|
1
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Stevens AR and Ewing J: Adenocarcinoma of
the Testis in the Adult. Ann Surg. 88:1074–1078. 1928. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Fidler IJ: Selection of successive tumour
lines for metastasis. Nat New Biol. 242:148–149. 1973. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bross ID and Blumenson LE: Screening
random asymptomatic women under 50 by annual mammographies: Does it
make sense? J Surg Oncol. 8:437–445. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Paget S: The distribution of secondary
growths in cancer of the breast. 1889. Cancer Metastasis Rev.
8:98–101. 1989.PubMed/NCBI
|
|
6
|
Gupta GP and Massague J: Cancer
metastasis: Building a framework. Cell. 127:679–695. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Henrich SE, McMahon KM, Plebanek MP,
Calvert AE, Feliciano TJ, Parrish S, Tavora F, Mega A, De Souza A,
Carneiro BA and Thaxton CS: Prostate cancer extracellular vesicles
mediate intercellular communication with bone marrow cells and
promote metastasis in a cholesterol-dependent manner. J Extracell
Vesicles. 10:e120422020. View Article : Google Scholar
|
|
8
|
Mazumdar A, Urdinez J, Boro A, Arlt MJE,
Egli FE, Niederöst B, Jaeger PK, Moschini G, Muff R, Fuchs B, et
al: Exploring the role of osteosarcoma-derived extracellular
vesicles in Pre-metastatic niche formation and metastasis in the
143-B Xenograft mouse osteosarcoma model. Cancers (Basel).
12:34572020. View Article : Google Scholar
|
|
9
|
Kaplan RN, Riba RD, Zacharoulis S, Bramley
AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et
al: VEGFR1-positive haematopoietic bone marrow progenitors initiate
the pre-metastatic niche. Nature. 438:820–827. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo
W, Zhao F, You L, Zheng L, Zhang T and Zhao Y: Targeting hypoxic
tumor microenvironment in pancreatic cancer. J Hematol Oncol.
14:142021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu Y and Cao X: Characteristics and
Significance of the Pre-metastatic Niche. Cancer Cell. 30:668–681.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Seubert B, Grunwald B, Kobuch J, Cui H,
Schelter F, Schaten S, Siveke JT, Lim NH, Nagase H, Simonavicius N,
et al: Tissue inhibitor of metalloproteinases (TIMP)-1 creates a
premetastatic niche in the liver through SDF-1/CXCR4-dependent
neutrophil recruitment in mice. Hepatology. 61:238–248. 2015.
View Article : Google Scholar
|
|
13
|
Domaschenz R, Kurscheid S, Nekrasov M, Han
S and Tremethick DJ: The histone variant H2A.Z is a master
regulator of the epithelial-mesenchymal transition. Cell Rep.
21:943–952. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yan W and Jiang S: Immune cell-derived
exosomes in the cancer-immunity cycle. Trends Cancer. 6:506–517.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lobb RJ, Lima LG and Moller A: Exosomes:
Key mediators of metastasis and pre-metastatic niche formation.
Semin Cell Dev Biol. 67:3–10. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Trams EG, Lauter CJ, Salem N Jr and Heine
U: Exfoliation of membrane ecto-enzymes in the form of
micro-vesicles. Biochim Biophys Acta. 645:63–70. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Johnstone RM, Adam M, Hammond JR, Orr L
and Turbide C: Vesicle formation during reticulocyte maturation.
Association of plasma membrane activities with released vesicles
(exosomes). J Biol Chem. 262:9412–9420. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhao Z, Fan J, Hsu YS, Lyon CJ, Ning B and
Hu TY: Extracellular vesicles as cancer liquid biopsies: From
discovery, validation, to clinical application. Lab Chip.
19:1114–1140. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bebelman MP, Bun P, Huveneers S, van Niel
G, Pegtel DM and Verweij FJ: Real-time imaging of multivesicular
body-plasma membrane fusion to quantify exosome release from single
cells. Nat Protoc. 15:102–121. 2020. View Article : Google Scholar
|
|
20
|
Simpson RJ, Jensen SS and Lim JW:
Proteomic profiling of exosomes: Current perspectives. Proteomics.
8:4083–4099. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
van Niel G, D'Angelo G and Raposo G:
Shedding light on the cell biology of extracellular vesicles. Nat
Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lane RE, Korbie D, Hill MM and Trau M:
Extracellular vesicles as circulating cancer biomarkers:
Opportunities and challenges. Clin Transl Med. 7:142018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367:eaau69772020. View Article : Google Scholar :
|
|
24
|
Gao Y and Raj JU: Extracellular vesicles
as unique signaling messengers: Role in lung diseases. Compr
Physiol. 11:1351–1369. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Mashouri L, Yousefi H, Aref AR, Ahadi AM,
Molaei F and Alahari SK: Exosomes: Composition, biogenesis, and
mechanisms in cancer metastasis and drug resistance. Mol Cancer.
18:752019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mathieu M, Martin-Jaular L, Lavieu G and
Thery C: Specificities of secretion and uptake of exosomes and
other extracellular vesicles for cell-to-cell communication. Nat
Cell Biol. 21:9–17. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Pegtel DM and Gould SJ: Exosomes. Annu Rev
Biochem. 88:487–514. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Keerthikumar S, Chisanga D, Ariyaratne D,
Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M,
Chilamkurti N, et al: ExoCarta: A Web-based compendium of exosomal
cargo. J Mol Biol. 428:688–692. 2016. View Article : Google Scholar :
|
|
29
|
Kosaka N, Iguchi H and Ochiya T:
Circulating microRNA in body fluid: A new potential biomarker for
cancer diagnosis and prognosis. Cancer Sci. 101:2087–2092. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li W, Li C, Zhou T, Liu X, Liu X, Li X and
Chen D: Role of exosomal proteins in cancer diagnosis. Mol Cancer.
16:1452017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bebelman MP, Smit MJ, Pegtel DM and Baglio
SR: Biogenesis and function of extracellular vesicles in cancer.
Pharmacol Ther. 188:1–11. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lindenbergh MFS and Stoorvogel W: Antigen
presentation by extracellular vesicles from professional
antigen-presenting cells. Annu Rev Immunol. 36:435–459. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Choi D, Rak J and Gho YS: Isolation of
extracellular vesicles for proteomic profiling. Methods Mol Biol.
2261:193–206. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Emmanouilidi A, Paladin D, Greening DW and
Falasca M: Oncogenic and Non-malignant pancreatic exosome cargo
reveal distinct expression of oncogenic and prognostic factors
involved in tumor invasion and metastasis. Proteomics.
19:e18001582019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li R, Wang Y, Zhang X, Feng M, Ma J, Li J,
Yang X, Fang F, Xia Q, Zhang Z, et al: Exosome-mediated secretion
of LOXL4 promotes hepatocellular carcinoma cell invasion and
metastasis. Mol Cancer. 18:182019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Alharbi M, Lai A, Guanzon D, Palma C,
Zuñiga F, Perrin L, He Y, Hooper JD and Salomon C: Ovarian
cancer-derived exosomes promote tumour metastasis in vivo: An
effect modulated by the invasiveness capacity of their originating
cells. Clin Sci (Lond). 133:1401–1419. 2019. View Article : Google Scholar
|
|
37
|
Gangoda L, Liem M, Ang CS, Keerthikumar S,
Adda CG, Parker BS and Mathivanan S: Proteomic profiling of
exosomes secreted by breast cancer cells with varying metastatic
potential. Proteomics. 17:2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Singh A, Fedele C, Lu H, Nevalainen MT,
Keen JH and Languino LR: Exosome-mediated Transfer of αvβ3 integrin
from tumorigenic to nontumorigenic cells promotes a migratory
phenotype. Mol Cancer Res. 14:1136–1146. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hoshino A, Costa-Silva B, Shen TL,
Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di
Giannatale A, Ceder S, et al: Tumour exosome integrins determine
organotropic metastasis. Nature. 527:329–335. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Weeraphan C, Phongdara A, Chaiyawat P,
Diskul-Na-Ayudthaya P, Chokchaichamnankit D, Verathamjamras C,
Netsirisawan P, Yingchutrakul Y, Roytrakul S, Champattanachai V, et
al: Phosphoproteome profiling of isogenic cancer cell-derived
exosome reveals HSP90 as a potential marker for human
cholangiocarcinoma. Proteomics. 19:e18001592019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Shtam T, Naryzhny S, Samsonov R, Karasik
D, Mizgirev I, Kopylov A, Petrenko E, Zabrodskaya Y, Kamyshinsky R,
Nikitin D, et al: Plasma exosomes stimulate breast cancer
metastasis through surface interactions and activation of FAK
signaling. Breast Cancer Res Treat. 174:129–141. 2019. View Article : Google Scholar
|
|
42
|
Luo D, Zhan S, Xia W, Huang L, Ge W and
Wang T: Proteomics study of serum exosomes from papillary thyroid
cancer patients. Endocr Relat Cancer. 25:879–891. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Erozenci LA, Bottger F, Bijnsdorp IV and
Jimenez CR: Urinary exosomal proteins as (pan-)cancer biomarkers:
Insights from the proteome. FEBS Lett. 593:1580–1597. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sun Y, Liu S, Qiao Z, Shang Z, Xia Z, Niu
X, Qian L, Zhang Y, Fan L, Cao CX and Xiao H: Systematic comparison
of exosomal proteomes from human saliva and serum for the detection
of lung cancer. Anal Chim Acta. 982:84–95. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
McCready J, Sims JD, Chan D and Jay DG:
Secretion of extracellular hsp90alpha via exosomes increases cancer
cell motility: A role for plasminogen activation. BMC Cancer.
10:2942010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mazurkiewicz J, Simiczyjew A, Dratkiewicz
E, Zietek M, Matkowski R and Nowak D: Stromal cells present in the
melanoma niche affect tumor invasiveness and its resistance to
therapy. Int J Mol Sci. 22:5292021. View Article : Google Scholar :
|
|
47
|
Zhou L, Li J, Tang Y and Yang M: Exosomal
LncRNA LINC00659 transferred from cancer-associated fibroblasts
promotes colorectal cancer cell progression via miR-342-3p/ANXA2
axis. J Transl Med. 19:82021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Shimoda M, Principe S, Jackson HW, Luga V,
Fang H, Molyneux SD, Shao YW, Aiken A, Waterhouse PD, Karamboulas
C, et al: Loss of the Timp gene family is sufficient for the
acquisition of the CAF-like cell state. Nat Cell Biol. 16:889–901.
2014. View Article : Google Scholar
|
|
49
|
Chen Y, Zeng C, Zhan Y, Wang H, Jiang X
and Li W: Aberrant low expression of p85α in stromal fibroblasts
promotes breast cancer cell metastasis through exosome-mediated
paracrine Wnt10b. Oncogene. 36:4692–4705. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Huang S, Zhu Y, Cai H, Zhang Y and Hou J:
Impact of lymphovascular invasion in oral squamous cell carcinoma:
A meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. Nov
5–2020.Epub ahead of print. PubMed/NCBI
|
|
51
|
Ma Q, Dieterich LC, Ikenberg K, Bachmann
SB, Mangana J, Proulx ST, Amann VC, Levesque MP, Dummer R, Baluk P,
et al: Unexpected contribution of lymphatic vessels to promotion of
distant metastatic tumor spread. Sci Adv. 4:eaat47582018.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sleeman JP: The lymph node pre-metastatic
niche. J Mol Med (Berl). 93:1173–1184. 2015. View Article : Google Scholar
|
|
53
|
Qian CN, Berghuis B, Tsarfaty G, Bruch M,
Kort EJ, Ditlev J, Tsarfaty I, Hudson E, Jackson DG, Petillo D, et
al: Preparing the 'soil': The primary tumor induces vasculature
reorganization in the sentinel lymph node before the arrival of
metastatic cancer cells. Cancer Res. 66:10365–10376. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ogawa F, Amano H, Eshima K, Ito Y, Matsui
Y, Hosono K, Kitasato H, Iyoda A, Iwabuchi K, Kumagai Y, et al:
Prostanoid induces premetastatic niche in regional lymph nodes. J
Clin Invest. 124:4882–4894. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Brown M, Assen FP, Leithner A, Abe J,
Schachner H, Asfour G, Bago-Horvath Z, Stein JV, Uhrin P, Sixt M
and Kerjaschki D: Lymph node blood vessels provide exit routes for
metastatic tumor cell dissemination in mice. Science.
359:1408–1411. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sun B, Zhou Y, Fang Y, Li Z, Gu X and
Xiang J: Colorectal cancer exosomes induce lymphatic network
remodeling in lymph nodes. Int J Cancer. 145:1648–1659. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li M, Lu Y, Xu Y, Wang J, Zhang C, Du Y,
Wang L, Li L, Wang B, Shen J, et al: Horizontal transfer of
exosomal CXCR4 promotes murine hepatocarcinoma cell migration,
invasion and lymphangiogenesis. Gene. 676:101–109. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Rondon-Galeano M, Skoczylas R, Bower NI,
Simons C, Gordon E, Francois M, Koltowska K and Hogan BM: MAFB
modulates the maturation of lymphatic vascular networks in mice.
Dev Dyn. 249:1201–1216. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wang CA, Chang IH, Hou PC, Tai YJ, Li WN,
Hsu PL, Wu SR, Chiu WT, Li CF, Shan YS and Tsai SJ: DUSP2 regulates
extracellular vesicle-VEGF-C secretion and pancreatic cancer early
dissemination. J Extracell Vesicles. 9:17465292020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu D, Li C, Trojanowicz B, Li X, Shi D,
Zhan C, Wang Z and Chen L: CD97 promotion of gastric carcinoma
lymphatic metastasis is exosome dependent. Gastric Cancer.
19:754–766. 2016. View Article : Google Scholar :
|
|
61
|
Lin T, Zhang X, Lu Y and Gong L: TGFBIp
mediates lymphatic sprouting in corneal lymphangiogenesis. J Cell
Mol Med. 23:7602–7616. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Carraway RE and Cochrane DE: Enhanced
vascular permeability is hypothesized to promote
inflammation-induced carcinogenesis and tumor development via
extravasation of large molecular proteins into the tissue. Med
Hypotheses. 78:738–743. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Maji S, Chaudhary P, Akopova I, Nguyen PM,
Hare RJ, Gryczynski I and Vishwanatha JK: Exosomal Annexin II
promotes angiogenesis and breast cancer metastasis. Mol Cancer Res.
15:93–105. 2017. View Article : Google Scholar
|
|
64
|
Cen J, Feng L, Ke H, Bao L, Li LZ, Tanaka
Y, Weng J and Su L: Exosomal Thrombospondin-1 disrupts the
integrity of endothelial intercellular junctions to facilitate
breast cancer cell metastasis. Cancers (Basel). 11:19462019.
View Article : Google Scholar
|
|
65
|
Yang WW, Yang LQ, Zhao F, Chen CW, Xu LH,
Fu J, Li SL and Ge XY: Epiregulin promotes lung metastasis of
salivary adenoid cystic carcinoma. Theranostics. 7:3700–3714. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Dai W, Wang Y, Yang T, Wang J, Wu W and Gu
J: Downregulation of exosomal CLEC3B in hepatocellular carcinoma
promotes metastasis and angiogenesis via AMPK and VEGF signals.
Cell Commun Signal. 17:1132019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tang MKS, Yue PYK, Ip PP, Huang RL, Lai
HC, Cheung ANY, Tse KY, Ngan HYS and Wong AST: Soluble E-cadherin
promotes tumor angiogenesis and localizes to exosome surface. Nat
Commun. 9:22702018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Rodrigues G, Hoshino A, Kenific CM, Matei
IR, Steiner L, Freitas D, Kim HS, Oxley PR, Scandariato I,
Casanova-Salas I, et al: Tumour exosomal CEMIP protein promotes
cancer cell colonization in brain metastasis. Nat Cell Biol.
21:1403–1412. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Park JE, Tan HS, Datta A, Lai RC, Zhang H,
Meng W, Lim SK and Sze SK: Hypoxic tumor cell modulates its
microenvironment to enhance angiogenic and metastatic potential by
secretion of proteins and exosomes. Mol Cell Proteomics.
9:1085–1099. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Horie K, Kawakami K, Fujita Y, Sugaya M,
Kameyama K, Mizutani K, Deguchi T and Ito M: Exosomes expressing
carbonic anhydrase 9 promote angiogenesis. Biochem Biophys Res
Commun. 492:356–361. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ekstrom EJ, Bergenfelz C, von Bulow V,
Serifler F, Carlemalm E, Jönsson G, Andersson T and Leandersson K:
WNT5A induces release of exosomes containing pro-angiogenic and
immunosuppressive factors from malignant melanoma cells. Mol
Cancer. 13:882014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Guo Y, Ji X, Liu J, Fan D, Zhou Q, Chen C,
Wang W, Wang G, Wang H, Yuan W, et al: Effects of exosomes on
pre-metastatic niche formation in tumors. Mol Cancer. 18:392019.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hoye AM and Erler JT: Structural ECM
components in the premetastatic and metastatic niche. Am J Physiol
Cell Physiol. 310:C955–C967. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Dai J, Escara-Wilke J, Keller JM, Jung Y,
Taichman RS, Pienta KJ and Keller ET: Primary prostate cancer
educates bone stroma through exosomal pyruvate kinase M2 to promote
bone metastasis. J Exp Med. 216:2883–2899. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Peinado H, Alečković M, Lavotshkin S,
Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M,
Williams C, García-Santos G, Ghajar C, et al: Melanoma exosomes
educate bone marrow progenitor cells toward a pro-metastatic
phenotype through MET. Nat Med. 18:883–891. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Costa-Silva B, Aiello NM, Ocean AJ, Singh
S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, et
al: Pancreatic cancer exosomes initiate pre-metastatic niche
formation in the liver. Nat Cell Biol. 17:816–826. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ning X, Zhang H, Wang C and Song X:
Exosomes released by gastric cancer cells induce transition of
pericytes into cancer-associated fibroblasts. Med Sci Monit.
24:2350–2359. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sahai E, Astsaturov I, Cukierman E,
DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR,
Hunter T, et al: A framework for advancing our understanding of
cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Ren Y, Zhou X, Liu X, Jia HH, Zhao XH,
Wang QX, Han L, Song X, Zhu ZY, Sun T, et al: Reprogramming
carcinoma associated fibroblasts by AC1MMYR2 impedes tumor
metastasis and improves chemotherapy efficacy. Cancer Lett.
374:96–106. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Deng Z, Cheng Z, Xiang X, Yan J, Zhuang X,
Liu C, Jiang H, Ju S, Zhang L, Grizzle W, et al: Tumor cell cross
talk with tumor-associated leukocytes leads to induction of tumor
exosomal fibronectin and promotes tumor progression. Am J Pathol.
180:390–398. 2012. View Article : Google Scholar
|
|
81
|
Deep G, Jain A, Kumar A, Agarwal C, Kim S,
Leevy WM and Agarwal R: Exosomes secreted by prostate cancer cells
under hypoxia promote matrix metalloproteinases activity at
pre-metastatic niches. Mol Carcinog. 59:323–332. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Herrera M, Galindo-Pumarino C,
Garcia-Barberan V and Pena C: A snapshot of the tumor
microenvironment in colorectal cancer: The liquid biopsy. Int J Mol
Sci. 20:60162019. View Article : Google Scholar :
|
|
83
|
Riteau B, Faure F, Menier C, Viel S,
Carosella ED, Amigorena S and Rouas-Freiss N: Exosomes bearing
HLA-G are released by melanoma cells. Hum Immunol. 64:1064–1072.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Whiteside TL: Exosomes and tumor-mediated
immune suppression. J Clin Invest. 126:1216–1223. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang Y, Ding Y, Guo N and Wang S: MDSCs:
Key criminals of tumor Pre-metastatic Niche Formation. Front
Immunol. 10:1722019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Burke M, Choksawangkarn W, Edwards N,
Ostrand-Rosenberg S and Fenselau C: Exosomes from myeloid-derived
suppressor cells carry biologically active proteins. J Proteome
Res. 13:836–843. 2014. View Article : Google Scholar
|
|
87
|
Eisenblaetter M, Flores-Borja F, Lee JJ,
Wefers C, Smith H, Hueting R, Cooper MS, Blower PJ, Patel D,
Rodriguez-Justo M, et al: Visualization of tumor-immune
interaction-target-specific imaging of S100A8/A9 reveals
pre-metastatic niche establishment. Theranostics. 7:2392–2401.
2017. View Article : Google Scholar :
|
|
88
|
Wolf-Dennen K, Gordon N and Kleinerman ES:
Exosomal communication by metastatic osteosarcoma cells modulates
alveolar macrophages to an M2 tumor-promoting phenotype and
inhibits tumoricidal functions. Oncoimmunology. 9:17476772020.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Mantovani A, Marchesi F, Malesci A, Laghi
L and Allavena P: Tumour-associated macrophages as treatment
targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chen C, Yao X, Xu Y, Zhang Q, Wang H, Zhao
L, Wen G, Liu Y, Jing L and Sun X: Dahuang Zhechong Pill suppresses
colorectal cancer liver metastasis via ameliorating exosomal CCL2
primed pre-metastatic niche. J Ethnopharmacol. 238:1118782019.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Plebanek MP, Angeloni NL, Vinokour E, Li
J, Henkin A, Martinez-Marin D, Filleur S, Bhowmick R, Henkin J,
Miller SD, et al: Pre-metastatic cancer exosomes induce immune
surveillance by patrolling monocytes at the metastatic niche. Nat
Commun. 8:13192017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lin Q, Chen X, Meng F, Ogawa K, Li M, Song
R, Zhang S, Zhang Z, Kong X, Xu Q, et al: ASPH-notch Axis guided
Exosomal delivery of Prometastatic Secretome renders breast Cancer
multi-organ metastasis. Mol Cancer. 18:1562019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lobos-Gonzalez L, Bustos R, Campos A,
Silva V, Silva V, Jeldes E, Salomon C, Varas-Godoy M,
Cáceres-Verschae A, Duran E, et al: Exosomes released upon
mitochondrial ASncmtRNA knockdown reduce tumorigenic properties of
malignant breast cancer cells. Sci Rep. 10:3432020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Chairoungdua A, Smith DL, Pochard P, Hull
M and Caplan MJ: Exosome release of β-catenin: A novel mechanism
that antagonizes Wnt signaling. J Cell Biol. 190:1079–1091. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhao L, Gu C, Gan Y, Shao L, Chen H and
Zhu H: Exosome-mediated siRNA delivery to suppress postoperative
breast cancer metastasis. J Control Release. 318:1–15. 2020.
View Article : Google Scholar
|
|
96
|
Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J,
Zhou K, Liu X, Ren X, Wang F, et al: Cancer-derived exosomal
miR-25-3p promotes pre-metastatic niche formation by inducing
vascular permeability and angiogenesis. Nat Commun. 9:53952018.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Liu Y, Gu Y, Han Y, Zhang Q, Jiang Z,
Zhang X, Huang B, Xu X, Zheng J and Cao X: Tumor exosomal RNAs
promote lung Pre-metastatic niche formation by activating alveolar
epithelial TLR3 to recruit neutrophils. Cancer Cell. 30:243–256.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Nakamura K, Sawada K, Kinose Y, Yoshimura
A, Toda A, Nakatsuka E, Hashimoto K, Mabuchi S, Morishige KI,
Kurachi H, et al: Exosomes promote ovarian cancer cell invasion
through transfer of CD44 to peritoneal mesothelial cells. Mol
Cancer Res. 15:78–92. 2017. View Article : Google Scholar
|
|
99
|
Zhang W, Ou X and Wu X: Proteomics
profiling of plasma exosomes in epithelial ovarian cancer: A
potential role in the coagulation cascade, diagnosis and prognosis.
Int J Oncol. 54:1719–1733. 2019.PubMed/NCBI
|
|
100
|
Ji H, Greening DW, Barnes TW, Lim JW,
Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, et al:
Proteome profiling of exosomes derived from human primary and
metastatic colorectal cancer cells reveal differential expression
of key metastatic factors and signal transduction components.
Proteomics. 13:1672–1686. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Liang B, Peng P, Chen S, Li L, Zhang M,
Cao D, Yang J, Li H, Gui T, Li X and Shen K: Characterization and
proteomic analysis of ovarian cancer-derived exosomes. J
Proteomics. 80:171–182. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
DeRita RM, Zerlanko B, Singh A, Lu H,
Iozzo RV, Benovic JL and Languino LR: c-Src, Insulin-like growth
Factor I receptor, G-protein-coupled receptor kinases and focal
adhesion kinase are enriched into prostate cancer cell exosomes. J
Cell Biochem. 118:66–73. 2017. View Article : Google Scholar :
|
|
103
|
Li Y, Zhang Y, Qiu F and Qiu Z: Proteomic
identification of exosomal LRG1: A potential urinary biomarker for
detecting NSCLC. Electrophoresis. 32:1976–1983. 2011. View Article : Google Scholar
|
|
104
|
Lu J, Li J, Liu S, Wang T, Ianni A, Bober
E, Braun T, Xiang R and Yue S: Exosomal tetraspanins mediate cancer
metastasis by altering host microenvironment. Oncotarget.
8:62803–62815. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Chen Y, Xie Y, Xu L, Zhan S, Xiao Y, Gao
Y, Wu B and Ge W: Protein content and functional characteristics of
serum-purified exosomes from patients with colorectal cancer
revealed by quantitative proteomics. Int J Cancer. 140:900–913.
2017. View Article : Google Scholar
|
|
106
|
Greening DW, Ji H, Chen M, Robinson BW,
Dick IM, Creaney J and Simpson RJ: Secreted primary human malignant
mesothelioma exosome signature reflects oncogenic cargo. Sci Rep.
6:326432016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Luga V, Zhang L, Viloria-Petit AM,
Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M and
Wrana JL: Exosomes mediate stromal mobilization of autocrine
Wnt-PCP signaling in breast cancer cell migration. Cell.
151:1542–1556. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Qian BZ, Li J, Zhang H, Kitamura T, Zhang
J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits
inflammatory monocytes to facilitate breast-tumour metastasis.
Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang Z, Sun H, Provaznik J, Hackert T and
Zoller M: Pancreatic cancer-initiating cell exosome message
transfer into noncancer-initiating cells: The importance of CD44v6
in reprogramming. J Exp Clin Cancer Res. 38:1322019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Jung T, Castellana D, Klingbeil P, Cuesta
Hernández I, Vitacolonna M, Orlicky DJ, Roffler SR, Brodt P and
Zöller M: CD44v6 dependence of premetastatic niche preparation by
exosomes. Neoplasia. 11:1093–1105. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Melo SA, Luecke LB, Kahlert C, Fernandez
AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari
N, et al: Glypican-1 identifies cancer exosomes and detects early
pancreatic cancer. Nature. 523:177–182. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
You Y, Shan Y, Chen J, Yue H, You B, Shi
S, Li X and Cao X: Matrix metalloproteinase 13-containing exosomes
promote nasopharyngeal carcinoma metastasis. Cancer Sci.
106:1669–1677. 2015. View Article : Google Scholar
|