|
1
|
Clive AO, Kahan BC, Hooper CE, Bhatnagar
R, Morley AJ, Zahan-Evans N, Bintcliffe OJ, Boshuizen RC, Fysh ETH,
Tobin CL, et al: Predicting survival in malignant pleural effusion:
Development and validation of the LENT prognostic score. Thorax.
69:1098–1104. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sabang RL, Gandhiraj D, Fanucchi M and
Epelbaum O: Role of bevacizumab in the management of the patient
with malignant pleural effusion: More questions than answers.
Expert Rev Respir Med. 12:87–94. 2018. View Article : Google Scholar
|
|
3
|
Tao H, Meng Q, Li M, Shi L, Tang J and Liu
Z: Outcomes of bevacizumab combined with chemotherapy in lung
adenocarcinoma-induced malignant pleural effusion. Thorac Cancer.
9:298–304. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Marquez-Medina D and Popat S: Closing
faucets: The role of anti-angiogenic therapies in malignant pleural
diseases. Clin Transl Oncol. 18:760–768. 2016. View Article : Google Scholar
|
|
5
|
Donnenberg AD, Luketich JD, Dhupar R and
Donnenberg VS: Treatment of malignant pleural effusions: The case
for localized immunotherapy. J Immunother Cancer. 7:110. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chen YM, Yang WK, Whang-Peng J, Kuo BI and
Perng RP: Elevation of interleukin-10 levels in malignant pleural
effusion. Chest. 110:433–436. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Thomas R, Cheah HM, Creaney J, Turlach BA
and Lee YCG: Longitudinal Measurement of Pleural Fluid Biochemistry
and Cytokines in Malignant Pleural Effusions. Chest. 149:1494–1500.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hooper CE, Elvers KT, Welsh GI, Millar AB
and Maskell NA: VEGF and sVEGFR-1 in malignant pleural effusions:
Association with survival and pleurodesis outcomes. Lung Cancer.
77:443–449. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Fiorelli A, Vicidomini G, Di Domenico M,
Napolitano F, Messina G, Morgillo F, Ciardiello F and Santini M:
Vascular endothelial growth factor in pleural fluid for
differential diagnosis of benign and malignant origin and its
clinical applications. Interact Cardiovasc Thorac Surg. 12:420–424.
2011. View Article : Google Scholar
|
|
10
|
Murthy V, Katzman D and Sterman DH:
Intrapleural immunotherapy: An update on emerging treatment
strategies for pleural malignancy. Clin Respir J. 13:272–279. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Stathopoulos GT and Kalomenidis I:
Malignant pleural effusion: Tumor-host interactions unleashed. Am J
Respir Crit Care Med. 186:487–492. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Giannou AD, Marazioti A, Spella M,
Kanellakis NI, Apostolopoulou H, Psallidas I, Prijovich ZM, Vreka
M, Zazara DE, Lilis I, et al: Mast cells mediate malignant pleural
effusion formation. J Clin Invest. 125:2317–2334. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Nie K, Zhang Z, You Y, Zhuang X, Zhang C
and Ji Y: A randomized clinical study to compare intrapleural
infusion with intravenous infusion of bevacizumab in the management
of malignant pleural effusion in patients with non-small-cell lung
cancer. Thorac Cancer. 11:8–14. 2020. View Article : Google Scholar
|
|
14
|
Sack U, Hoffmann M, Zhao XJ, Chan KS, Hui
DSC, Gosse H, Engelmann L, Schauer J, Emmrich F and Hoheisel G:
Vascular endothelial growth factor in pleural effusions of
different origin. Eur Respir J. 25:600–604. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lieser EAT, Croghan GA, Nevala WK,
Bradshaw MJ, Markovic SN and Mansfield AS: Up-regulation of
pro-angiogenic factors and establishment of tolerance in malignant
pleural effusions. Lung Cancer. 82:63–68. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen Y, Mathy NW and Lu H: The role of
VEGF in the diagnosis and treatment of malignant pleural effusion
in patients with non small cell lung cancer (Review). Mol Med Rep.
17:8019–8030. 2018.PubMed/NCBI
|
|
17
|
Gkiozos I, Tsagouli S, Charpidou A, Grapsa
D, Kainis E, Gratziou C and Syrigos K: Levels of vascular
endothelial growth factor in serum and pleural fluid are
independent predictors of survival in advanced non-small cell lung
cancer: Results of a prospective study. Anticancer Res.
35:1129–1137. 2015.PubMed/NCBI
|
|
18
|
Zhang Y, Yu L-K, Lu G-J, Xia N, Xie H-Y,
Hu W, Hao K-K, Xu C-H and Qian Q: Prognostic values of VEGF and
endostatin with malignant pleural effusions in patients with lung
cancer. Asian Pac J Cancer Prev. 15:8435–8440. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Peach CJ, Mignone VW, Arruda MA, Alcobia
DC, Hill SJ, Kilpatrick LE and Woolard J: Molecular Pharmacology of
VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int J Mol Sci.
19:12642018. View Article : Google Scholar :
|
|
20
|
Chellappan DK, Leng KH, Jia LJ, Aziz NABA,
Hoong WC, Qian YC, Ling FY, Wei GS, Ying T, Chellian J, et al: The
role of bevacizumab on tumour angiogenesis and in the management of
gynaecological cancers: A review. Biomed Pharmacother.
102:1127–1144. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Assoun S, Brosseau S, Steinmetz C, Gounant
V and Zalcman G: Bevacizumab in advanced lung cancer: State of the
art. Future Oncol. 13:2515–2535. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chen DS and Hurwitz H: Combinations of
Bevacizumab With Cancer Immunotherapy. Cancer J. 24:193–204. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bradshaw M, Mansfield A and Peikert T: The
role of vascular endothelial growth factor in the pathogenesis,
diagnosis and treatment of malignant pleural effusion. Curr Oncol
Rep. 15:207–216. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Usui K, Sugawara S, Nishitsuji M, Fujita
Y, Inoue A, Mouri A, Watanabe H, Sakai H, Kinoshita I, Ohhara Y, et
al North East Japan Study Group: A phase II study of bevacizumab
with carboplatin-pemetrexed in non-squamous non-small cell lung
carcinoma patients with malignant pleural effusions: North East
Japan Study Group Trial NEJ013A. Lung Cancer. 99:131–136. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tamiya M, Tamiya A, Yamadori T, Nakao K,
Asami K, Yasue T, Otsuka T, Shiroyama T, Morishita N, Suzuki H, et
al: Phase2 study of bevacizumab with carboplatin-paclitaxel for
non-small cell lung cancer with malignant pleural effusion. Med
Oncol. 30:676. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Qi N, Li F, Li X, Kang H, Zhao H and Du N:
Combination use of paclitaxel and avastin enhances treatment effect
for the NSCLC patients with malignant pleural effusion. Medicine
(Baltimore). 95:e5392. 2016. View Article : Google Scholar
|
|
27
|
Du N, Li X, Li F, Zhao H, Fan Z, Ma J, Fu
Y and Kang H: Intrapleural combination therapy with bevacizumab and
cisplatin for non-small cell lung cancer mediated malignant pleural
effusion. Oncol Rep. 29:2332–2340. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang Z, Zheng Y and Fang Z: The clinical
efficacy and safety of paclitaxel combined with avastin for NSCLC
patients diagnosed with malignant pleural effusion. Rev Assoc Med
Bras (1992). 64:230–233. 2018. View Article : Google Scholar
|
|
29
|
Kitamura K, Kubota K, Ando M, Takahashi S,
Nishijima N, Sugano T, Toyokawa M, Miwa K, Kosaihira S, Noro R, et
al: Bevacizumab plus chemotherapy for advanced non-squamous
non-small-cell lung cancer with malignant pleural effusion. Cancer
Chemother Pharmacol. 71:457–461. 2013. View Article : Google Scholar
|
|
30
|
Masago K, Fujimoto D, Fujita S, Hata A,
Kaji R, Ohtsuka K, Okuda C, Takeshita J and Katakami N: Response to
bevacizumab combination chemotherapy of malignant pleural effusions
associated with non-squamous non-small-cell lung cancer. Mol Clin
Oncol. 3:415–419. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chen D, Song X, Shi F, Zhu H, Wang H,
Zhang N, Zhang Y, Kong L and Yu J: Greater efficacy of
intracavitary infusion of bevacizumab compared to traditional local
treatments for patients with malignant cavity serous effusion.
Oncotarget. 8:35262–35271. 2017. View Article : Google Scholar :
|
|
32
|
Jiang L, Li P, Gong Z, Hu B, Ma J, Wang J,
Chu H, Zhang L, Sun P and Chen J: Effective Treatment for Malignant
Pleural Effusion and Ascites with Combined Therapy of Bevacizumab
and Cisplatin. Anticancer Res. 36:1313–1318. 2016.PubMed/NCBI
|
|
33
|
Song X, Chen D, Guo J, Kong L, Wang H and
Wang Z: Better efficacy of intrapleural infusion of bevacizumab
with pemetrexed for malignant pleural effusion mediated from
nonsquamous non-small cell lung cancer. OncoTargets Ther.
11:8421–8426. 2018. View Article : Google Scholar
|
|
34
|
Zongwen S, Song K, Cong Z, Tian F and Yan
Z: Evaluation of efficacy and safety for bevacizumab in treating
malignant pleural effusions caused by lung cancer through
intrapleural injection. Oncotarget. 8:113318–113330. 2017.
View Article : Google Scholar
|
|
35
|
Jiang T, Li A, Su C, Li X, Zhao C, Ren S,
Zhou C and Zhang J: Addition of bevacizumab for malignant pleural
effusion as the manifestation of acquired EGFR-TKI resistance in
NSCLC patients. Oncotarget. 8:62648–62657. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tian P, Shen Y, Feng M, Zhu J, Song H, Wan
C, Chen L and Wen F: Diagnostic accuracy of endostatin for
malignant pleural effusion: A clinical study and meta-analysis.
Postgrad Med. 127:529–534. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang J, Sun Y, Liu Y, Yu Q, Zhang Y, Li K,
Zhu Y, Zhou Q, Hou M, Guan Z, et al: Results of randomized,
multicenter, double-blind phase III trial of rh-endostatin (YH-16)
in treatment of advanced non-small cell lung cancer patients.
Zhongguo Fei Ai Za Zhi. 8:283–290. 2005.In Chinese. PubMed/NCBI
|
|
38
|
Jie Wang X, Miao K, Luo Y, Li R, Shou T,
Wang P and Li X: Randomized controlled trial of endostar combined
with cisplatin/pemetrexed chemotherapy for elderly patients with
advanced malignant pleural effusion of lung adenocarcinoma. J BUON.
23:92–97. 2018.PubMed/NCBI
|
|
39
|
Zhao WY, Chen DY, Chen JH and Ji ZN:
Effects of intracavitary administration of Endostar combined with
cisplatin in malignant pleural effusion and ascites. Cell Biochem
Biophys. 70:623–628. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Biaoxue R, Xiguang C, Hua L, Wenlong G and
Shuanying Y: Thoracic perfusion of recombinant human endostatin
(Endostar) combined with chemotherapeutic agents versus
chemotherapeutic agents alone for treating malignant pleural
effusions: A systematic evaluation and meta-analysis. BMC Cancer.
16:888. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Matsumori Y, Yano S, Goto H, Nakataki E,
Wedge SR, Ryan AJ and Sone S: ZD6474, an inhibitor of vascular
endothelial growth factor receptor tyrosine kinase, inhibits growth
of experimental lung metastasis and production of malignant pleural
effusions in a non-small cell lung cancer model. Oncol Res.
16:15–26. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ikuta K, Yano S, Trung VT, Hanibuchi M,
Goto H, Li Q, Wang W, Yamada T, Ogino H, Kakiuchi S, et al: E7080,
a multi-tyrosine kinase inhibitor, suppresses the progression of
malignant pleural mesothelioma with different proangiogenic
cytokine production profiles. Clin Cancer Res. 15:7229–7237. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Massarelli E, Onn A, Marom EM, Alden CM,
Liu DD, Tran HT, Mino B, Wistuba II, Faiz SA, Bashoura L, et al:
Vandetanib and indwelling pleural catheter for non-small-cell lung
cancer with recurrent malignant pleural effusion. Clin Lung Cancer.
15:379–386. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mulder SF, Boers-Sonderen MJ, van der
Heijden HFM, Vissers KCP, Punt CJA and van Herpen CML: A phase II
study of cediranib as palliative treatment in patients with
symptomatic malignant ascites or pleural effusion. Target Oncol.
9:331–338. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liu M, Shen Y, Ruan M, Li M and Chen L:
Notable decrease of malignant pleural effusion after treatment with
sorafenib in radioiodine-refractory follicular thyroid carcinoma.
Thyroid. 24:1179–1183. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Takemoto S, Fukuda M, Yamaguchi H, Ikeda
T, Akagi K, Tomono H, Umeyama Y, Dotsu Y, Taniguchi H, Gyotoku H,
et al: Phase II study of ramucirumab and docetaxel for previously
treated non-small cell lung cancer patients with malignant pleural
effusion: Protocol of PLEURAM study. Thorac Cancer. 11:389–393.
2020. View Article : Google Scholar
|
|
47
|
Murthy P, Ekeke CN, Russell KL, Butler SC,
Wang Y, Luketich JD, Soloff AC, Dhupar R and Lotze MT: Making cold
malignant pleural effusions hot: Driving novel immunotherapies.
OncoImmunology. 8:e1554969. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ross SH and Cantrell DA: Signaling and
Function of Interleukin-2 in T Lymphocytes. Annu Rev Immunol.
36:411–433. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Minor DR, Moores SP and Chan JK: Prolonged
survival after intraperitoneal interleukin-2 immunotherapy for
recurrent ovarian cancer. Gynecol Oncol Rep. 22:43–44. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Astoul P, Viallat JR, Laurent JC, Brandely
M and Boutin C: Intrapleural recombinant IL-2 in passive
immunotherapy for malignant pleural effusion. Chest. 103:209–213.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Castagneto B, Zai S, Mutti L, Lazzaro A,
Ridolfi R, Piccolini E, Ardizzoni A, Fumagalli L, Valsuani G and
Botta M: Palliative and therapeutic activity of IL-2 immunotherapy
in unresectable malignant pleural mesothelioma with pleural
effusion: Results of a phase II study on 31 consecutive patients.
Lung Cancer. 31:303–310. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Viallat JR, Boutin C, Rey F, Astoul P,
Farisse P and Brandely M: Intrapleural immunotherapy with
escalating doses of interleukin-2 in metastatic pleural effusions.
Cancer. 71:4067–4071. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Suzuki H, Abo S, Kitamura M, Hashimoto M
and Izumi K: The intrapleural administration of recombinant
interleukin-2 (rIL-2) to patients with malignant pleural effusion:
Clinical trials. Surg Today. 23:1053–1059. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Han L, Jiang Q, Yao W, Fu T and Zeng Q:
Thoracic injection of low-dose interleukin-2 as an adjuvant therapy
improves the control of the malignant pleural effusions: A
systematic review and meta-analysis base on Chinese patients. BMC
Cancer. 18:725. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hu CY, Zhang YH, Wang T, Chen L, Gong ZH,
Wan YS, Li QJ, Li YS and Zhu B: Interleukin-2 reverses CD8(+) T
cell exhaustion in clinical malignant pleural effusion of lung
cancer. Clin Exp Immunol. 186:106–114. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wu X-Z, Zhai K, Yi F-S, Wang Z, Wang W,
Wang Y, Pei X-B, Shi X-Y, Xu L-L and Shi HZ: IL-10 promotes
malignant pleural effusion in mice by regulating TH 1-
and TH 17-cell differentiation and migration. Eur J
Immunol. 49:653–665. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lu Y, Lin H, Zhai K, Wang X, Zhou Q and
Shi H: Interleukin-17 inhibits development of malignant pleural
effusion via interleukin-9-dependent mechanism. Sci China Life Sci.
59:1297–1304. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li S, You W-J, Zhang J-C, Zhou Q and Shi
H-Z: Immune Regulation of Interleukin-27 in Malignant Pleural
Effusion. Chin Med J (Engl). 128:1932–1941. 2015. View Article : Google Scholar
|
|
59
|
Li Q, Sun W, Yuan D, Lv T, Yin J, Cao E,
Xiao X and Song Y: Efficacy and safety of recombinant human tumor
necrosis factor application for the treatment of malignant pleural
effusion caused by lung cancer. Thorac Cancer. 7:136–139. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Antoniou KM, Ferdoutsis E and Bouros D:
Interferons and their application in the diseases of the lung.
Chest. 123:209–216. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Goldman CA, Skinnider LF and Maksymiuk AW:
Interferon instillation for malignant pleural effusions. Ann Oncol.
4:141–145. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sartori S, Tassinari D, Ceccotti P,
Tombesi P, Nielsen I, Trevisani L and Abbasciano V: Prospective
randomized trial of intrapleural bleomycin versus interferon
alfa-2b via ultrasound-guided small-bore chest tube in the
palliative treatment of malignant pleural effusions. J Clin Oncol.
22:1228–1233. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sterman DH, Recio A, Carroll RG, Gillespie
CT, Haas A, Vachani A, Kapoor V, Sun J, Hodinka R, Brown JL, et al:
A phase I clinical trial of single-dose intrapleural IFN-beta gene
transfer for malignant pleural mesothelioma and metastatic pleural
effusions: High rate of antitumor immune responses. Clin Cancer
Res. 13:4456–4466. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sterman DH, Recio A, Haas AR, Vachani A,
Katz SI, Gillespie CT, Cheng G, Sun J, Moon E, Pereira L, et al: A
phase I trial of repeated intrapleural adenoviral-mediated
interferon-beta gene transfer for mesothelioma and metastatic
pleural effusions. Mol Ther. 18:852–860. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sterman DH, Alley E, Stevenson JP,
Friedberg J, Metzger S, Recio A, Moon EK, Haas AR, Vachani A, Katz
SI, et al: Pilot and Feasibility Trial Evaluating Immuno-Gene
Therapy of Malignant Mesothelioma Using Intrapleural Delivery of
Adenovirus-IFNa Combined with Chemotherapy. Clin Cancer Res.
22:3791–3800. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Aggarwal C, Haas AR, Metzger S, Aguilar
LK, Aguilar-Cordova E, Manzanera AG, Gômez-Hernandez G, Katz SI,
Alley EW, Evans TL, et al: Phase I Study of Intrapleural
Gene-Mediated Cytotoxic Immunotherapy in Patients with Malignant
Pleural Effusion. Mol Ther. 26:1198–1205. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hwang WL, Pike LRG, Royce TJ, Mahal BA and
Loeffler JS: Safety of combining radiotherapy with
immune-checkpoint inhibition. Nat Rev Clin Oncol. 15:477–494. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lehrer EJ, McGee HM, Peterson JL, Vallow
L, Ruiz-Garcia H, Zaorsky NG, Sharma S and Trifiletti DM:
Stereotactic Radiosurgery and Immune Checkpoint Inhibitors in the
Management of Brain Metastases. Int J Mol Sci. 19:30542018.
View Article : Google Scholar :
|
|
69
|
Kamath SD and Kumthekar PU: Immune
Checkpoint Inhibitors for the Treatment of Central Nervous System
(CNS) Metastatic Disease. Front Oncol. 8:414. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J,
Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al:
Safety and activity of anti-PD-L1 antibody in patients with
advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Govindan R, Szczesna A, Ahn M-J, Schneider
C-P, Gonzalez Mella PF, Barlesi F, Han B, Ganea DE, Von Pawel J,
Vladimirov V, et al: Phase III Trial of Ipilimumab Combined With
Paclitaxel and Carboplatin in Advanced Squamous Non-Small-Cell Lung
Cancer. J Clin Oncol. 35:3449–3457. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Topalian SL, Drake CG and Pardoll DM:
Immune checkpoint blockade: A common denominator approach to cancer
therapy. Cancer Cell. 27:450–461. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Shibaki R, Murakami S, Shinno Y, Matsumoto
Y, Goto Y, Kanda S, Horinouchi H, Fujiwara Y, Motoi N, Yamamoto N,
et al: Malignant pleural effusion as a predictor of the efficacy of
anti-PD-1 antibody in patients with non-small cell lung cancer.
Thorac Cancer. 10:815–822. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kawachi H, Tamiya M, Tamiya A, Ishii S,
Hirano K, Matsumoto H, Fukuda Y, Yokoyama T, Kominami R, Fujimoto
D, et al: Association between metastatic sites and first-line
pembrolizumab treatment outcome for advanced non-small cell lung
cancer with high PD-L1 expression: A retrospective multicenter
cohort study. Invest New Drugs. 38:211–218. 2020. View Article : Google Scholar
|
|
75
|
Grosu HB, Arriola A, Stewart J, Ma J,
Bassett R, Hernandez M, Ost D and Roy-Chowdhuri S: PD-L1 detection
in histology specimens and matched pleural fluid cell blocks of
patients with NSCLC. Respirology. 24:1198–1203. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Prado-Garcia H, Romero-Garcia S,
Puerto-Aquino A and Rumbo-Nava U: The PD-L1/PD-1 pathway promotes
dysfunction, but not 'exhaustion', in tumor-responding T cells from
pleural effusions in lung cancer patients. Cancer Immunol
Immunother. 66:765–776. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Weibel S, Hofmann E, Basse-Luesebrink TC,
Donat U, Seubert C, Adelfinger M, Gnamlin P, Kober C, Frentzen A,
Gentschev I, et al: Treatment of malignant effusion by oncolytic
virotherapy in an experimental subcutaneous xenograft model of lung
cancer. J Transl Med. 11:106. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Andtbacka RHI, Kaufman HL, Collichio F,
Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I,
Agarwala SS, et al: Talimogene Laherparepvec Improves Durable
Response Rate in Patients With Advanced Melanoma. J Clin Oncol.
33:2780–2788. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Danson SJ, Conner J, Edwards JG, Blyth KG,
Fisher PM, Muthana M, Salawu A, Taylor F, Hodgkinson E, Joyce P, et
al: Oncolytic herpesvirus therapy for mesothelioma - A phase I/IIa
trial of intrapleural administration of HSV1716. Lung Cancer.
150:145–151. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Reardon DA and Mitchell DA: The
development of dendritic cell vaccine-based immunotherapies for
glioblastoma. Semin Immunopathol. 39:225–239. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Chang G-C, Lan H-C, Juang S-H, Wu Y-C, Lee
H-C, Hung Y-M, Yang H-Y, Whang-Peng J and Liu K-J: A pilot clinical
trial of vaccination with dendritic cells pulsed with autologous
tumor cells derived from malignant pleural effusion in patients
with late-stage lung carcinoma. Cancer. 103:763–771. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Morisaki T, Matsumoto K, Kuroki H, Kubo M,
Baba E, Onishi H, Tasaki A, Nakamura M, Inaba S and Katano M:
Combined immunotherapy with intracavital injection of activated
lymphocytes, monocyte-derived dendritic cells and low-dose OK-432
in patients with malignant effusion. Anticancer Res. 23:4459–4465.
2003.PubMed/NCBI
|
|
83
|
Gu F-F, Wu J-J, Liu Y-Y, Hu Y, Liang J-Y,
Zhang K, Li M, Wang Y, Zhang Y-A and Liu L: Human inflammatory
dendritic cells in malignant pleural effusions induce Th1 cell
differentiation. Cancer Immunol Immunother. 69:779–788. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Akhavan D, Alizadeh D, Wang D, Weist MR,
Shepphird JK and Brown CE: CAR T cells for brain tumors: Lessons
learned and road ahead. Immunol Rev. 290:60–84. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Maude SL, Frey N, Shaw PA, Aplenc R,
Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, et
al: Chimeric antigen receptor T cells for sustained remissions in
leukemia. N Engl J Med. 371:1507–1517. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Fraietta JA, Lacey SF, Orlando EJ,
Pruteanu-Malinici I, Gohil M, Lundh S, Boesteanu AC, Wang Y,
O'Connor RS, Hwang WT, et al: Determinants of response and
resistance to CD19 chimeric antigen receptor (CAR) T cell therapy
of chronic lymphocytic leukemia. Nat Med. 24:563–571. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Heng G, Jia J, Li S, Fu G, Wang M, Qin D,
Li Y, Pei L, Tian X, Zhang J, et al: Sustained Therapeutic Efficacy
of Humanized Anti-CD19 Chimeric Antigen Receptor T Cells in
Relapsed/Refractory Acute Lymphoblastic Leukemia. Clin Cancer Res.
26:1606–1615. 2020. View Article : Google Scholar
|
|
88
|
Junghans RP, Ma Q, Rathore R, Gomes EM,
Bais AJ, Lo AS, Abedi M, Davies RA, Cabral HJ, Al-Homsi AS, et al:
Phase I Trial of Anti-PSMA Designer CAR-T Cells in Prostate Cancer:
Possible Role for Interacting Interleukin 2-T Cell Pharmacodynamics
as a Determinant of Clinical Response. Prostate. 76:1257–1270.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ahmed N, Brawley VS, Hegde M, Robertson C,
Ghazi A, Gerken C, Liu E, Dakhova O, Ashoori A, Corder A, et al:
Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric
Antigen Receptor-Modified T Cells for the Immunotherapy of
HER2-Positive Sarcoma. J Clin Oncol. 33:1688–1696. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Beatty GL, O'Hara MH, Lacey SF, Torigian
DA, Nazimuddin F, Chen F, Kulikovskaya IM, Soulen MC, McGarvey M,
Nelson AM, et al: Activity of Mesothelin-Specific Chimeric Antigen
Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase
1 Trial. Gastroenterology. 155:29–32. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Scherpereel A, Grigoriu BD, Noppen M, Gey
T, Chahine B, Baldacci S, Trauet J, Copin MC, Dessaint JP, Porte H,
et al: Defect in recruiting effector memory CD8+ T-cells in
malignant pleural effusions compared to normal pleural fluid. BMC
Cancer. 13:3242013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Nicolini F, Bocchini M, Bronte G, Delmonte
A, Guidoboni M, Crino L and Mazza M: Malignant Pleural
Mesothelioma: State-of-the-Art on Current Therapies and Promises
for the Future. Front Oncol. 9:15192020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Maibach F, Sadozai H, Seyed Jafari SM,
Hunger RE and Schenk M: Tumor-Infiltrating Lymphocytes and Their
Prognostic Value in Cutaneous Melanoma. Front Immunol. 11:21052020.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wouters MCA and Nelson BH: Prognostic
Significance of Tumor-Infiltrating B Cells and Plasma Cells in
Human Cancer. Clin Cancer Res. 24:6125–6135. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chu H, Du F, Gong Z, Lian P, Wang Z, Li P,
Hu B, Chi C and Chen J: Better Clinical Efficiency of TILs for
Malignant Pleural Effusion and Ascites than Cisplatin Through
Intrapleural and Intraperitoneal Infusion. Anticancer Res.
37:4587–4591. 2017.PubMed/NCBI
|