteves JV, Yonamine CY, Pinto-Junior DC,
Gerlinger-Romero F, Enguita FJ and Machado UF: Diabetes modulates
MicroRNAs 29b-3p, 29c-3p, 199a-5p and 532-3p expression in muscle:
Possible role in GLUT4 and HK2 repression. Front Endocrinol
(Lausanne). 9:5362018. View Article : Google Scholar
|
|
84
|
Marampon F, Antinozzi C, Corinaldesi C,
Vannelli GB, Sarchielli E, Migliaccio S, Di Luigi L, Lenzi A and
Crescioli C: The phosphodiesterase 5 inhibitor tadalafil regulates
lipidic homeostasis in human skeletal muscle cell metabolism.
Endocrine. 59:602–613. 2018. View Article : Google Scholar
|
|
85
|
DeWaal D, Nogueira V, Terry AR, Patra KC,
Jeon SM, Guzman G, Au J, Long CP, Antoniewicz MR and Hay N: Author
correction: Hexokinase-2 depletion inhibits glycolysis and induces
oxidative phosphorylation in hepatocellular carcinoma and
sensitizes to metformin. Nat Commun. 9:25392018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kudryavtseva AV, Fedorova MS, Zhavoronkov
A, Moskalev AA, Zasedatelev AS, Dmitriev AA, Sadritdinova AF,
Karpova IY, Nyushko KM, Kalinin DV, et al: Effect of
lentivirus-mediated shRNA inactivation of HK1, HK2, and HK3 genes
in colorectal cancer and melanoma cells. BMC Genet. 17(Suppl 3):
S1562016. View Article : Google Scholar
|
|
87
|
Pudova EA, Kudryavtseva AV, Fedorova MS,
Zaretsky AR, Shcherbo DS, Lukyanova EN, Popov AY, Sadritdinova AF,
Abramov IS, Kharitonov SL, et al: HK3 overexpression associated
with epithelial-mesenchymal transition in colorectal cancer. BMC
Genomics. 19(Suppl 3): S1132018. View Article : Google Scholar
|
|
88
|
Fujieda H, Kogami M, Sakairi M, Kato N,
Makino M, Takahashi N, Miyazawa T, Harada S and Yamashita T:
Discovery of a potent glucokinase activator with a favorable liver
and pancreas distribution pattern for the treatment of type 2
diabetes mellitus. Eur J Med Chem. 156:269–294. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kishore M, Cheung KCP, Fu H, Bonacina F,
Wang G, Coe D, Ward EJ, Colamatteo A, Jangani M, Baragetti A, et
al: Regulatory T cell migration is dependent on
glucokinase-mediated glycolysis. Immunity. 47:875–889 e10. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yeung SJ, Pan J and Lee MH: Roles of p53,
MYC and HIF-1 in regulating glycolysis - the seventh hallmark of
cancer. Cell Mol Life Sci. 65:3981–3999. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Roberts DJ and Miyamoto S: Hexokinase II
integrates energy metabolism and cellular protection: Akting on
mitochondria and TORCing to autophagy. Cell Death Differ.
22:3642015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Conde E, Giménez-Moyano S, Martín-Gómez L,
Rodríguez M, Ramos ME, Aguado-Fraile E, Blanco-Sanchez I, Saiz A
and García-Bermejo ML: HIF-1α induction during reperfusion avoids
maladaptive repair after renal ischemia/reperfusion involving
miR127-3p. Sci Rep. 7:410992017. View Article : Google Scholar
|
|
93
|
Zhang T, Zhu X, Wu H, Jiang K, Zhao G,
Shaukat A, Deng G and Qiu C: Targeting the ROS/PI3K/AKT/HIF-1α/HK2
axis of breast cancer cells: Combined administration of polydatin
and 2-deoxy-d-glucose. J Cell Mol Med. 23:3711–3723. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Miyazaki M, Miyazaki K, Chen S, Chandra V,
Wagatsuma K, Agata Y, Rodewald HR, Saito R, Chang AN, Varki N, et
al: The E-Id protein axis modulates the activities of the
PI3K-AKT-mTORC1-Hif1a and c-myc/p19Arf pathways to suppress innate
variant TFH cell development, thymocyte expansion, and
lymphomagenesis. Genes Dev. 29:409–425. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sudhagar S, Sathya S and Lakshmi BS: Rapid
non-genomic signalling by 17β-oestradiol through c-Src involves
mTOR-dependent expression of HIF-1α in breast cancer cells. Br J
Cancer. 105:953–960. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Huang C, Bruggeman LA, Hydo LM and Miller
RT: Shear stress induces cell apoptosis via a c-Src-phospholipase
D-mTOR signaling pathway in cultured podocytes. Exp Cell Res.
318:1075–1085. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhang J, Wang S, Jiang B, Huang L, Ji Z,
Li X, Zhou H, Han A, Chen A, Wu Y, et al: c-Src phosphorylation and
activation of hexokinase promotes tumorigenesis and metastasis. Nat
Commun. 8:137322017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhang K, Zhang M, Jiang H, Liu F, Liu H
and Li Y: Down-regulation of miR-214 inhibits proliferation and
glycolysis in non-small-cell lung cancer cells via down-regulating
the expression of hexokinase 2 and pyruvate kinase isozyme M2.
Biomed Pharmacother. 105:545–552. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Singh D, Arora R, Kaur P, Singh B, Mannan
R and Arora S: Overexpression of hypoxia-inducible factor and
metabolic path-ways: Possible targets of cancer. Cell Biosci.
7:622017. View Article : Google Scholar
|
|
100
|
Webb BA, Forouhar F, Szu FE, Seetharaman
J, Tong L and Barber DL: Structures of human phosphofructokinase-1
and atomic basis of cancer-associated mutations. Nature.
523:111–114. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yi W, Clark PM, Mason DE, Keenan MC, Hill
C, Goddard WA III, Peters EC, Driggers EM and Hsieh-Wilson LC:
Phosphofructokinase 1 glycosylation regulates cell growth and
metabolism. Science. 337:975–980. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Moreno-Sánchez R, Marin-Hernández A,
Gallardo-Pérez JC, Quezada H, Encalada R, Rodríguez-Enríquez S and
Saavedra E: Phosphofructokinase type 1 kinetics, isoform
expression, and gene polymorphisms in cancer cells. J Cell Biochem.
113:1692–1703. 2012.PubMed/NCBI
|
|
103
|
Lee JH, Liu R, Li J, Zhang C, Wang Y, Cai
Q, Qian X, Xia Y, Zheng Y, Piao Y, et al: Stabilization of
phosphofructokinase 1 platelet isoform by AKT promotes
tumorigenesis. Nat Commun. 8:9492017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Tang H, Lee M, Sharpe O, Salamone L,
Noonan EJ, Hoang CD, Levine S, Robinson WH and Shrager JB:
Oxidative stress-responsive microRNA-320 regulates glycolysis in
diverse biological systems. FASEB J. 26:4710–4721. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Gomez LS, Zancan P, Marcondes MC,
Ramos-Santos L, Meyer-Fernandes JR, Sola-Penna M and Da Silva D:
Resveratrol decreases breast cancer cell viability and glucose
metabolism by inhibiting 6-phosphofructo-1-kinase. Biochimie.
95:1336–1343. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Holmes B, Lee J, Landon KA,
Benavides-Serrato A, Bashir T, Jung ME, Lichtenstein A and Gera J:
Mechanistic target of rapamycin (mTOR) inhibition synergizes with
reduced internal ribosome entry site (IRES)-mediated translation of
cyclin D1 and c-MYC mRNAs to treat glioblastoma. J Biol Chem.
291:14146–14159. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Bartrons R, Simon-Molas H,
Rodríguez-Garcia A, Castaño E, Navarro-Sabaté À, Manzano A and
Martinez-Outschoorn UE: Fructose 2,6-bisphosphate in cancer cell
metabolism. Front Oncol. 8:3312018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Wang C, Qu J, Yan S, Gao Q, Hao S and Zhou
D: PFK15, a PFKFB3 antagonist, inhibits autophagy and proliferation
in rhabdomyosarcoma cells. Int J Mol Med. 42:359–367.
2018.PubMed/NCBI
|
|
109
|
Ros S and Schulze A: Balancing glycolytic
flux: The role of 6-phosphofructo-2-kinase/fructose
2,6-bisphosphatases in cancer metabolism. Cancer Metab. 1:82013.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Cantelmo AR, Conradi LC, Brajic A, Goveia
J, Kalucka J, Pircher A, Chaturvedi P, Hol J, Thienpont B, Teuwen
LA, et al: Inhibition of the glycolytic activator PFKFB3 in
endothelium induces tumor vessel normalization, impairs metastasis,
and improves chemotherapy. Cancer Cell. 30:968–985. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Atsumi T, Chesney J, Metz C, Leng L,
Donnelly S, Makita Z, Mitchell R and Bucala R: High expression of
inducible 6-phos-phofructo-2-kinase/fructose-2,6-bisphosphatase
(iPFK-2; PFKFB3) in human cancers. Cancer Res. 62:5881–5887.
2002.PubMed/NCBI
|
|
112
|
Feng Y and Wu L: mTOR up-regulation of
PFKFB3 is essential for acute myeloid leukemia cell survival.
Biochem Biophys Res Commun. 483:897–903. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ziegler ME, Hatch MM, Wu N, Muawad SA and
Hughes CC: mTORC2 mediates CXCL12-induced angiogenesis.
Angiogenesis. 19:359–371. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Shi L, Pan H, Liu Z, Xie J and Han W:
Roles of PFKFB3 in cancer. Signal Transduct Target Ther.
2:170442017. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Dasgupta S, Rajapakshe K, Zhu B, Nikolai
BC, Yi P, Putluri N, Choi JM, Jung SY, Coarfa C, Westbrook TF, et
al: Metabolic enzyme PFKFB4 activates transcriptional coactivator
SRC-3 to drive breast cancer. Nature. 556:249–254. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhang H, Lu C, Fang M, Yan W, Chen M, Ji
Y, He S, Liu T, Chen T and Xiao J: HIF-1α activates hypoxia-induced
PFKFB4 expression in human bladder cancer cells. Biochem Biophys
Res Commun. 476:146–152. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhang Z, Deng X, Liu Y, Liu Y, Sun L and
Chen F: PKM2, function and expression and regulation. Cell Biosci.
9:522019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Nguyen A, Loo JM, Mital R, Weinberg EM,
Man FY, Zeng Z, Paty PB, Saltz L, Janjigian YY, de Stanchina E and
Tavazoie SF: PKLR promotes colorectal cancer liver colonization
through induction of glutathione synthesis. J Clin Invest.
126:681–694. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Adem S, Comakli V and Uzun N: Pyruvate
kinase activators as a therapy target: A patent review 2011-2017.
Expert Opin Ther Pat. 28:61–68. 2018. View Article : Google Scholar
|
|
120
|
Liu VM and Vander Heiden MG: The role of
pyruvate kinase M2 in cancer metabolism. Brain Pathol. 25:781–783.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Warner SL, Carpenter KJ and Bearss DJ:
Activators of PKM2 in cancer metabolism. Future Med Chem.
6:1167–1178. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wang HJ, Hsieh YJ, Cheng WC, Lin CP, Lin
YS, Yang SF, Chen CC, Izumiya Y, Yu JS, Kung HJ and Wang WC: JMJD5
regulates PKM2 nuclear translocation and reprograms HIF-1α-mediated
glucose metabolism. Proc Natl Acad Sci USA. 111:279–284. 2014.
View Article : Google Scholar
|
|
123
|
Kim DJ, Park YS, Kim ND, Min SH, You YM,
Jung Y, Koo H, Noh H, Kim JA, Park KC and Yeom YI: A novel pyruvate
kinase M2 activator compound that suppresses lung cancer cell
viability under hypoxia. Mol Cells. 38:373–379. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Huang L, Yu Z, Zhang Z, Ma W, Song S and
Huang G: Interaction with pyruvate kinase M2 destabilizes
tristetraprolin by proteasome degradation and regulates cell
proliferation in breast cancer. Sci Rep. 6:224492016. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Wang C, Jiang J, Ji J, Cai Q, Chen X, Yu
Y, Zhu Z and Zhang J: PKM2 promotes cell migration and inhibits
autophagy by mediating PI3K/AKT activation and contributes to the
malignant development of gastric cancer. Sci Rep. 7:28862017.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
van Niekerk G and Engelbrecht AM: Role of
PKM2 in directing the metabolic fate of glucose in cancer: A
potential therapeutic target. Cell Oncol (Dordr). 41:343–351. 2018.
View Article : Google Scholar
|
|
127
|
Nemazanyy I, Espeillac C, Pende M and
Panasyuk G: Role of PI3K, mTOR and Akt2 signalling in hepatic
tumorigenesis via the control of PKM2 expression. Biochem Soc
Trans. 41:917–922. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Moloughney JG, Kim PK, Vega-Cotto NM, Wu
CC, Zhang S, Adlam M, Lynch T, Chou PC, Rabinowitz JD, Werlen G and
Jacinto E: mTORC2 responds to glutamine catabolite levels to
modulate the hexosamine biosynthesis enzyme GFAT1. Mol Cell.
63:811–826. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Gupta A, Ajith A, Singh S, Panday RK,
Samaiya A and Shukla S: PAK2-c-Myc-PKM2 axis plays an essential
role in head and neck oncogenesis via regulating Warburg effect.
Cell Death Dis. 9:8252018. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Xiaoyu H, Yiru Y, Shuisheng S, Keyan C,
Zixing Y, Shanglin C, Yuan W, Dongming C, Wangliang Z, Xudong B and
Jie M: The mTOR pathway regulates PKM2 to affect glycolysis in
esophageal squamous cell carcinoma. Technol Cancer Res Treat.
17:15330338187800632018. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Zhang X, Li Y, Ma Y, Yang L, Wang T, Meng
X, Zong Z, Sun X, Hua X and Li H: Yes-associated protein (YAP)
binds to HIF-1 α and sustains HIF-1α protein stability to promote
hepatocellular carcinoma cell glycolysis under hypoxic stress. J
Exp Clin Cancer Res. 37:2162018. View Article : Google Scholar
|
|
132
|
Demaria M and Poli V: PKM2, STAT3 and
HIF-1α: The Warburg's vicious circle. JAKSTAT. 1:194–196.
2012.PubMed/NCBI
|
|
133
|
Gao S, Chen M, Wei W, Zhang X, Zhang M,
Yao Y, Lv Y, Ling T, Wang L and Zou X: Crosstalk of mTOR/PKM2 and
STAT3/c-Myc signaling pathways regulate the energy metabolism and
acidic microenvironment of gastric cancer. J Cell Biochem.
2018.Epub ahead of print.
|
|
134
|
Mendez-Lucas A, Li X, Hu J, Che L, Song X,
Jia J, Wang J, Xie C, Driscoll PC, Tschaharganeh DF, et al: Glucose
catabolism in liver tumors induced by c-MYC can be sustained by
various PKM1/PKM2 ratios and pyruvate kinase activities. Cancer
Res. 77:4355–4364. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Yu P, Li AX, Chen XS, Tian M, Wang HY,
Wang XL, Zhang Y, Wang KS and Cheng Y: PKM2-c-Myc-survivin cascade
regulates the cell proliferation, migration, and tamoxifen
resistance in breast cancer. Front Pharmacol. 11:5504692020.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Alves MM, Fuhler GM, Queiroz KC, Scholma
J, Goorden S, Anink J, Spek CA, Hoogeveen-Westerveld M, Bruno MJ,
Nellist M, et al: PAK2 is an effector of TSC1/2 signaling
independent of mTOR and a potential therapeutic target for tuberous
sclerosis complex. Sci Rep. 5:145342015. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Hui S, Ghergurovich JM, Morscher RJ, Jang
C, Teng X, Lu W, Esparza LA, Reya T, Zhan L, Guo JY, et al: Glucose
feeds the TCA cycle via circulating lactate. Nature. 551:115–118.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Faubert B, Li KY, Cai L, Hensley CT, Kim
J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al:
Lactate metabolism in human lung tumors. Cell. 171:358–371 e359.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Allen E, Mieville P, Warren CM, Saghafinia
S, Li L, Peng MW and Hanahan D: Metabolic symbiosis enables
adaptive resistance to anti-angiogenic therapy that is dependent on
mTOR signaling. Cell Rep. 15:1144–1160. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Kim HK, Lee I, Bang H, Kim HC, Lee WY, Yun
SH, Lee J, Lee SJ, Park YS, Kim KM and Kang WK: MCT4 expression is
a potential therapeutic target in colorectal cancer with peritoneal
carcinomatosis. Mol Cancer Ther. 17:838–848. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Pisarsky L, Bill R, Fagiani E, Dimeloe S,
Goosen RW, Hagmann J, Hess C and Christofori G: Targeting metabolic
symbiosis to overcome resistance to anti-angiogenic therapy. Cell
Rep. 15:1161–1174. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Morrot A, da Fonseca LM, Salustiano EJ,
Gentile LB, Conde L, Filardy AA, Franklim TN, da Costa KM,
Freire-de-Lima CG and Freire-de-Lima L: Metabolic symbiosis and
immunomodulation: How tumor cell-derived lactate may disturb innate
and adaptive immune responses. Front Oncol. 8:812018. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Pavlova NN and Thompson CB: The emerging
hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Curry JM, Tuluc M, Whitaker-Menezes D,
Ames JA, Anantharaman A, Butera A, Leiby B, Cognetti DM, Sotgia F,
Lisanti MP and Martinez-Outschoorn UE: Cancer metabolism, stemness
and tumor recurrence: MCT1 and MCT4 are functional biomarkers of
metabolic symbiosis in head and neck cancer. Cell Cycle.
12:1371–1384. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Luo F, Zou Z, Liu X, Ling M, Wang Q, Wang
Q, Lu L, Shi L, Liu Y, Liu Q and Zhang A: Enhanced glycolysis,
regulated by HIF-1α via MCT-4, promotes inflammation in
arsenite-induced carcinogenesis. Carcinogenesis. 38:615–626. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Tan FH, Bai Y, Saintigny P and Darido C:
mTOR signalling in head and neck cancer: Heads up. Cells.
8:3332019. View Article : Google Scholar :
|
|
147
|
Jewell JL and Guan KL: Nutrient signaling
to mTOR and cell growth. Trends Biochem Sci. 38:233–242. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Martelli AM, Buontempo F and McCubrey JA:
Drug discovery targeting the mTOR pathway. Clin Sci (Lond).
132:543–568. 2018. View Article : Google Scholar
|
|
149
|
Liberti MV and Locasale JW: The Warburg
effect: How does it benefit cancer cells? Trends Biochem Sci.
41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI
|