|
1
|
Chan JFW, Yuan S, Kok KH, To KK, Chu H,
Yang J, Xing F, Liu J, Yip CC, Poon RW, et al: A familial cluster
of pneumonia associated with the 2019 novel coronavirus indicating
person-to-person transmission: A study of a family cluster. Lancet.
395:514–523. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H,
Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and
epidemiology of 2019 novel coronavirus: Implications for virus
origins and receptor binding. Lancet. 395:565–574. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
World Health Organization (WHO):
Coronavirus disease (COVID-19): Situation reports. https://www.who.int/emer-gencies/diseases/novel-coronavirus-2019/situation-reports.
|
|
4
|
Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou
J, Liu W, Bi Y and Gao GF: Epidemiology, genetic recombination, and
pathogenesis of coronaviruses. Trends Microbiol. 24:490–502. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Li X and Ma X: Acute respiratory failure
in COVID-19: Is it 'typical' ARDS? Crit Care. 24:1982020.
View Article : Google Scholar
|
|
6
|
Renu K, Prasanna PL and Valsala
Gopalakrishnan A: Coronaviruses pathogenesis, comorbidities and
multi-organ damage - A review. Life Sci. 255:1178392020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Cui J, Li F and Shi Z-L: Origin and
evolution of pathogenic coronaviruses. Nat Rev Microbiol.
17:181–192. 2019. View Article : Google Scholar
|
|
8
|
Jaimes JA, André NM, Chappie JS, Millet JK
and Whittaker GR: Phylogenetic analysis and structural modeling of
SARS-CoV-2 spike protein reveals an evolutionary distinct and
proteolytically sensitive activation loop. J Mol Biol.
432:3309–3325. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
da Costa VG, Moreli ML and Saivish MV: The
emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st
century. Arch Virol. 165:1517–1526. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Arab-Zozani M and Hassanipour S: Features
and limitations of LitCovid hub for quick access to literature
about COVID-19. Balkan Med J. 37:231–232. 2020.PubMed/NCBI
|
|
11
|
Khailany RA, Safdar M and Ozaslan M:
Genomic characterization of a novel SARS-CoV-2. Gene Rep.
19:1006822020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Cohen J: New coronavirus threat galvanizes
scientists. Science. 367:492–493. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lokman SM, Rasheduzzaman M, Salauddin A,
Barua R, Tanzina AY, Rumi MH, Hossain MI, Siddiki AMAMZ, Mannan A
and Hasan MM: Exploring the genomic and proteomic variations of
SARS-CoV-2 spike glycoprotein: A computational biology approach.
Infect Genet Evol. 84:1043892020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wan Y, Shang J, Graham R, Baric RS and Li
F: Receptor recognition by the novel coronavirus from Wuhan: an
analysis based on decade-long structural studies of SARS
coronavirus. J Virol. 94:e00127–20. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ziegler CGK, Allon SJ, Nyquist SK, Mbano
IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM, et
al HCA Lung Biological Network Electronic address:
lung-network@humancellatlas.org: HCA Lung Biological Network:
SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human
airway epithelial cells and is detected in specific cell subsets
across tissues. Cell. 181:1016–1035.e19. 2020. View Article : Google Scholar
|
|
16
|
Shang J, Wan Y, Luo C, Ye G, Geng Q,
Auerbach A and Li F: Cell entry mechanisms of SARS-CoV-2. Proc Natl
Acad Sci USA. 117:11727–11734. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hoffmann M, Kleine-Weber H and Pöhlmann S:
A Multibasic cleavage site in the spike protein of SARS-CoV-2 is
essential for infection of human lung cells. Mol Cell.
78:779–784.e5. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Devaux CA, Rolain J-M and Raoult D: ACE2
receptor poly-morphism: susceptibility to SARS-CoV-2, hypertension,
multi-organ failure, and COVID-19 disease outcome. J Microbiol
Immunol Infect. 53:425–435. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zou X, Chen K, Zou J, Han P, Hao J and Han
Z: Single-cell RNA-seq data analysis on the receptor ACE2
expression reveals the potential risk of different human organs
vulnerable to 2019-nCoV infection. Front Med. 14:185–192. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Xiao L, Sakagami H and Miwa N: ACE2: The
key molecule for understanding the pathophysiology of severe and
critical conditions of COVID-19: Demon or Angel? Viruses.
12:4912020. View Article : Google Scholar :
|
|
21
|
Romano M, Ruggiero A, Squeglia F, Maga G
and Berisio R: A Structural view of SARS-CoV-2 RNA replication
machinery: RNA synthesis, proofreading and final capping. Cells.
9:12672020. View Article : Google Scholar :
|
|
22
|
Kaye M, Druce J, Tran T, Kostecki R, Chibo
D, Morris J, Catton M and Birch C: SARS-associated coronavirus
replication in cell lines. Emerg Infect Dis. 12:128–133. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yap JKY, Moriyama M and Iwasaki A:
Inflammasomes and pyroptosis as therapeutic targets for COVID-19. J
Immunol. 205:307–312. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li S, Jiang L, Li X, Lin F, Wang Y, Li B,
Jiang T, An W, Liu S, Liu H, et al: Clinical and pathological
investigation of patients with severe COVID-19. JCI Insight.
5:e1380702020. View Article : Google Scholar :
|
|
25
|
Shah A: Novel coronavirus-induced NLRP3
Inflammasome activation: a potential drug target in the treatment
of COVID-19. Front Immunol. 11:10212020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Coperchini F, Chiovato L, Croce L, Magri F
and Rotondi M: The cytokine storm in COVID-19: An overview of the
involvement of the chemokine/chemokine-receptor system. Cytokine
Growth Factor Rev. 53:25–32. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ye Q, Wang B and Mao J: The pathogenesis
and treatment of the 'Cytokine Storm' in COVID-19. J Infect.
80:607–613. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, Li
B, Song X and Zhou X: Prognostic value of interleukin-6, C-reactive
protein, and procalcitonin in patients with COVID-19. J Clin Virol.
127:1043702020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ong EZ, Chan YFZ, Leong WY, Lee NMY,
Kalimuddin S, Haja Mohideen SM, Chan KS, Tan AT, Bertoletti A, Ooi
EE, et al: A dynamic immune response shapes COVID-19 progression.
Cell Host Microbe. 27:879–882.e2. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
McKechnie JL and Blish CA: The innate
immune system: fighting on the front lines or fanning the flames of
COVID-19? Cell Host Microbe. 27:863–869. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Thachil J and Srivastava A: SARS-2
coronavirus-associated hemostatic lung abnormality in COVID-19: is
it pulmonary thrombosis or pulmonary embolism? Semin Thromb Hemost.
46:777–780. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Rapisarda V, Loreto C, Ledda C, Musumeci
G, Bracci M, Santarelli L, Renis M, Ferrante M and Cardile V:
Cytotoxicity, oxidative stress and genotoxicity induced by glass
fibers on human alveolar epithelial cell line A549. Toxicol In
Vitro. 29:551–557. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Armstrong SM, Wang C, Tigdi J, Si X,
Dumpit C, Charles S, Gamage A, Moraes TJ and Lee WL: Influenza
infects lung microvascular endothelium leading to microvascular
leak: Role of apoptosis and claudin-5. PLoS One. 7:e473232012.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ohmura T, Tian Y, Sarich N, Ke Y, Meliton
A, Shah AS, Andreasson K, Birukov KG and Birukova AA: Regulation of
lung endothelial permeability and inflammatory responses by
prostaglandin A2: Role of EP4 receptor. Mol Biol Cell.
28:1622–1635. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schurink B, Roos E, Radonic T, Barbe E,
Bouman CSC, de Boer HH, de Bree GJ, Bulle EB, Aronica EM, Florquin
S, et al: Viral presence and immunopathology in patients with
lethal COVID-19: A prospective autopsy cohort study. Lancet
Microbe. 1:e290–e299. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ahmadpoor P and Rostaing L: Why the immune
system fails to mount an adaptive immune response to a COVID-19
infection. Transpl Int. 33:824–825. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang B, Wang L, Kong X, Geng J, Xiao D, Ma
C, Jiang XM and Wang PH: Long-term coexistence of SARS-CoV-2 with
antibody response in COVID-19 patients. J Med Virol. 92:1684–1689.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhang B, Zhou X, Zhu C, Song Y, Feng F,
Qiu Y, Feng J, Jia Q, Song Q, Zhu B and Wang J: Immune phenotyping
based on neutrophil-to-lymphocyte ratio and IgG predicts disease
severity and outcome for patients with COVID-19. Front Mol Biosci.
7:1572020. View Article : Google Scholar
|
|
40
|
Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su
Y, Wang X, Yuan J, Li T, Li J, et al: Antibody responses to
SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin
Infect Dis. 71:2027–2034. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fathi N and Rezaei N: Lymphopenia in
COVID-19: Therapeutic opportunities. Cell Biol Int. 44:1792–1797.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning
L, Chen L, Li M, Liu Y, Wang G, et al: Reduction and functional
exhaustion of T Cells in patients with coronavirus disease 2019
(COVID-19). Front Immunol. 11:8272020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
De Biasi S: Meschiari M, Gibellini L,
Bellinazzi C, Borella R, Fidanza L, Gozzi L, Iannone A, Lo Tartaro
D, Mattioli M, et al Marked T cell activation, senescence,
exhaustion and skewing towards TH17 in patients with Covid-19
pneumonia. Nat Commun. 11:34342020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yaqinuddin A and Kashir J: Innate immunity
in COVID-19 patients mediated by NKG2A receptors, and potential
treatment using Monalizumab, Cholroquine, and antiviral agents. Med
Hypotheses. 140:1097772020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Carvelli J, Demaria O, Vely F, Batista L,
Benmansour NC, Fares J, Carpentier S, Thibult ML, Morel A, André P,
et al: Association of COVID-19 inflammation with activation of the
C5a-C5aR1 axis. Nature. 588:146–150. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cully M: Immune status could determine
efficacy of COVID-19 therapies. Nat Rev Drug Discov. 19:431–434.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yang L, Liu S, Liu J, Zhang Z, Wan X,
Huang B, Chen Y and Zhang Y: COVID-19: Immunopathogenesis and
Immunotherapeutics. Signal Transduct Target Ther. 5:1282020.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mortaz E, Tabarsi P, Varahram M, Folkerts
G and Adcock IM: The Immune Response and Immunopathology of
COVID-19. Front Immunol. 11:20372020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yuki K, Fujiogi M and Koutsogiannaki S:
COVID-19 pathophysiology: A review. Clin Immunol. 215:1084272020.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yuen KS, Ye ZW, Fung SY, Chan CP and Jin
DY: SARS-CoV-2 and COVID-19: The most important research questions.
Cell Biosci. 10:402020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Carsana L, Sonzogni A, Nasr A, Rossi RS,
Pellegrinelli A, Zerbi P, Rech R, Colombo R, Antinori S, Corbellino
M, et al: Pulmonary post-mortem findings in a series of COVID-19
cases from northern Italy: A two-centre descriptive study. Lancet
Infect Dis. 20:1135–1140. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lodigiani C, Iapichino G, Carenzo L,
Cecconi M, Ferrazzi P, Sebastian T, Kucher N, Studt JD, Sacco C,
Bertuzzi A, et al: Humanitas COVID-19 Task Force: Venous and
arterial thromboembolic complications in COVID-19 patients admitted
to an academic hospital in Milan, Italy. Thromb Res. 191:9–14.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni
L, Yang Y, Liu B, Wang W, Wei C, et al: The presence of SARS-CoV-2
RNA in the feces of COVID-19 patients. J Med Virol. 92:833–840.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zaim S, Chong JH, Sankaranarayanan V and
Harky A: COVID-19 and multiorgan response. Curr Probl Cardiol.
45:1006182020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Singer M, Deutschman CS, Seymour CW,
Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche
JD, Coopersmith CM, et al: The Third International Consensus
Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA.
315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yi Y, Lagniton PNP, Ye S, Li E and Xu RH:
COVID-19: What has been learned and to be learned about the novel
coronavirus disease. Int J Biol Sci. 16:1753–1766. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li H, Liu L, Zhang D, Xu J, Dai H, Tang N,
Su X and Cao B: SARS-CoV-2 and viral sepsis: Observations and
hypotheses. Lancet. 395:1517–1520. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lescure F-X, Bouadma L, Nguyen D, Parisey
M, Wicky PH, Behillil S, Gaymard A, Bouscambert-Duchamp M, Donati
F, Le Hingrat Q, et al: Clinical and virological data of the first
cases of COVID-19 in Europe: A case series. Lancet Infect Dis.
20:697–706. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Endeman H, van der Zee P, van Genderen ME,
van den Akker JPC and Gommers D: Progressive respiratory failure in
COVID-19: A hypothesis. Lancet Infect Dis. 20:13652020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
de la Rica R, Borges M and Gonzalez-Freire
M: COVID-19: In the Eye of the Cytokine Storm. Front Immunol.
11:5588982020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Channappanavar R and Perlman S: Pathogenic
human coronavirus infections: Causes and consequences of cytokine
storm and immunopathology. Semin Immunopathol. 39:529–539. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lin L, Lu L, Cao W and Li T: Hypothesis
for potential pathogenesis of SARS-CoV-2 infection-a review of
immune changes in patients with viral pneumonia. Emerg Microbes
Infect. 9:727–732. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Laing AG, Lorenc A, Del Molino Del Barrio
I, Das A, Fish M, Monin L, Muñoz-Ruiz M, McKenzie DR, Hayday TS,
Francos-Quijorna I, et al: A dynamic COVID-19 immune signature
includes associations with poor prognosis. Nat Med. 26:1623–1635.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Onofrio L, Caraglia M, Facchini G,
Margherita V, Placido S and Buonerba C: Toll-like receptors and
COVID-19: a two-faced story with an exciting ending. Future Sci OA.
6:FSO6052020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Florindo HF, Kleiner R, Vaskovich-Koubi D,
Acúrcio RC, Carreira B, Yeini E, Tiram G, Liubomirski Y and
Satchi-Fainaro R: Immune-mediated approaches against COVID-19. Nat
Nanotechnol. 15:630–645. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Skalny AV, Rink L, Ajsuvakova OP, Aschner
M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos
DA, Aaseth J, et al: Zinc and respiratory tract infections:
Perspectives for COVID-19 (Review). Int J Mol Med. 46:17–26.
2020.PubMed/NCBI
|
|
67
|
World Health Organization (WHO): Standard
precautions in health care. https://www.who.int/publications/i/item/standard-precautions-in-health-care.
Accessed September 30, 2007.
|
|
68
|
Nitulescu GM, Paunescu H, Moschos SA,
Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK,
Drakoulis N and Tsatsakis A: Comprehensive analysis of drugs to
treat SARS-CoV-2 infection: Mechanistic insights into current
COVID-19 therapies (Review). Int J Mol Med. 46:467–488. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dehelean CA, Lazureanu V, Coricovac D,
Mioc M, Oancea R, Marcovici I, Pinzaru I, Soica C, Tsatsakis AM and
Cretu O: SARS-CoV-2: Repurposed drugs and novel therapeutic
approaches-insights into chemical structure-biological activity and
toxicological screening. J Clin Med. 9:20842020. View Article : Google Scholar
|
|
70
|
Beigel JH, Tomashek KM, Dodd LE, Mehta AK,
Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, et
al: ACTT-1 Study Group Members: Remdesivir for the treatment of
Covid-19 - Final report. N Engl J Med. 383:1813–1826. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
FDA: FDA Remdesivir update, 2020.
https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-drug-combination-treatment-covid-19.
Accessed December 1 2020.
|
|
72
|
World Health Organization (WHO): WHO
recommends against the use of remdesivir in COVID-19 patients.
https://www.who.int/news-room/feature-stories/detail/who-recommends-against-the-use-of-remdesivir-in-covid-19-patients.
Accessed November 20 2020.
|
|
73
|
European Medicines Agency (EMA): Update on
remdesivir -EMA will evaluate new data from Solidarity trial.
https://www.ema.europa.eu/en/news/update-remdesivir-ema-will-evaluate-new-data-solidarity-trial.
Accessed November 20 2020.
|
|
74
|
World Health Organization (WHO):
Therapeutics and COVID-19: living guideline. https://www.who.int/publications/i/item/therapeutics-and-covid-19-living-guideline.
Accessed November 20 2020.
|
|
75
|
Nicola M, O'Neill N, Sohrabi C, Khan M,
Agha M and Agha R: Evidence based management guideline for the
COVID-19 pandemic - Review article. Int J Surg. 77:206–216. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kakodkar P, Kaka N and Baig MN: A
comprehensive literature review on the clinical presentation, and
management of the pandemic coronavirus disease 2019 (COVID-19).
Cureus. 12:e75602020.PubMed/NCBI
|
|
77
|
Bimonte S, Crispo A, Amore A, Celentano E,
Cuomo A and Cascella M: Potential antiviral drugs for SARS-Cov-2
treatment: Preclinical findings and ongoing clinical research. In
Vivo (Brooklyn). 34:1597–1602. 2020. View Article : Google Scholar
|
|
78
|
World Health Organization (WHO): Clinical
management of COVID-19. https://www.who.int/publications/i/item/clinical-management-of-covid-19.
Accessed May 20 2020.
|
|
79
|
Falzone L, Musso N, Gattuso G, Bongiorno
D, Palermo CI, Scalia G, Libra M and Stefani S: Sensitivity
assessment of droplet digital PCR for SARS-CoV-2 detection. Int J
Mol Med. 46:957–964. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Suo T, Liu X, Feng J, Guo M, Hu W, Guo D,
Ullah H, Yang Y, Zhang Q, Wang X, et al: ddPCR: A more accurate
tool for SARS-CoV-2 detection in low viral load specimens. Emerg
Microbes Infect. 9:1259–1268. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
European Medicines Agency (EMA):
Treatments and vaccines for COVID-19. https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines-covid-19.
Last updated November 26 2020.
|
|
82
|
Kim YC, Dema B and Reyes-Sandoval A:
COVID-19 vaccines: Breaking record times to first-in-human trials.
NPJ Vaccines. 5:342020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Calina D, Docea AO, Petra k is D, Egorov A
M, Ishmukhametov AA, Gabibov AG, Shtilman MI, Kostoff R, Carvalho
F, Vinceti M, et al: Towards effective COVID-19 vaccines: Updates,
perspectives and challenges (Review). Int J Mol Med. 46:3–16. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
World Health Organization (WHO): Draft
landscape of COVID-19 candidate vaccines. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
Accessed December 8 2020.
|
|
85
|
Li X, Geng M, Peng Y, Meng L and Lu S:
Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm
Anal. 10:102–108. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wu R, Wang L, Kuo HD, Shannar A, Peter R,
Chou PJ, Li S, Hudlikar R, Liu X, Liu Z, et al: An Update on
Current Therapeutic Drugs Treating COVID-19. Curr Pharmacol Rep.
6:1–15. 2020. View Article : Google Scholar
|
|
87
|
Magro G: COVID-19: Review on latest
available drugs and therapies against SARS-CoV-2. Coagulation and
inflammation cross-talking. Virus Res. 286:1980702020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Rosa SGV and Santos WC: Clinical trials on
drug repositioning for COVID-19 treatment. Rev Panam Salud Publica.
44:e402020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lythgoe MP and Middleton P: Ongoing
clinical trials for the management of the COVID-19 pandemic. Trends
Pharmacol Sci. 41:363–382. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kumar A, Gupta PK and Srivastava A: A
review of modern technologies for tackling COVID-19 pandemic.
Diabetes Metab Syndr. 14:569–573. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Rossman H, Keshet A, Shilo S, Gavrieli A,
Bauman T, Cohen O, Shelly E, Balicer R, Geiger B, Dor Y, et al: A
framework for identifying regional outbreak and spread of COVID-19
from one-minute population-wide surveys. Nat Med. 26:634–638. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
European Bioinformatics Institute (EBI):
European Molecular Biology Laboratory (EMBL): EMBL-EBI launches
COVID-19 Data Portal. https://www.ebi.ac.uk/about/news/press-releases/embl-ebi-launches-covid-19-data-portal.
Accessed April 18 2020.
|
|
93
|
National Institutes of Health (NIH):
National Library Of Medicine, National Center for Biotechnology
Information (NCBI):SARS-CoV-2 Data. https://www.ncbi.nlm.nih.gov/sars-cov-2/.
|
|
94
|
White House Office, US Department of
Energy, IBM: The COVID-19 high performance computing consortium.
https://covid19-hpc-consortium.org/.
|
|
95
|
Kiyotani K, Toyoshima Y, Nemoto K and
Nakamura Y: Bioinformatic prediction of potential T cell epitopes
for SARS-Cov-2. J Hum Genet. 65:569–575. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Quimque MTJ, Notarte KIR, Fernandez RAT,
Mendoza MAO, Liman RAD, Lim JAK, Pilapil LAE, Ong JKH, Pastrana AM,
Khan A, et al: Virtual screening-driven drug discovery of SARS-CoV2
enzyme inhibitors targeting viral attachment, replication,
post-translational modification and host immunity evasion infection
mechanisms. J Biomol Struct Dyn. Jun 16–2020.Epub ahead of print.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wang J: Fast identification of possible
drug treatment of coronavirus disease-19 (COVID-19) through
computational drug repurposing study. J Chem Inf Model.
60:3277–3286. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Bost P, Giladi A, Liu Y, Bendjelal Y, Xu
G, David E, Blecher-Gonen R, Cohen M, Medaglia C, Li H, et al:
Host-viral infection maps reveal signatures of severe COVID-19
patients. Cell. 181:1475–1488.e12. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhou Y, Hou Y, Shen J, Huang Y, Martin W
and Cheng F: Network-based drug repurposing for novel coronavirus
2019-nCoV/SARS-CoV-2. Cell Discov. 6:142020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Veljkovic V, Perovic V and Paessler S:
Prediction of the effectiveness of COVID-19 vaccine candidates.
F1000 Res. 9:3652020. View Article : Google Scholar
|
|
101
|
Russo G, Pennisi M, Viceconti M and
Pappalardo F: In silico trial to test COVID-19 candidate vaccines:
a case study with UISS platform. arXiv:2005.02289.
|
|
102
|
Kar T, Narsaria U, Basak S, Deb D,
Castiglione F, Mueller DM and Srivastava AP: A candidate
multi-epitope vaccine against SARS-CoV-2. Sci Rep. 10:108952020.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Petrakis D, Margină D, Tsarouhas K, Tekos
F, Stan M, Nikitovic D, Kouretas D, Spandidos DA and Tsatsakis A:
Obesity - a risk factor for increased COVID-19 prevalence, severity
and lethality (Review). Mol Med Rep. 22:9–19. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Goumenou M, Sarigiannis D, Tsatsakis A,
Anesti O, Docea A, Petrakis D, Tsoukalas D, Kostoff R, Rakitskii V,
Spandidos DA, et al: COVID-19 in Northern Italy: An integrative
overview of factors possibly influencing the sharp increase of the
outbreak (Review). Mol Med Rep. 22:20–32. 2020.PubMed/NCBI
|
|
105
|
Ledda C, Loreto C, Zammit C, Marconi A,
Fago L, Matera S, Costanzo V, Fuccio Sanzà G, Palmucci S, Ferrante
M, et al: Non-infective occupational risk factors for
hepatocellular carcinoma: A review (Review). Mol Med Rep.
15:511–533. 2017. View Article : Google Scholar
|
|
106
|
Falzone L, Marconi A, Loreto C, Franco S,
Spandidos DA and Libra M: Occupational exposure to carcinogens:
Benzene, pesticides and fibers (Review). Mol Med Rep. 14:4467–4474.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Gonzalez H, Hagerling C and Werb Z: Roles
of the immune system in cancer: From tumor initiation to metastatic
progression. Genes Dev. 32:1267–1284. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Wargo JA, Reuben A, Cooper ZA, Oh KS and
Sullivan RJ: Immune effects of chemotherapy, radiation, and
targeted therapy and opportunities for combination with
immunotherapy. Semin Oncol. 42:601–616. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Tan J and Yang C: Prevention and control
strategies for the diagnosis and treatment of cancer patients
during the COVID-19 pandemic. Br J Cancer. 123:5–6. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Garassino MC, Whisenant JG, Huang L-C,
Trama A, Torri V, Agustoni F, Baena J, Banna G, Berardi R, Bettini
AC, et al: TERAVOLT investigators: COVID-19 in patients with
thoracic malignancies (TERAVOLT): First results of an
international, registry-based, cohort study. Lancet Oncol.
21:914–922. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wang H and Zhang L: Risk of COVID-19 for
patients with cancer. Lancet Oncol. 21:e1812020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Liang W, Guan W, Chen R, Wang W, Li J, Xu
K, Li C, Ai Q, Lu W, Liang H, et al: Cancer patients in SARS-CoV-2
infection: A nationwide analysis in China. Lancet Oncol.
21:335–337. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kuderer NM, Choueiri TK, Shah DP, Shyr Y,
Rubinstein SM, Rivera DR, Shete S, Hsu CY, Desai A, de Lima Lopes G
Jr, et al: COVID-19 and Cancer Consortium: Clinical impact of
COVID-19 on patients with cancer (CCC19): A cohort study. Lancet.
395:1907–1918. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Lee LY, Cazier J-B, Angelis V, Arnold R,
Bisht V, Campton NA, Chackathayil J, Cheng VW, Curley HM, Fittall
MW, et al: UK Coronavirus Monitoring Project Team: COVID-19
mortality in patients with cancer on chemotherapy or other
anticancer treatments: A prospective cohort study. Lancet.
395:1919–1926. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Lee LYW, Cazier J-B, Starkey T, Briggs
SEW, Arnold R, Bisht V, Booth S, Campton NA, Cheng VWT, Collins G,
et al: UK Coronavirus Cancer Monitoring Project Team: COVID-19
prevalence and mortality in patients with cancer and the effect of
primary tumour subtype and patient demo-graphics: A prospective
cohort study. Lancet Oncol. 21:1309–1316. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Dai M, Liu D, Liu M, Zhou F, Li G, Chen Z,
Zhang Z, You H, Wu M, Zheng Q, et al: Patients with cancer appear
more vulnerable to SARS-COV-2: A multi-center study during the
COVID-19 outbreak. Cancer Discov. 10:783–791. 2020.PubMed/NCBI
|
|
117
|
Robilotti EV, Babady NE, Mead PA, Rolling
T, Perez-Johnston R, Bernardes M, Bogler Y, Caldararo M, Figueroa
CJ, Glickman MS, et al: Determinants of COVID-19 disease severity
in patients with cancer. Nat Med. 26:1218–1223. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Horn L, Whisenant JG, Torri V, Huang L-C,
Trama A, Paz-Ares LG, Felip E, Pancaldi V, De Toma A, Tiseo M, et
al: Thoracic Cancers International COVID-19 Collaboration
(TERAVOLT): Impact of type of cancer therapy and COVID therapy on
survival. J Clin Oncol. 38(Suppl 18): LBA1112020. View Article : Google Scholar
|
|
119
|
Russell B, Moss C, Papa S, Irshad S, Ross
P, Spicer J, Kordasti S, Crawley D, Wylie H, Cahill F, et al:
Factors affecting COVID-19 outcomes in cancer patients: a first
report from guy's cancer center in London. Front Oncol.
10:12792020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Banna G, Curioni-Fontecedro A,
Friedlaender A and Addeo A: How we treat patients with lung cancer
during the SARS-CoV-2 pandemic: Primum non nocere. ESMO Open.
5(Suppl 2): e0007652020.
|
|
121
|
Derosa L, Melenotte C, Griscelli F, Gachot
B, Marabelle A, Kroemer G and Zitvogel L: The immuno-oncological
challenge of COVID-19. Nat Cancer. 1:946–964. 2020. View Article : Google Scholar
|
|
122
|
Darvin P, Toor SM, Sasidharan Nair V and
Elkord E: Immune checkpoint inhibitors: Recent progress and
potential biomarkers. Exp Mol Med. 50:1–11. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
La-Beck NM, Nguyen DT, Le AD, Alzghari SK
and Trinh ST: Optimizing Patient Outcomes with PD-1/PD-L1 Immune
Checkpoint Inhibitors for the First-Line Treatment of Advanced
Non-Small Cell Lung Cancer. Pharmacotherapy. 40:239–255. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Leonardi GC, Candido S, Falzone L,
Spandidos DA and Libra M: Cutaneous melanoma and the immunotherapy
revolution (Review). Int J Oncol. 57:609–618. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Falzone L, Salomone S and Libra M:
Evolution of cancer pharmacological treatments at the turn of the
third millennium. Front Pharmacol. 9:13002018. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Christofi T, Baritaki S, Falzone L, Libra
M and Zaravinos A: Current perspectives in cancer immunotherapy.
Cancers (Basel). 11:14722019. View Article : Google Scholar
|
|
127
|
May JE, Donaldson C, Gynn L and Morse HR:
Chemotherapy-induced genotoxic damage to bone marrow cells:
Long-term implications. Mutagenesis. 33:241–251. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Shah NJ, Al-Shbool G, Blackburn M, Cook M,
Belouali A, Liu SV, Madhavan S, He AR, Atkins MB, Gibney GT, et al:
Safety and efficacy of immune checkpoint inhibitors (ICIs) in
cancer patients with HIV, hepatitis B, or hepatitis C viral
infection. J Immunother Cancer. 7:3532019. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Das S and Johnson DB: Immune-related
adverse events and anti-tumor efficacy of immune checkpoint
inhibitors. J Immunother Cancer. 7:3062019. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Gonzalez-Cao M, Antonazas-Basa M,
Puertolas T, Munoz-Consuelo E, Manzano JL, Carrera C, Marquez-Rodas
I, Lopez-Criado P, Rodriguez-Moreno JF, Garcia-Castano A, et al:
Cancer immunotherapy does not increase the risk of death by
COVID-19 in melanoma patients. MedRxiv. https://doi.org/10.1101/2020.05.19.20106971.
|
|
131
|
Hotchkiss RS, Colston E, Yende S, Crouser
ED, Martin GS, Albertson T, Bartz RR, Brakenridge SC, Delano MJ,
Park PK, et al: Immune checkpoint inhibition in sepsis: A Phase 1b
randomized study to evaluate the safety, tolerability,
pharmacokinetics, and pharmacodynamics of nivolumab. Intensive Care
Med. 45:1360–1371. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Hotchkiss RS, Colston E, Yende S, Angus
DC, Moldawer LL, Crouser ED, Martin GS, Coopersmith CM, Brakenridge
S, Mayr FB, et al: Immune checkpoint inhibition in sepsis: a phase
1b randomized, placebo-controlled, single ascending dose study of
antiprogrammed cell death-ligand 1 antibody (BMS-936559). Crit Care
Med. 47:632–642. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Chong CR, Park VJ, Cohen B, Postow MA,
Wolchok JD and Kamboj M: Safety of inactivated influenza vaccine in
cancer patients receiving immune checkpoint inhibitors. Clin Infect
Dis. 70:193–199. 2020. View Article : Google Scholar :
|
|
134
|
Bayle A, Khettab M, Lucibello F,
Chamseddine AN, Goldschmidt V, Perret A, Ropert S, Scotté F,
Loulergue P and Mir O: Immunogenicity and safety of influenza
vaccination in cancer patients receiving checkpoint inhibitors
targeting PD-1 or PD-L1. Ann Oncol. 31:959–961. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Gatto L, Franceschi E, Nunno VD and
Brandes AA: Potential protective and therapeutic role of immune
checkpoint inhibitors against viral infections and COVID-19.
Immunotherapy. 12:1111–1114. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Vivarelli S, Falzone L, Grillo CM,
Scandurra G, Torino F and Libra M: Cancer management during
COVID-19 pandemic: is immune checkpoint inhibitors-based
immunotherapy harmful or beneficial? Cancers (Basel). 12:22372020.
View Article : Google Scholar
|
|
137
|
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun
D, Xu Y and Tian Z: Functional exhaustion of antiviral lymphocytes
in COVID-19 patients. Cell Mol Immunol. 17:533–535. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Zheng H-Y, Zhang M, Yang C-X, Zhang N,
Wang XC, Yang XP, Dong XQ and Zheng YT: Elevated exhaustion levels
and reduced functional diversity of T cells in peripheral blood may
predict severe progression in COVID-19 patients. Cell Mol Immunol.
17:541–543. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Grifoni A, Weiskopf D, Ramirez SI, Mateus
J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A, Premkumar L,
Jadi RS, et al: Targets of T cell responses to SARS-CoV-2
coronavirus in humans with COVID-19 disease and unexposed
individuals. Cell. 181:1489–1501.e15. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Barber DL, Wherry EJ, Masopust D, Zhu B,
Allison JP, Sharpe AH, Freeman GJ and Ahmed R: Restoring function
in exhausted CD8 T cells during chronic viral infection. Nature.
439:682–687. 2006. View Article : Google Scholar
|
|
141
|
Day CL, Kaufmann DE, Kiepiela P, Brown JA,
Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C,
et al: PD-1 expression on HIV-specific T cells is associated with
T-cell exhaustion and disease progression. Nature. 443:350–354.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Magro G: SARS-CoV-2 and COVID-19: Is
interleukin-6 (IL-6) the 'culprit lesion' of ARDS onset? What is
there besides Tocilizumab? SGP130Fc. Cytokine X. 2:1000292020.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Di Cosimo S, Malfettone A, Pérez-García J
M, Llombart-Cussac A, Miceli R, Curigliano G and Cortés J: Immune
checkpoint inhibitors: A physiology-driven approach to the
treatment of coronavirus disease 2019. Eur J Cancer. 135:62–65.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Riva G, Nasillo V, Tagliafico E, Trenti T
and Luppi M: COVID-19: Room for treating T cell exhaustion? Crit
Care. 24:2292020. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Buonaguro FM, Puzanov I and Ascierto PA:
Anti-IL6R role in treatment of COVID-19-related ARDS. COVID-19:
Room for treating T cell exhaustion? J Transl Med. 18:1652020.
View Article : Google Scholar
|
|
146
|
Arnaldez FI, O'Day SJ, Drake CG, Fox BA,
Fu B, Urba WJ, Montesarchio V, Weber JS, Wei H, Wigginton JM, et
al: The Society for Immunotherapy of Cancer perspective on
regulation of interleukin-6 signaling in COVID-19-related systemic
inflammatory response. J Immunother Cancer. 8:e0009302020.
View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Maio M, Hamid O, Larkin J, Covre A,
Altomonte M, Calabrò L, Vardhana SA, Robert C, Ibrahim R, Anichini
A, et al: Immune checkpoint inhibitors for cancer therapy in the
COVID-19 era. Clin Cancer Res. 26:4201–4205. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Salvestrini V, Sell C and Lorenzini A:
Obesity may accelerate the aging process. Front Endocrinol
(Lausanne). 10:2662019. View Article : Google Scholar
|