|
1
|
World Health Organization (WHO): Cancer.
2019.
|
|
2
|
Remen T, Pintos J, Abrahamowicz M and
Siemiatycki J: Risk of lung cancer in relation to various metrics
of smoking history: A case-control study in Montreal. BMC Cancer.
18:12752018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dela Cruz CS, Tanoue LT and Matthay RA:
Lung cancer: Epidemiology, etiology, and prevention. Clin Chest
Med. 32:605–644. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Perez-Moreno P, Brambilla E, Thomas R and
Soria JC: Squamous cell carcinoma of the lung: Molecular subtypes
and therapeutic opportunities. Clin Cancer Res. 18:2443–2451. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gandara DR, Hammerman PS, Sos ML, Lara PN
Jr and Hirsch FR: Squamous cell lung cancer: From tumor genomics to
cancer therapeutics. Clin Cancer Res. 21:2236–2243. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sosa Iglesias V, Giuranno L, Dubois LJ,
Theys J and Vooijs M: Drug resistance in non-small cell lung
cancer: A potential for NOTCH targeting? Front Oncol. 8:2672018.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gentzler RD and Johnson ML: Complex
decisions for first-line and maintenance treatment of advanced
wild-type non-small cell lung cancer. Oncologist. 20:299–306. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Baxevanos P and Mountzios G: Novel
chemotherapy regimens for advanced lung cancer: Have we reached a
plateau? Ann Transl Med. 6:1392018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Thomas A, Rajan A and Giaccone G: Tyrosine
kinase inhibitors in lung cancer. Hematol Oncol Clin North Am.
26:589–605. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chung CH: EGFR tyrosine kinase inhibitor
therapy for lung cancer treatments and their clinical outcomes: A
cohort study in Taiwan. Oncol Lett. 18:6090–6100. 2019.PubMed/NCBI
|
|
12
|
Peng Y, Chen Z, Chen Y, Li S, Jiang Y,
Yang H, Wu C, You F, Zheng C, Zhu J, et al: ROCK isoforms
differentially modulate cancer cell motility by mechanosensing the
substrate stiffness. Acta Biomater. 88:86–101. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Masre SF, Rath N, Olson MF and Greenhalgh
DA: ROCK2/rasHa co-operation induces malignant
conversion via p53 loss, elevated NF-k B and tenascin C-associated
rigidity, but p21 inhibits ROCK2/NF-KB-mediated progression.
Oncogene. 36:2529–2542. 2017. View Article : Google Scholar
|
|
14
|
Zheng Y, Xiang L, Chen M and Xiang C:
MicroRNA-130a inhibits the proliferation, migration and invasive
ability of hepatocellular carcinoma cells by downregulating
Rho-kinase 2. Mol Med Rep. 18:3077–3084. 2018.PubMed/NCBI
|
|
15
|
Vigil D, Kim TY, Plachco A, Garton AJ,
Castaldo L, Pachter JA, Dong H, Chen X, Tokar B, Campbell SL and
Der CJ: ROCK1 and ROCK2 are required for non-small cell lung cancer
anchorage-independent growth and invasion. Cancer Res.
72:5338–5347. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yang X, Zhang Y, Wang S and Shi W: Effect
of fasudil on growth, adhesion, invasion, and migration of 95D lung
carcinoma cells in vitro. Can J Physiol Pharmacol. 88:874–879.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhu F, Zhang Z, Wu G, Li Z, Zhang R, Ren J
and Nong L: Rho kinase inhibitor fasudil suppresses migration and
invasion though down-regulating the expression of VEGF in lung
cancer cell line A549. Med Oncol. 28:565–571. 2011. View Article : Google Scholar
|
|
18
|
Huo Z, Su Y, Dong Y, Zheng Y, Zhang Q,
Duan Y and Wang G: Rho-kinase inhibition by Fasudil promotes tumor
maturation and apoptosis in small-cell lung cancer. Am J Transl
Res. 12:4354–4370. 2020.PubMed/NCBI
|
|
19
|
Du W, Tang H, Lei Z, Zhu J, Zeng Y, Liu Z
and Huang JA: miR-335-5p inhibits TGF-|31-induced
epithelial-mesenchymal transition in non-small cell lung cancer via
ROCK1. Respir Res. 20:2252019. View Article : Google Scholar
|
|
20
|
Cui G, Cui M, Li Y, Liang Y, Li W, Guo H
and Zhao S: MiR-186 targets ROCK1 to suppress the growth and
metastasis of NSCLC cells. Tumor Biol. 35:8933–8937. 2014.
View Article : Google Scholar
|
|
21
|
Hosono Y, Yamaguchi T, Mizutani E,
Yanagisawa K, Arima C, Tomida S, Shimada Y, Hiraoka M, Kato S,
Yokoi K, et al: MYBPH, a transcriptional target of TTF-1, inhibits
ROCK1, and reduces cell motility and metastasis. EMBO J.
31:481–493. 2012. View Article : Google Scholar :
|
|
22
|
Nakagawa O, Fujisawa K, Ishizaki T, Saito
Y, Nakao K and Narumiya S: ROCK-I and ROCK-II, two isoforms of
Rho-associated coiled-coil forming protein serine/threonine kinase
in mice. FEBS Lett. 392:189–193. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Matsui T, Amano M, Yamamoto T, Chihara K,
Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatasu A and Kaibuchi K:
Rho-associated kinase, a novel serine/threonine kinase, as a
putative target for small GTP binding protein Rho. EMBO J.
15:2208–2216. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Amano M, Ito M, Kimura K, Fukata Y,
Chihara K, Nakano T, Matsuura Y and Kaibuchi K: Phosphorylation and
activation of myosin by Rho-associated kinase (Rho-kinase). J Biol
Chem. 271:20246–20249. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Maekawa M, Ishizaki T, Boku S, Watanabe N,
Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K and Narumiya S:
Signaling from Rho to the actin cytoskeleton through protein
kinases ROCK and LIM-kinase. Science. 285:895–898. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ohashi K, Nagata K, Maekawa M, Ishizaki T,
Narumiya S and Mizuno K: Rho-associated kinase ROCK activates
LIM-kinase 1 by phosphorylation at threonine 508 within the
activation loop. J Biol Chem. 275:3577–3582. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hoon JL, Tan MH and Koh CG: The regulation
of cellular responses to mechanical cues by Rho GTPases. Cells.
5:172016. View Article : Google Scholar :
|
|
28
|
Julian L and Olson MF: Rho-associated
coiled-coil containing kinases (ROCK), structure, regulation, and
functions. Small GTPases. 5:e298462014. View Article : Google Scholar
|
|
29
|
Riento K and Ridley AJ: Rocks:
Multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol.
4:446–456. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Rath N and Olson MF: Rho-associated
kinases in tumorigenesis: Re-considering ROCK inhibition for cancer
therapy. EMBO Rep. 13:900–908. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Samuel MS, Lopez JI, McGhee EJ, Croft DR,
Starchan D, Timpson P, Munro J, Schröder E, Zhou J, Brunton VG, et
al: Actomyosin-mediated cellular tension drives increased tissue
stiffness and ß-catenin activation to induce epidermal hyperplasia
and tumor growth. Cancer Cell. 19:776–791. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chow W, Amaya CN, Rains S, Chow M,
Dickerson EB and Bryan BA: Growth attenuation of cutaneous
angiosarcoma with propranolol-mediated ß-blockade. JAMA Dermatol.
151:1226–1229. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ishizaki T, Maekawa M, Fujisawa K, Okawa
K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N
and Narumiya S: The small GTP-binding protein Rho binds to and
activates a 160 kDa Ser/Thr protein kinase homologous to myotonic
dystrophy kinase. EMBO J. 15:1885–1893. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kümper S, Mardakheh FK, McCarthy A, Yeo M,
Stamp GW, Paul A, Worboys J, Sadok A, Jprgensen C, Guichard S and
Marshall CJ: Rho-associated kinase (ROCK) function is essential for
cell cycle progression, senescence and tumorigenesis. Elife.
5:e129942016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chevrier V, Piel M, Collomb N, Saoudi Y,
Frank R, Paintrand M, Narumiya S, Bornens M and Job D: The
Rho-associated protein kinase p160ROCK is required for centrosome
positioning. J Cell Biol. 157:807–817. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Iizuka M, Kimura K, Wang S, Kato K, Amano
M, Kaibuchi K and Mizoguchi A: Distinct distribution and
localization of Rho-kinase in mouse epithelial, muscle and neural
tissues. Cell Struct Funct. 37:155–175. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hu C, Zhou H, Liu Y, Huang J, Liu W, Zhang
Q, Tang Q, Sheng F, Li G and Zhang R: ROCK1 promotes migration and
invasion of non-small-cell lung cancer cells through the
PTEN/PI3K/FAK pathway. Int J Oncol. 55:833–844. 2019.PubMed/NCBI
|
|
38
|
Liu X, Choy E, Hornicek FJ, Yang S, Yang
C, Harmon D, Mankin H and Duan Z: ROCK1 as a potential therapeutic
target in osteosarcoma. J Orthop Res. 29:1259–1266. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Vieira GM, Roberto GM, Lira RC, Engel EE,
Tone LG and Brassesco MS: Prognostic value and functional role of
ROCK2 in pediatric Ewing sarcoma. Oncol Lett. 15:2296–2304.
2018.PubMed/NCBI
|
|
40
|
Zakaria MA, Rajab NF, Chua EW, Selvarajah
GT and Masre SF: The roles of tissue rigidity and its underlying
mechanisms in promoting tumor growth. Cancer Invest. 38:445–462.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Amaya CN, Mitchell DC and Bryan BA: Rho
kinase proteins display aberrant upregulation in vascular tumors
and contribute to vascular tumor growth. BMC Cancer. 17:4852017.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Masre SF, Rath N, Olson MF and Greenhalgh
DA: Epidermal ROCK2-induces AKT1/GSK3ß/ß-catenin, NFkB and dermal
tenascin-C; but enhanced differentiation and p53/p21 inhibit
papilloma. Carcinogenesis. 41:1409–1420. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Li J, Bharadwaj SS, Guzman G, Vishnubhotla
R and Glover SC: ROCK I has more accurate prognostic value than met
in predicting patient survival in colorectal cancer. Anticancer
Res. 35:3267–3273. 2015.PubMed/NCBI
|
|
44
|
Kumar MS, Hancock DC, Molina-Arcas M,
Steckel M, East P, Diefenbacher M, Armenteros-Monterroso E,
Lassailly F, Matthews N, Nye E, et al: The GATA2 transcriptional
network is requisite for RAS oncogene-driven non-small cell lung
cancer. Cell. 149:642–655. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang
W, Lu W, Liu J, Pang X and Liu M: Suppression of KRas-mutant cancer
through the combined inhibition of KRAS with PLK1 and ROCK. Nat
Commun. 7:113632016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kang CG, Im E, Lee HJ and Lee EO:
Plumbagin reduces osteopontin-induced invasion through inhibiting
the Rho-associated kinase signaling pathway in A549 cells and
suppresses osteopontin-induced lung metastasis in BalB/c mice.
Bioorg Med Chem Lett. 27:1914–1918. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yan SH, Gao HC, Meng HY, Cheng L, Zhe L,
Cao GS, Yan WQ and Xin H: Role of Rock 1 protein in non-small cell
lung cancer. Biomed Res. 28:2530–2534. 2017.
|
|
48
|
Zhang C, Qin S, Qin L, Liu L, Sun W, Li X,
Li N, Wu R and Wang X: Cigarette smoke extract-induced
p120-mediated NF-kB activation in human epithelial cells is
dependent on the RhoA/ROCK pathway. Sci Rep. 6:231312016.
View Article : Google Scholar
|
|
49
|
Duong-Quy S, Dao P, Hua-Huy T, Guilluy C,
Pacaud P and Dinh-Xuan AT: Increased Rho-kinase expression and
activity and pulmonary endothelial dysfunction in smokers with
normal lung function. Eur Respir J. 37:349–355. 2011. View Article : Google Scholar
|
|
50
|
Tan X and Chen M: MYLK and MYL9 expression
in non-small cell lung cancer identified by bioinformatics analysis
of public expression data. Tumor Biol. 35:12189–12200. 2014.
View Article : Google Scholar
|
|
51
|
Zhang D, Zhang JY, Dai SD, Liu SL, Liu Y,
Tang N and Wang EH: Co-expression of delta-catenin and RhoA is
significantly associated with a malignant lung cancer phenotype.
Int J Clin Exp Pathol. 7:3724–3732. 2014.PubMed/NCBI
|
|
52
|
Vishnubhotla R, Bharadwaj S, Sun S,
Metlushko V and Glover SC: Treatment with Y-27632, a ROCK
inhibitor, increases the proinvasive nature of SW620 cells on 3D
collagen type 1 matrix. Int J Cell Biol. 2012:2591422012.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Samuel MS, Rath N, Masre SF, Boyle ST,
Greenhalgh DA, Kochetkova M, Bryson S, Stevenson D and Olson MF:
Tissue-selective expression of a conditionally-active
ROCK2-estrogen receptor fusion protein. Genesis. 54:636–646. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Burgstaller G, Oehrle B, Gerckens M, White
ES, Schiller HB and Eickelberg O: The instructive extracellular
matrix of the lung: Basic composition and alterations in chronic
lung disease. Eur Respir J. 50:16018052017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Xu S, Xu H, Wang W, Li S, Li H, Li T,
Zhang W, Yu X and Liu L: The role of collagen in cancer: From bench
to bedside. J Transl Med. 17:3092019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Galbraith CG, Yamada KM and Sheetz MP: The
relationship between force and focal complex development. J Cell
Biol. 159:695–705. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wozniak MA, Desai R, Solski PA, Der CJ and
Keely PJ: ROCK-generated contractility regulates breast epithelial
cell differentiation in response to the physical properties of a
three-dimensional collagen matrix. J Cell Biol. 163:583–595. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Gkretsi V and Stylianopoulos T: Cell
adhesion and matrix stiffness : Coordinating cancer cell invasion
and metastasis. Front Oncol. 8:1452018. View Article : Google Scholar
|
|
59
|
Le QT, Chen E, Salim A, Cao H, Kong CS,
Whyte R, Donington J, Cannon W, Wakelee H, Tibshirani R, et al: An
evaluation of tumor oxygenation and gene expression in patients
with early stage non-small cell lung cancers. Clin Cancer Res.
12:1507–1514. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kataoka Y, Ohshio Y, Teramoto K, Igarashi
T, Asai T and Hanaoka J: Hypoxia-induced galectin-3 enhances RhoA
function to activate the motility of tumor cells in non-small cell
lung cancer. Oncol Rep. 41:853–862. 2019.
|
|
61
|
Gilkes DM, Xiang L, Lee SJ, Chaturvedi P,
Hubbi ME, Wirtz D and Semenza GL: Hypoxia-inducible factors mediate
coordinated RhoA-ROCK1 expression and signaling in breast cancer
cells. Proc Natl Acad Sci USA. 111:E384–E393. 2014. View Article : Google Scholar
|
|
62
|
Rofstad EK, Gaustad JV, Egeland TA,
Mathiesen B and Galappathi K: Tumors exposed to acute cyclic
hypoxic stress show enhanced angiogenesis, perfusion and metastatic
dissemination. Int J Cancer. 127:1535–1546. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Xue Y, Wu L, Liu Y, Ma Y, Zhang L, Ma X,
Yang Y and Chen J: ENTPD5 induces apoptosis in lung cancer cells
via regulating caspase 3 expression. PLoS One. 10:e01200462015.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liu D, Mei X, Wang L and Yang X: RhoA
inhibits apoptosis and increases proliferation of cultured SPCA1
lung cancer cells. Mol Med Rep. 15:3963–3968. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Radziszewska A, Schroer SA, Choi D, Tajmir
P, Radulovich N, Ho JC, Wang L, Liadis N, Hakem R, Tsao MS, et al:
Absence of caspase-3 protects pancreatic p-cells from c-Myc-induced
apoptosis without leading to tumor formation. J Biol Chem.
284:10947–10956. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yang X, Di J, Zhang Y, Zhang S, Lu J, Liu
J and Shi W: The Rho-kinase inhibitor inhibits proliferation and
metastasis of small cell lung cancer. Biomed Pharmacother.
66:221–227. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Xin T, Lv W, Liu D, Jing Y and Hu F: ROCK1
knockdown inhibits non-small-cell lung cancer progression by
activating the LATS2-JNK signaling pathway. Aging (Albany NY).
12:12160–12174. 2020. View Article : Google Scholar
|
|
68
|
Chen W, Li Z, Bai L and Lin Y: NF-kappaB
in lung cancer, a carcinogenesis mediator and a prevention and
therapy target. Front Biosci (Landmark Ed). 16:1172–1185. 2011.
View Article : Google Scholar
|
|
69
|
Orgaz JL, Herraiz C and Sanz-Moreno V: Rho
GTPases modulate malignant transformation of tumor cells. Small
GTPases. 5:e290192014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kang JH, Jang YS, Lee HJ, Lee CY, Shin DY
and Oh SH: Inhibition of STAT3 signaling induces apoptosis and
suppresses growth of lung cancer: Good and bad. Lab Anim Res.
35:302019. View Article : Google Scholar
|
|
71
|
Gu L, Wang Z, Zuo J, Li H and Zha L:
Prognostic significance of NF-kB expression in non-small cell lung
cancer: A meta-analysis. PLoS One. 13:e01982232018. View Article : Google Scholar
|
|
72
|
Morgensztern D, Campo MJ, Dahlberg SE,
Doebele RC, Garon E, Gerber DE, Goldberg SB, Hammerman PS, Heist
RS, Hensing T, et al: Molecularly targeted therapies in
non-small-cell lung cancer annual update 2014. J Thorac Oncol. 10(1
Suppl 1): S1–S63. 2015. View Article : Google Scholar :
|
|
73
|
Wang J, Sun L, Yang M, Luo W, Gao Y, Liu
Z, Qiu X and Wang E: DEK depletion negatively regulates
Rho/ROCK/MLC pathway in non-small cell lung cancer. J Histochem
Cytochem. 61:510–521. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Xu N, Liu F, Wu S, Ye M, Ge H, Zhang M,
Song Y, Tong L, Zhou J and Bai C: CHD4 mediates proliferation and
migration of non-small cell lung cancer via the RhoA/ROCK pathway
by regulating PHF5A. BMC Cancer. 20:2622020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Asnaghi L, Vass WC, Quadri R, Day PM, Qian
X, Braverman R, Papageorge AG and Lowry DR: E-cadherin negatively
regulates neoplastic growth in non-small cell lung cancer: Role of
Rho GTPases. Oncogene. 29:2760–2771. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Croft DR and Olson MF: The Rho GTPase
effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by
distinct mechanisms. Mol Cell Biol. 26:4612–4627. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Street CA and Bryan BA: Rho kinase
proteins-pleiotropic modulators of cell survival and apoptosis.
Anticancer Res. 31:3645–3657. 2011.PubMed/NCBI
|
|
78
|
Tang Y, Hu C, Yang H, Cao L, Li Y, Deng P
and Huang L: Rnd3 regulates lung cancer cell proliferation through
notch signaling. PLoS One. 9:e1118972014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Amano M, Nakayama M and Kaibuchi K:
Rho-Kinase/ROCK: A key regulator of the cytoskeleton and cell
polarity. Cytoskeleton (Hoboken). 67:545–554. 2010. View Article : Google Scholar
|
|
80
|
Kang CG, Lee HJ, Kim SH and Lee EO:
Zerumbone suppresses osteopontin-induced cell invasion through
inhibiting the FAK/AKT/ROCK pathway in human non-small cell lung
cancer a549 cells. J Nat Prod. 79:156–160. 2016. View Article : Google Scholar
|
|
81
|
Zhang Z, Ren JH, Li ZY, Nong L and Wu G:
Fasudil inhibits lung carcinoma-conditioned endothelial cell
viability and migration. Oncol Rep. 27:1561–1566. 2012.PubMed/NCBI
|
|
82
|
Gandalovicova A, Vomastek T, Rosel D and
Brabek J: Cell polarity signaling in the plasticity of cancer cell
invasiveness. Oncotarget. 7:25022–25049. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Charras G and Paluch E: Blebs lead the
way: How to migrate without lamellipodia. Nat Rev Mol cell Biol.
9:730–736. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Mittal V: Epithelial mesenchymal
transition in aggressive lung cancers. Adv Exp Med Biol. 890:37–56.
2016. View Article : Google Scholar
|
|
85
|
Lu X, Guo H, Chen X, Xiao J, Zou Y, Wang W
and Chen Q: Effect of RhoC on the epithelial-mesenchymal transition
process induced by TGF-ß1 in lung adenocarcinoma cells. Oncol Rep.
36:3105–3112. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang Q, Li X, Li X, Li X and Chen Z:
LncRNA H19 promotes epithelial-mesenchymal transition (EMT) by
targeting miR-484 in human lung cancer cells. J Cell Biochem.
119:4447–4457. 2018. View Article : Google Scholar
|
|
87
|
Gialeli C, Theocharis AD and Karamanos NK:
Roles of matrix metalloproteinases in cancer progression and their
pharmacological targeting. FEBS J. 278:16–27. 2011. View Article : Google Scholar
|
|
88
|
Rundhaug JE: Matrix metalloproteinases and
angiogenesis. J Cell Mol Med. 9:267–285. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Huang Y, Song N, Ding Y, Yuan S, Li X, Cai
H, Shi H and Luo Y: Pulmonary vascular destabilization in the
premetastatic phase facilitates lung metastasis. Cancer Res.
69:7529–7537. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
El-Badrawy MK, Yousef AM, Shaalan D and
Elsamanoudy AZ: Matrix metalloproteinase-9 expression in lung
cancer patients and its relation to serum mmp-9 activity,
pathologic type, and prognosis. J Bronchology Interv Pulmonol.
21:327–334. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Laack E, Scheffler A, Burkholder I,
Boeters I, Andritzky B, Schuch G, Görn M, Vohwinkel G, Edler L,
Fiedler W and Hossfeld DK: Pretreatment vascular endothelial growth
factor (VEGF) and matrix metalloproteinase-9 (MMP-9) serum levels
in patients with metastatic non-small cell lung cancer (NSCLC).
Lung Cancer. 50:51–58. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chang YW, Bean RR and Jakobi R: Targeting
RhoA/Rho kinase and p21-activated kinase signaling to prevent
cancer development and progression. Recent Pat Anticancer Drug
Discov. 4:110–124. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Paulis YW, Soetekouw PM, Verheul HM,
Tjan-Heijnen VC and Griffioen AW: Signalling pathways in
vasculogenic mimicry. Biochim Biophys Acta. 1806:18–28.
2010.PubMed/NCBI
|
|
94
|
Xia Y, Cai XY, Fan JQ, Zhang LL, Ren JH,
Li ZY, Zhang RG, Zhu F and Wu G: The role of sema4D in vasculogenic
mimicry formation in non-small cell lung cancer and the underlying
mechanisms. Int J Cancer. 144:2227–2238. 2019. View Article : Google Scholar
|
|
95
|
Maniotis AJ, Folberg R, Hess A, Seftor EA,
Gardner LM, Pe'er J, Trent JM, Meltzer PS and Hendrix MJ: Vascular
channel formation by human melanoma cells in vivo and in vitro:
Vasculogenic mimicry. Am J Pathol. 155:739–752. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Lontos K, Adamik J, Tsagianni A, Galson
DL, Chirgwin JM and Suvannasankha A: The role of semaphorin 4D in
bone remodeling and cancer metastasis. Front Endocrinol (Lausanne).
9:3222018. View Article : Google Scholar
|
|
97
|
Zahra FT, Sajib MS, Ichiyama Y, Akwii RG,
Tullar PE, Cobos C, Minchew SA, Doci CL, Zheng Y, Kubota Y, et al:
Endothelial RhoA GTPase is essential for in vitro endothelial
functions but dispensable for physiological in vivo angiogenesis.
Sci Rep. 9:116662019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Shibuya M, Suzuki Y, Sugita K, Saito I,
Sasaki T, Takakura K, Nagata I, Kikuchi H, Takemae T, Hidaka H, et
al: Effect of AT877 on cerebral vasospasm after aneurysmal
subarachnoid hemorrhage: Results of a prospective
placebo-controlled double-blind trial. J Neurosurg. 76:571–577.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yang X, Liu Y, Zong Z and Tian D: The Rho
kinase inhibitor fasudil inhibits the migratory behaviour of 95-D
lung carcinoma cells. Biomed Pharmacother. 64:58–62. 2010.
View Article : Google Scholar
|
|
100
|
Miyamoto C, Maehata Y, Motohashi K, Ozawa
S, Ikoma T, Hidaka K, Wada-Takahashi S, Takahashi SS, Yoshino F,
Yoshida A, et al: Fasudil, a Rho kinase inhibitor, suppresses tumor
growth by inducing CXCL14/BRAK in head and neck squamous cell
carcinoma. Biomed Res. 35:381–388. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Xia Y, Cai XY, Fan JQ, Zhang LL, Ren JH,
Chen J, Li ZY, Zhang RG, Zhu F and Wu G: Rho kinase inhibitor
fasudil suppresses the vasculogenic mimicry of B16 mouse melanoma
cells both in vitro and in vivo. Mol Cancer Ther. 14:1582–1590.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Lin SS, Li FF, Sun L, Fan W, Gu M, Zhang
LY, Qin S and Yuan ST: Marsdenia tenacissima extract suppresses
A549 cell migration through regulation of CCR5-CCL5 axis, Rho C,
and phosphorylated FAK. Chin J Nat Med. 14:203–209. 2016.PubMed/NCBI
|
|
103
|
Kang CG, Han HJ, Lee HJ, Kim SH and Lee
EO: Rho-associated kinase signaling is required for
osteopontin-induced cell invasion through inactivating cofilin in
human non-small cell lung cancer cell lines. Bioorganic Med Chem
Lett. 25:1956–1960. 2015. View Article : Google Scholar
|
|
104
|
Umelo IA, Wever OD, Kronenberger P, Noor
A, Teugels E, Chen G, Bracke M and Grève JD: Combined inhibition of
rho-associated protein kinase and EGFR suppresses the invasive
phenotype in EGFR-dependent lung cancer cells. Lung Cancer.
90:167–174. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Mardilovich K, Baugh M, Crighton D,
Kowalczyk D, Gabrielsen M, Munro J, Croft DR, Lourenco F, James D,
Kalna G, et al: LIM kinase inhibitors disrupt mitotic microtubule
organization and impair tumor cell proliferation. Oncotarget.
6:38469–38486. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tsai YM, Yang CJ, Hsu YL, Wu LY, Tsai YC,
Hung JY, Lien CT, Huang MS and Kuo PL: Glabridin inhibits
migration, invasion, and angiogenesis of human non-small cell lung
cancer A549 cells by inhibiting the FAK/Rho signaling pathway.
Integr Cancer Ther. 10:341–349. 2011. View Article : Google Scholar
|
|
107
|
Zhao H, Jiao Y and Zhang Z: Deguelin
inhibits the migration and invasion of lung cancer A549 and H460
cells via regulating actin cytoskeleton rearrangement. Int J Clin
Exp Pathol. 8:15582–15590. 2015.
|
|
108
|
Patlolla JM, Qian L, Biddick L, Zhang Y,
Desai D, Amin S, Lightfoot S and Rao CV: ß-Escin inhibits
NNK-induced lung adenocarcinoma and ALDH1A1 and RhoA/Rock
expression in A/J mice and growth of H460 human lung cancer cells.
Cancer Prev Res (Phila). 6:1140–1149. 2013. View Article : Google Scholar
|
|
109
|
Aung TN, Qu Z, Kortschak RD and Adelson
DL: Understanding the effectiveness of natural compound mixtures in
cancer through their molecular mode of action. Int J Mol Sci.
18:6562017. View Article : Google Scholar :
|
|
110
|
Surien O, Ghazali AR and Masre SF: Lung
cancers and the roles of natural compounds as potential
chemotherapeutic and chemopreventive agents. Biomed Pharmacol J.
12:85–98. 2019. View Article : Google Scholar
|
|
111
|
Davies SP, Reddy H, Caivano M and Cohen P:
Specificity and mechanism of action of some commonly used protein
kinase inhibitors Stephen. Biochem J. 351:95–105. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Patel RA, Liu Y, Wang B, Li R and Sebti
SM: Identification of novel ROCK inhibitors with anti-migratory and
anti-invasive activities. Oncogene. 33:550–555. 2014. View Article : Google Scholar :
|
|
113
|
Zhang B, Pan X, Cobb GP and Anderson TA:
MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12.
2007. View Article : Google Scholar
|
|
114
|
Iqbal MA, Arora S, Prakasam G, Calin GA
and Syed MA: MicroRNA in lung cancer: Role, mechanisms, pathways
and therapeutic relevance. Mol Aspects Med. 70:3–20. 2019.
View Article : Google Scholar
|
|
115
|
Ye Z, Yin S, Su Z, Bai M, Zhang H, Hei Z
and Cai S: Downregulation of miR-101 contributes to
epithelial-mesenchymal transition in cisplatin resistance of NSCLC
cells by targeting ROCK2. Oncotarget. 7:37524–37535. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Li J, Song Y, Wang Y, Luo J and Yu W:
MicroRNA-148a suppresses epithelial-to-mesenchymal transition by
targeting ROCK1 in non-small cell lung cancer cells. Mol Cell
Biochem. 380:277–282. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Yang M, Shen H, Qiu C, Ni Y, Wang L, Dong
W, Liao Y and Du J: High expression of miR-21 and miR-155 predicts
recurrence and unfavourable survival in non-small cell lung cancer.
Eur J Cancer. 49:604–615. 2013. View Article : Google Scholar
|
|
118
|
Wu C, Cao Y, He Z, He J, Hu C, Duan H and
Jiang J: Serum levels of miR-19b and miR-146a as prognostic
biomarkers for non-small cell lung cancer. Tohoku J Exp Med.
232:85–95. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Rodriguez-Hernandez I, Cantelli G, Bruce F
and Sanz-Moreno V: Rho, ROCK and actomyosin contractility in
metastasis as drug targets. F1000Res. 5:F1000 Faculty Rev-783.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Wang X, Han L, Shan S, Sun Y and Mao Y:
KRT14 promoting invasion and migration of lung cancer cells through
ROCK-1 signaling pathway. Int J Clin Exp Pathol. 10:795–803.
2017.
|
|
121
|
Wu Y, Shen QW, Niu YX, Chen XY, Liu HW and
Shen XY: LncNORAD interference inhibits tumor growth and lung
cancer cell proliferation, invasion and migration by
down-regulating CXCR4 to suppress RhoA/ROCK signaling pathway. Eur
Rev Med Pharmacol Sci. 24:5446–5455. 2020.PubMed/NCBI
|
|
122
|
Whatcott CJ, Ng S, Barrett MT, Hostetter
G, Von Hoff DD and Han H: Inhibition of ROCK1 kinase modulates both
tumor cells and stromal fibroblasts in pancreatic cancer. PLoS One.
12:e01838712017. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Shin JY, Kim Y Il, Cho SJ, Lee MK, Kook
MC, Lee JH, Lee SS, Ashktorab H, Smoot DT, Ryu KW, et al: MicroRNA
135a suppresses lymph node metastasis through down-regulation of
ROCK1 in early gastric cancer. PLoS One. 9:e852052014. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Zhang R, Li G, Zhang Q, Tang Q, Huang J,
Hu C, Liu Y, Wang Q, Liu W, Gao N and Zhou S: Hirsutine induces
mPTP-dependent apoptosis through ROCK1/PTEN/PI3K/GSK3 ß pathway in
human lung cancer cells. Cell Death Dis. 9:5982018. View Article : Google Scholar
|
|
125
|
Lin L, Li M, Lin L, Xu X, Jiang G and Wu
L: FPPS mediates TGF-ß1-induced non-small cell lung cancer cell
invasion and the EMT process via the RhoA/Rock1 pathway. Biochem
Biophys Res Commun. 496:536–541. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ishizaki T, Uehata M, Tamechika I, Keel J,
Nonomura K, Maekawa M and Narumiya S: Pharmacological properties of
Y-27632, a specific inhibitor of rho-associated kinases. Mol
Pharmacol. 57:976–983. 2000.PubMed/NCBI
|
|
127
|
Konstantinidou G, Ramadori G, Torti F,
Kangasniemi K, Ramirez RE, Cai Y, Behrens C, Dellinger MT, Brekken
RA, Wistuba II, et al: RHOA-FAK is a required signaling axis for
the maintenance of KRAS-driven lung adenocarcinomas. Cancer Discov.
3:444–457. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Tomasini P, Walia P, Labbe C, Jao K and
Leighl NB: Targeting the KRAS pathway in non-small cell lung
cancer. Oncologist. 21:1450–1460. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Korpanty GJ, Graham DM, Vincent MD and
Leighl NB: Biomarkers that currently effect clinical practice in
lung cancer: EGFR, ALK, MET, ROS-1 and KRAS. Front Oncol.
4:2042014. View Article : Google Scholar
|
|
130
|
Nicholson RI, Gee JM and Harper ME: EGFR
and cancer prognosis. Eur J Cancer. 37(Suppl 4): S9–S15. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Zhao TT, Le Francois BG, Goss G, Ding K,
Bradbury PA and Dimitroulakos J: Lovastatin inhibits EGFR
dimerization and AKT activation in squamous cell carcinoma cells:
Potential regulation by targeting rho proteins. Oncogene.
29:4682–4692. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Chen N, Fang W, Zhan J, Hong S, Tang Y,
Kang S, Zhang Y, He X, Zhou T, Qin T, et al: Upregulation of PD-L1
by EGFR activation mediates the immune escape in EGFR-driven NSCLC:
Implication for optional immune targeted therapy for NSCLC patients
with egfr mutation. J Thorac Oncol. 10:910–923. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Zitvogel L and Kroemer G: Targeting
PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology.
1:1223–1225. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Azuma K, Ota K, Kawahara A, Hattori S,
Iwama E, Harada T, Matsumoto K, Takayama K, Takamori S, Kage M, et
al: Association of PD-L1 overexpression with activating EGFR
mutations in surgically resected nonsmall-cell lung cancer. Ann
Oncol. 25:1935–1940. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Zhang M, Li G and Wang Y and Wang Y, Zhao
S, Haihong P, Zhao H and Wang Y: PD-L1 Expression in lung cancer
and its correlation with driver mutations: A meta-analysis. Sci
Rep. 7:102552017. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Kim H and Chung JH: PD-L1 testing in
non-small cell lung cancer: Past, present, and future. J Pathol
Transl Med. 53:199–206. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Cho WY, Hong SH, Singh B, Islam MA, Lee S,
Lee AY, Gankhuyag N, Kim JE, Yu KN, Kim KH, et al: Suppression of
tumor growth in lung cancer xenograft model mice by
poly(sorbitol-co-PEI)-mediated delivery of osteopontin siRNA. Eur J
Pharm Biopharm. 94:450–462. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Zhao H, Chen Q, Alam A, Cui J, Suen KC,
Soo AP, Eguchi S, Gu J and Ma D: The role of osteopontin in the
progression of solid organ tumour. Cell Death Dis. 9:3562018.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Nwosu ZC, Ebert MP, Dooley S and Meyer C:
Caveolin-1 in the regulation of cell metabolism: A cancer
perspective. Mol Cancer. 15:712016. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Joshi B, Strugnell SS, Goetz JG, Kojic LD,
Cox ME, Griffith OL, Chan SK, Jones SJ, Leung SP, Masoudi H, et al:
Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal
adhesion dynamics and tumor cell migration and invasion. Cancer
Res. 68:8210–8220. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Arpaia E, Blaser H, Quintela-Fandino M,
Duncan G, Leong HS, Ablack A, Nambiar SC, Lind EF, Silvester J,
Fleming CK, et al: The interaction between caveolin-1 and
Rho-GTPases promotes metastasis by controlling the expression of
alpha5-integrin and the activation of Src, Ras and Erk. Oncogene.
31:884–896. 2012. View Article : Google Scholar :
|
|
142
|
Urra H, Torres VA, Ortiz RJ, Lobos L, Diaz
MI, Diaz N, Härtel S, Leyton L and Quest AF: Caveolin-1-enhanced
motility and focal adhesion turnover require Tyrosine-14 but not
accumulation to the rear in metastatic cancer cells. PLoS One.
7:e330852012. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Reck M and Rabe KF: Precision diagnosis
and treatment for advanced non-small-cell lung cancer. N Engl J
Med. 377:849–861. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Gerber DE, Camidge DR, Morgensztern D,
Cetnar J, Kelly RJ, Ramalingam SS, Spigel DR, Jeong W, Scaglioni
PP, Zhang S, et al: Phase 2 study of the focal adhesion kinase
inhibitor defactinib (VS-6063) in previously treated advanced KRAS
mutant non-small cell lung cancer. Lung Cancer. 139:60–67. 2020.
View Article : Google Scholar :
|
|
145
|
Hanahan D: Rethinking the war on cancer.
Lancet. 383:558–563. 2014. View Article : Google Scholar
|
|
146
|
Malone ER, Oliva M, Sabatini PJB, Stockley
TL and Siu LL: Molecular profiling for precision cancer therapies.
Genome Med. 12:82020. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Murakami A, Takahashi F, Nurwidya F,
Kobayashi I, Minakata K, Hashimoto M, Nara T, Kato M, Tajima K,
Shimada N, et al: Hypoxia increases gefitinib-resistant lung cancer
stem cells through the activation of insulin-like growth factor 1
receptor. PLoS One. 9:e864592014. View Article : Google Scholar : PubMed/NCBI
|