|
1
|
Lang S: Über desamidierung im Tierkörper.
Beitr hem Physiol Pathol. 5:321–345. 1904.
|
|
2
|
Fürth O and Friedmann M: Über die
Verbreitung asparaginspaltender Organfermente. Biochem Z.
26:435–440. 1910.
|
|
3
|
Clementi A: La Désamidation Enzymatique De
L'asparagine Chez Les Différentes Espéces Animales Et La
Signification Physio Logique De Sa Presence Dans L'organisme. Arch
Int de Physiol. 19:369–398. 1922.
|
|
4
|
Kidd JG: Regression of transplanted
lymphomas induced in vivo by means of normal guinea pig serum. I
Course of transplanted cancers of various kinds in mice and rats
given guinea pig serum, horse serum, or rabbit serum. J Exp Med.
98:565–582. 1953. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Broome JD: Evidence that the
L-Asparaginase activity of guinea pig serum is responsible for its
Antilymphoma Effects. Nature. 191:1114–1115. 1961. View Article : Google Scholar
|
|
6
|
Broome JD: Evidence that the
L-asparaginase of guinea pig serum is responsible for its
antilymphoma effects. I Properties of the L-asparaginase of guinea
pig serum in relation to those of the antilymphoma substance. J Exp
Med. 118:99–120. 1963. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mashburn LT and Wriston JC: Tumor
inhibitory effect of L-asparaginase from Escherichia coli. Arch
Biochem Biophys. 105:450–452. 1964. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Broome JD: Antilymphoma activity of
L-asparaginase in vivo: Clearance rates of enzyme preparations from
guinea pig serum and yeast in relation to their effect on tumor
growth. J Natl Cancer Inst. 35:967–974. 1965.PubMed/NCBI
|
|
9
|
Dolowy WC, Henson D, Cornet J and Sellin
H: Toxic and antineoplastic effects of L-asparaginase. Study of
mice with lymphoma and normal monkeys and report on a child with
leukemia. Cancer. 19:1813–1819. 1966. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Oettgen HF, Stephenson PA, Schwartz MK,
Leeper RD, Tallai L, Tan CC, Clarkson BD, Golbey RB, Krakoff IH,
Karnofsky DA, et al: Toxicity of E. coli L-asparaginase in man.
Cancer. 25:253–278. 1970. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hill JM, Roberts J, Loeb E, Khan A,
MacLellan A and Hill RW: L-asparaginase therapy for leukemia and
other malignant neoplasms. JAMA. 202:882–888. 1967. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Salzer WL, Asselin BL, Plourde PV, Corn T
and Hunger SP: Development of asparaginase Erwinia chrysanthemi for
the treatment of acute lymphoblastic leukemia. Ann N Y Acad Sci.
1329:81–92. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
American Cancer Society: Cancer Facts and
Figures 2019. American Cancer Society; Atlanta, GA: 2019
|
|
14
|
Terwilliger T and Abdul-Hay M: Acute
lymphoblastic leukemia: A comprehensive review and 2017 update.
Blood Cancer J. 7:e5772017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
American Cancer Society: Leukemia-Acute
Lymphocytic (Adults). American Cancer Society; Atlanta, GA:
2014
|
|
16
|
Cooper SL and Brown PA: Treatment of
pediatric acute lymphoblastic leukemia. Pediatr Clin North Am.
62:61–73. 2015. View Article : Google Scholar :
|
|
17
|
Moghrabi A, Levy DE, Asselin B, Barr R,
Clavell L, Hurwitz C, Samson Y, Schorin M, Dalton VK, Lipshultz SE,
et al: Results of the Dana-Farber cancer institute ALL consortium
protocol 95-01 for children with acute lymphoblastic leukemia.
Blood. 109:896–905. 2007. View Article : Google Scholar
|
|
18
|
Pui CH and Evans WE: Treatment of acute
lymphoblastic leukemia. N Engl J Med. 354:166–178. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Pui CH and Evans WE: Acute lymphoblastic
leukemia. N Engl J Med. 339:605–615. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Nachman JB, Sather HN, Sensel MG, Trigg
ME, Cherlow JM, Lukens JN, Wolff L, Uckun FM and Gaynon PS:
Augmented Post-induction therapy for children with high-risk acute
lymphoblastic leukemia and a slow response to initial therapy. N
Engl J Med. 338:1663–1671. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gaynon P, Trigg M, Heerema N, Sensel M,
Sather H, Hammond G and Bleyer W: Children's cancer group trials in
childhood acute lymphoblastic leukemia: 1983-1995. Leukemia.
14:2223–2233. 2000. View Article : Google Scholar
|
|
22
|
Schrappe M, Reiter A, Ludwig WD, Harbott
J, Zimmermann M, Hiddemann W, Niemeyer C, Henze G, Feldges A, Zintl
F, et al: Improved outcome in childhood acute lymphoblastic
leukemia despite reduced use of anthracyclines and cranial
radiotherapy: Results of trial ALL-BFM 90. German-Austrian-Swiss
ALL-BFM Study Group. Blood. 95:3310–3322. 2000.PubMed/NCBI
|
|
23
|
Lee EJ, Petroni GR, Schiffer CA, Freter
CE, Johnson JL, Barcos M, Frizzera G, Bloomfield CD and Peterson
BA: Brief-duration high-intensity chemotherapy for patients with
small noncleaved-cell lymphoma or FAB L3 acute lymphocytic
leukemia: Results of cancer and leukemia group B study 9251. J Clin
Oncol. 19:4014–4022. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Patte C: The Societe Francaise d'Oncologie
Pediatrique LMB89 protocol: Highly effective multiagent
chemotherapy tailored to the tumor burden and initial response in
561 unselected children with B-cell lymphomas and L3 leukemia.
Blood. 97:3370–3379. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Silverman LB, Gelber RD, Dalton VK,
Asselin BL, Barr RD, Clavell LA, Hurwitz CA, Moghrabi A, Samson Y,
Schorin MA, et al: Improved outcome for children with acute
lymphoblastic leukemia: Results of Dana-Farber consortium protocol
91-01. Blood. 97:1211–1218. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Pui CH: Improved outcome for children with
acute lymphoblastic leukemia: Results of Total Therapy Study XIIIB
at St Jude Children's Research Hospital. Blood. 104:2690–2696.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rytting ME: Role of L-asparaginase in
acute lymphoblastic leukemia: Focus on adult patients. Blood
Lymphatic Cancer Targets Ther. 2:117–124. 2012. View Article : Google Scholar
|
|
28
|
American Cancer Society: Chemotherapy for
Childhood Leukemia. American Cancer Society; Atlanta, GA: 2019
|
|
29
|
Pui CH, Campana D and Evans WE: Childhood
acute lymphoblastic leukaemia-current status and future
perspectives. Lancet Oncol. 2:597–607. 2001. View Article : Google Scholar
|
|
30
|
Gleissner B, Gökbuget N, Bartram CR,
Janssen B, Rieder H, Janssen JW, Fonatsch C, Heyll A, Voliotis D,
Beck J, et al: Leading prognostic relevance of the BCR-ABL
translocation in adult acute B-lineage lymphoblastic leukemia: A
prospective study of the German Multicenter Trial Group and
confirmed polymerase chain reaction analysis. Blood. 99:1536–1543.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Pui CH, Relling MV and Downing JR: Acute
lymphoblastic leukemia. N Engl J Med. 350:1535–1548. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Armstrong SA and Look AT: Molecular
genetics of acute lymphoblastic leukemia. J Clin Oncol.
23:6306–6315. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mancini M: A comprehensive genetic
classification of adult acute lymphoblastic leukemia (ALL):
Analysis of the GIMEMA 0496 protocol. Blood. 105:3434–3441. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
National Cancer Institute (NIH): Childhood
Acute Lymphoblastic Leukemia Treatment (PDQ®)-Health Professional
Version, NIH 2020.
|
|
35
|
Li BS, Gu LJ, Luo CY, Li WS, Jiang LM,
Shen SH, Jiang H, Shen SH, Zhang B, Chen J, et al: The
downregulation of asparagine synthetase expression can increase the
sensitivity of cells resistant to l-asparaginase. Leukemia.
20:2199–2201. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Song P, Ye L, Fan J, Li Y, Zeng X, Wang Z,
Wang S, Zhang G, Yang P, Cao Z and Ju D: Asparaginase induces
apoptosis and cytoprotective autophagy in chronic myeloid leukemia
cells. Oncotarget. 6:3861–3873. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pieters R, Hunger SP, Boos J, Rizzari C,
Silverman L, Baruchel A, Goekbuget N, Schrappe M and Pui CH:
L-asparaginase treatment in acute lymphoblastic leukemia: A focus
on Erwinia asparaginase. Cancer. 117:238–249. 2011. View Article : Google Scholar
|
|
38
|
Avramis VI: Asparaginases: Biochemical
pharmacology and modes of drug resistance. Anticancer Res.
32:2423–2437. 2012.PubMed/NCBI
|
|
39
|
Ueno T, Ohtawa K, Mitsui K, Kodera Y,
Hiroto M, Matsushima A, Inada Y and Nishimura H: Cell cycle arrest
and apoptosis of leukemia cells induced by L-asparaginase.
Leukemia. 11:1858–1861. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yu M, Henning R, Walker A, Kim G, Perroy
A, Alessandro R, Virador V and Kohn EC: L-asparaginase inhibits
invasive and angiogenic activity and induces autophagy in ovarian
cancer. J Cell Mol Med. 16:2369–2378. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Willems L, Jacque N, Jacquel A, Neveux N,
Maciel TT, Lambert M, Schmitt A, Poulain L, Green AS, Uzunov M, et
al: Inhibiting glutamine uptake represents an attractive new
strategy for treating acute myeloid leukemia. Blood. 122:3521–3532.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang B, Fan J, Zhang X, Shen W, Cao Z,
Yang P, Xu Z and Ju D: Targeting asparagine and autophagy for
pulmonary adenocarcinoma therapy. Appl Microbiol Biotechnol.
100:9145–9161. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lorenzi PL, Claerhout S, Mills GB and
Weinstein JN: A curated census of autophagy-modulating proteins and
small molecules. Autophagy. 10:1316–1326. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Purwaha P, Lorenzi PL, Silva LP, Hawke DH
and Weinstein JN: Targeted metabolomic analysis of amino acid
response to L-asparaginase in adherent cells. Metabolomics.
10:909–919. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Panosyan EH, Wang Y, Xia P, Lee WN, Pak Y,
Laks DR, Lin HJ, Moore TB, Cloughesy TF, Kornblum HI and Lasky JL
III: Asparagine depletion potentiates the cytotoxic effect of
chemotherapy against brain tumors. Mol Cancer Res. 12:694–702.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sircar K, Huang H, Hu L, Cogdell D,
Dhillon J, Tzelepi V, Efstathiou E, Koumakpayi IH, Saad F, Luo D,
et al: Integrative molecular profiling reveals asparagine
synthetase is a target in castration-resistant prostate cancer. Am
J Pathol. 180:895–903. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kobrinsky NL, Sposto R, Shah NR, Anderson
JR, DeLaat C, Morse M, Warkentin P, Gilchrist GS, Cohen MD, Shina D
and Meadows AT: Outcomes of treatment of children and adolescents
with recurrent non-Hodgkin's lymphoma and Hodgkin's disease with
dexamethasone, etoposide, cisplatin, cytarabine, and
l-asparaginase, maintenance chemotherapy, and transplantation:
Children's Cancer Group Study CCG-5912. J Clin Oncol. 19:2390–2396.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bansal S, Srivastava A, Mukherjee G,
Pandey R, Verma AK, Mishra P and Kundu B: Hyperthermophilic
asparaginase mutants with enhanced substrate affinity and
antineoplastic activity: Structural insights on their mechanism of
action. FASEB J. 26:1161–1171. 2012. View Article : Google Scholar
|
|
49
|
Roth G, Nunes JES, Rosado LA, Bizarro CV,
Volpato C, Nunes CP, Renard G, Basso LA, Santo DS and Chies JM:
Recombinant Erwinia caratovora L-asparaginase II production in
Escherichia coli Fed-batch cultures. Br J Chem Engineering.
30:245–256. 2013. View Article : Google Scholar
|
|
50
|
Tong WH, van der Sluis IM, Alleman CJM,
van Litsenburg RRL, Kaspers GJL, Pieters R and Uyl-de Groot CA:
Cost-analysis of treatment of childhood acute lymphoblastic
leukemia with asparaginase preparations: The impact of expensive
chemotherapy. Haematologica. 98:753–759. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Müller HJ, Löning L, Horn A, Schwabe D,
Gunkel M, Schrappe M, von Schütz V, Henze G, Casimiro da Palma J,
Ritter J, et al: Pegylated asparaginase (Oncaspar) in children with
ALL: Drug monitoring in reinduction according to the ALL/NHL-BFM 95
protocols. Br J Haematol. 110:379–384. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Willer A, Gerss J, König T, Franke D,
Kühnel HJ, Henze G, von Stackelberg A, Möricke A, Schrappe M, Boos
J and Lanvers-Kaminsky C: Anti-Escherichia coli asparaginase
anti-body levels determine the activity of second-line treatment
with pegylated E coli asparaginase: A retrospective analysis within
the ALL-BFM trials. Blood. 118:5774–5782. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Højfeldt SG, Wolthers BO, Tulstrup M,
Abrahamsson J, Gupta R, Harila-Saari A, Heyman M, Henriksen LT,
Jónsson ÒG, Lähteenmäki PM, et al: Genetic predisposition to
PEG-asparaginase hypersensitivity in children treated according to
NOPHO ALL2008. Br J Haematol. 184:405–417. 2019. View Article : Google Scholar
|
|
54
|
Fernandez CA, Smith C, Yang W, Mullighan
CG, Qu C, Larsen E, Bowman WP, Liu C, Ramsey LB, Chang T, et al:
Genome-wide analysis links NFATC2 with asparaginase
hypersensitivity. Blood. 126:69–75. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chen SH, Pei D, Yang W, Cheng C, Jeha S,
Cox NJ, Evans WE, Pui CH and Relling MV: Genetic variations in
GRIA1 on chromosome 5q33 related to asparaginase hypersensitivity.
Clin Pharmacol Ther. 88:191–196. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hijiya N and van der Sluis IM:
Asparaginase-associated toxicity in children with acute
lymphoblastic leukemia. Leuk Lymphoma. 57:748–757. 2016. View Article : Google Scholar :
|
|
57
|
van der Sluis IM, Vrooman LM, Pieters R,
Baruchel A, Escherich G, Goulden N, Mondelaers V, Sanchez de Toledo
J, Rizzari C, Silverman LB and Whitlock JA: Consensus expert
recommendations for identification and management of asparaginase
hypersensitivity and silent inactivation. Haematologica.
101:279–285. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tong WH, Pieters R, Tissing WJE and van
der Sluis IM: Desensitization protocol should not be used in acute
lymphoblastic leukemia patients with silent inactivation of
PEGasparaginase. Haematologica. 99:e102–e104. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Müller HJ and Boos J: Use of
L-asparaginase in childhood ALL. Crit Rev Oncol Hematol. 28:97–113.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lee JK, Kang S, Wang X, Rosales JL, Gao X,
Byun HG, Jin Y, Fu S, Wang J and Lee KY: HAP1 loss confers
l-asparaginase resistance in ALL by downregulating the
calpain-1-Bid-caspase-3/12 pathway. Blood. 133:2222–2232. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen SH: Asparaginase therapy in pediatric
acute lymphoblastic leukemia: A focus on the mode of drug
resistance. Pediatr Neonatol. 56:287–293. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Aslanian AM and Kilberg MS: Multiple
adaptive mechanisms affect asparagine synthetase substrate
availability in asparaginase-resistant MOLT-4 human leukaemia
cells. Biochem J. 358:59–67. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Su N, Pan YX, Zhou M, Harvey RC, Hunger SP
and Kilberg MS: Correlation between asparaginase sensitivity and
asparagine synthetase protein content, but not mRNA, in acute
lymphoblastic leukemia cell lines. Pediatr Blood Cancer.
50:274–279. 2008. View Article : Google Scholar
|
|
64
|
Kang SM, Rosales JL, Meier-Stephenson V,
Kim S, Lee KY and Narendran A: Genome-wide loss-of-function genetic
screening identifies opioid receptor µ1 as a key regulator of
L-asparaginase resistance in pediatric acute lymphoblastic
leukemia. Oncogene. 36:5910–5913. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Patel N, Krishnan S, Offman MN, Krol M,
Moss CX, Leighton C, van Delft FW, Holland M, Liu J, Alexander S,
et al: A dyad of lymphoblastic lysosomal cysteine proteases
degrades the antileukemic drug L-asparaginase. J Clin Invest.
119:1964–1973. 2009.PubMed/NCBI
|
|
66
|
Avramis VI and Tiwari PN: Asparaginase
(native ASNase or pegylated ASNase) in the treatment of acute
lymphoblastic leukemia. Int J Nanomedicine. 1:241–254. 2006.
|
|
67
|
Ghasemian A, Al-Marzoqi AH, Al-Abodi HR,
Alghanimi YK, Kadhum SA, Shokouhi Mostafavi SK and Fattahi A:
Bacterial l-asparaginases for cancer therapy: Current knowledge and
future perspectives. J Cell Physiol. 234:19271–19279. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sokolov NN, Eldarov MA, Pokrovskaya MV,
Aleksandrova SS, Abakumova OY, Podobed OV, Melik-Nubarov NS,
Kudryashova EV, Grishin DV and Archakov AI: Bacterial recombinant
L-asparaginases: Properties, structure and anti-proliferative
activity. Biomed Khim. 61:312–324. 2015.In Russian. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Krishnapura PR, Belur PD and Subramanya S:
A critical review on properties and applications of microbial
l-asparaginases. Crit Rev Microbiol. 42:720–737. 2016.
|
|
70
|
Chiu M, Taurino G, Bianchi MG, Kilberg MS
and Bussolati O: Asparagine synthetase in cancer: Beyond acute
lymphoblastic leukemia. Front Oncol. 9:14802019. View Article : Google Scholar
|
|
71
|
Egler RA, Ahuja SP and Matloub Y:
L-asparaginase in the treatment of patients with acute
lymphoblastic leukemia. J Pharmacol Pharmacother. 7:62–71. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lee MB and Bridges JM: L-Asparaginase
activity in human and animal sera. Nature. 217:758–759. 1968.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Oinonen C, Tikkanen R, Rouvinen J and
Peltonen L: Three-dimensional structure of human lysosomal
aspartylglucosaminidase. Nat Struct Biol. 2:1102–1108. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sugimoto H, Odani S and Yamashita S:
Cloning and expression of cDNA encoding rat liver 60-kDa
lysophospholipase containing an asparaginase-like region and
ankyrin repeat. J Biol Chem. 273:12536–12542. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Bush LA, Herr JC, Wolkowicz M, Sherman NE,
Shore A and Flickinger CJ: A novel asparaginase-like protein is a
sperm auto-antigen in rats. Mol Reprod Dev. 247:233–247. 2002.
View Article : Google Scholar
|
|
76
|
Evtimova V, Zeillinger R, Kaul S and
Weidle UH: Identification of CRASH, a gene deregulated in
gynecological tumors. Int J Oncol. 24:33–41. 2004.
|
|
77
|
Nomme J, Su Y, Konrad M and Lavie A:
Structures of Apo and product-bound human L-asparaginase: Insights
into the mechanism of autoproteolysis and substrate hydrolysis.
Biochemistry. 51:6816–6826. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Böhme L, Bär JW, Hoffmann T, Manhart S,
Ludwig HH, Rosche F and Demuth HU: Isoaspartate residues
dramatically influence substrate recognition and turnover by
proteases. Biol Chem. 389:1043–1053. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Michalska K and Jaskólski M: Structural
aspects of l-asparaginases, their friends and relations. Acta
Biochimica Pol. 53:627–640. 2006. View Article : Google Scholar
|
|
80
|
Dieterich DC, Landwehr M, Reissner C,
Smalla KH, Richter K, Wolf G, Böckers TM, Gundelfinger ED and
Kreutz MR: Gliap-A novel untypical L-asparaginase localized to rat
brain astrocytes. J Neurochem. 85:1117–1125. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Cantor JR, Stone EM, Chantranupong L and
Georgiou G: The human asparaginase-like protein 1 hASRGL1 is an Ntn
Hydrolase with β-aspartyl peptidase activity. Biochemistry.
48:11025–11031. 2009. View Article : Google Scholar
|
|
82
|
Brannigan JA, Dodson G, Duggleby HJ, Moody
PCE, Smith JL, Tomchick DR and Murzin AG: A protein catalytic
framework with an N-terminal nucleophile is capable of
self-activation. Nature. 378:416–419. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Duggleby HJ, Tolley SP, Hill CP, Dodson
EJ, Dodson G and Moody PCE: Penicillin acylase has a
single-amino-acid catalytic Centre. Nature. 373:264–268. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Khan JA, Dunn BM and Tong L: Crystal
Structure of human Taspase1, a crucial protease regulating the
function of MLL. Structure. 13:1443–1452. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lowe J, Stock D, Jap B, Zwickl P,
Baumeister W and Huber R: Crystal structure of the 20S proteasome
from the archaeon T. acidophilum at 3.4 A Resolution. Science.
268:533–539. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Borek D, Michalska K, Brzezinski K, Kisiel
A, Podkowinski J, Bonthron DT, Krowarsch D, Otlewski J and
Jaskolski M: Expression, purification and catalytic activity of
Lupinus luteus asparagine beta-amidohydrolase and its Escherichia
coli homolog. Eur J Biochem. 271:3215–3226. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li W, Irani S, Crutchfield A, Hodge K,
Matthews W, Patel P, Zhang YJ and Stone E: Intramolecular cleavage
of the hASRGL1 Homodimer occurs in two stages. Biochemistry.
55:960–969. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Nomme J, Su Y and Lavie A: Elucidation of
the specific function of the conserved threonine triad responsible
for human l-Asparaginase autocleavage and substrate hydrolysis. J
Mol Biol. 426:2471–2485. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Su Y, Karamitros CS, Nomme J, McSorley T,
Konrad M and Lavie A: Free glycine accelerates the autoproteolytic
activation of human asparaginase. Chem Biol. 20:533–540. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li W, Cantor JR, Yogesha SD, Yang S and
Chantranupong L: Uncoupling Intramolecular processing and substrate
hydrolysis in the N-terminal nucleophile hydrolase hASRGL1 by
circular permutation. ACS Chem Biol. 7:1840–1847. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Karamitros CS and Konrad M: Bacterial
co-expression of the α and β protomers of human l-asparaginase-3:
Achieving essential N-terminal exposure of a catalytically critical
threonine located in the beta-subunit. Protein Expr Purif. 93:1–10.
2014. View Article : Google Scholar
|
|
92
|
Karamitros CS and Konrad M:
Fluorescence-activated cell sorting of Human l-asparaginase mutant
libraries for detecting enzyme variants with enhanced activity. ACS
Chem Biol. 11:2596–2607. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Kelo E, Noronkoski T and Mononen I:
Depletion of L-asparagine supply and apoptosis of leukemia cells
induced by human glycosylasparaginase. Leukemia. 23:1167–1171.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Leader B, Baca QJ and Golan DE: Protein
therapeutics: A summary and pharmacological classification. Nat Rev
Drug Discov. 7:21–39. 2008. View Article : Google Scholar
|
|
95
|
Silverstein SM, Greenbaum S and Stern R:
Hyaluronidase in ophthalmology. J App Res. 12:1–13. 2012.
|
|
96
|
Grabowski GA: Enzyme therapy in type 1
Gaucher disease: Comparative efficacy of mannose-terminated
glucocerebrosidase from natural and recombinant sources. Ann Intern
Med. 122:33–39. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Eng CM, Guffon N, Wilcox WR, Germain DP,
Lee P, Waldek S, Caplan L, Linthorst GE and Desnick RJ;
International Collaborative Fabry Disease Study Group: Safety and
efficacy of recombinant Human α-Galactosidase A replacement therapy
in Fabry's disease. N Engl J Med. 345:9–16. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Klinge L, Straub V, Neudorf U, Schaper J,
Bosbach T, Görlinger K, Wallot M, Richards S and Voit T: Safety and
efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients
with classical infantile Pompe disease: Results of a phase II
clinical trial. Neuromuscul Disord. 15:24–31. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Schalk AM and Lavie A: Structural and
kinetic characterization of guinea Pig. Biochemistry. 53:2318–2328.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wang Y and Guo HC: Two-step dimerization
for autoproteolysis to activate glycosylasparaginase. J Biol Chem.
278:3210–3219. 2003. View Article : Google Scholar
|
|
101
|
Marianayagam NJ, Sunde M and Matthews JM:
The power of two: Protein dimerization in biology. Trends Biochem
Sci. 29:618–625. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Morais SB, Pirolla RAS, Frota NF,
Lourenzoni MR, Gozzo FC and Souza TACB: The role of the quaternary
structure in the activation of human L-asparaginase. J Proteomics.
224:1038182020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Morin A, Meiler J and Mizoue LS:
Computational design of protein-ligand interfaces: Potential in
therapeutic development. Trends Biotechnol. 29:159–66. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Marshall SA, Lazar GA, Chirino AJ and
Desjarlais JR: Rational design and engineering of therapeutic
proteins. Drug Discovery Today. 8:212–221. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Park S and Cochran J: Protein engineering
and design. CRC Press; 2009, View Article : Google Scholar
|
|
106
|
Dinndorf PA, Gootenberg J, Cohen MH,
Keegan P and Pazdur R: FDA drug approval summary: Pegaspargase
(Oncaspar) for the first-line treatment of Children with acute
lymphoblastic leukemia (ALL). Oncologist. 12:991–998. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Schalk AM, Nguyen H-A, Rigouin C and Lavie
A: Identification and structural analysis of an l-asparaginase
enzyme from guinea pig with putative tumor cell killing properties.
J Biol Chem. 289:33175–33186. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Nguyen HA, Su Y and Lavie A: Design and
characterization of Erwinia chrysanthemi l-asparaginase variants
with diminished l-Glutaminase activity. J Biol Chem.
291:17664–17676. 2016. View Article : Google Scholar : PubMed/NCBI
|