You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Silantyev AS, Falzone L, Libra M, Gurina OI, Kardashova KS, Nikolouzakis TK, Nosyrev AE, Sutton CW, Mitsias PD and Tsatsakis A: Current and future trends on diagnosis and prognosis of glioblastoma: From molecular biology to proteomics. Cells. 8:8632019. View Article : Google Scholar : | |
|
Candido S, Lupo G, Pennisi M, Basile MS, Anfuso CD, Petralia MC, Gattuso G, Vivarelli S, Spandidos DA, Libra M and Falzone L: The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer's disease. Oncol Rep. 42:911–922. 2019.PubMed/NCBI | |
|
Armento A, Ehlers J, Schötterl S and Naumann U: Molecular mechanisms of glioma cell motility. Glioblastoma. De Vleeschouwer S: Codon Publications; Brisbane: 2017, View Article : Google Scholar | |
|
Tabatabai G and Wakimoto H: Glioblastoma: State of the Art and future perspectives. Cancers (Basel). 11:10912019. View Article : Google Scholar | |
|
Ohgaki H and Kleihues P: Epidemiology and etiology of gliomas. Acta Neuropathol. 109:93–108. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Ostrom QT, Gittleman H, Stetson L, Virk S and Barnholtz-Sloan JS: Epidemiology of intracranial gliomas. Prog Neurol Surg. 30:1–11. 2018. View Article : Google Scholar | |
|
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, Ashby L, Mechtler L, Goldlust SA, Iwamoto F, et al: Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 18:1373–1385. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tian M, Ma W, Chen Y, Yu Y, Zhu D, Shi J and Zhang Y: Impact of gender on the survival of patients with glioblastoma. Biosci Rep. Nov 7–2018.Epub ahead of print. View Article : Google Scholar | |
|
Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, Kleinschmidt-DeMasters BK, Perry A, Reifenberger G, Stupp R, et al: cIMPACT-NOW update 3: Recommended diagnostic criteria for 'Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV'. Acta Neuropathol. 136:805–810. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao H, Zhu H, Huang J, Zhu Y, Hong M, Zhu H, Zhang J, Li S, Yang L, Lian Y, et al: The synergy of vitamin C with decitabine activates TET2 in leukemic cells and significantly improves overall survival in elderly patients with acute myeloid leukemia. Leuk Res. 66:1–7. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
García MG, Carella A, Urdinguio RG, Bayón GF, Lopez V, Tejedor JR, Sierra MI, García-Toraño E, Santamarina P, Perez RF, et al: Epigenetic dysregulation of TET2 in human glioblastoma. Oncotarget. 9:25922–25934. 2018. View Article : Google Scholar : | |
|
Mansouri A, Hachem LD, Mansouri S, Nassiri F, Laperriere NJ, Xia D, Lindeman NI, Wen PY, Chakravarti A, Mehta MP, et al: MGMT promoter methylation status testing to guide therapy for glioblastoma: Refining the approach based on emerging evidence and current challenges. Neuro Oncol. 21:167–178. 2019. View Article : Google Scholar : | |
|
Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F and Reulen HJ; ALA-Glioma Study Group: Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 7:392–401. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Pichlmeier U, Bink A and Schackert G: Resection and survival in glioblastoma multiforme: An RTOG recursive partitioning analysis of ALA study patients. Neuro Oncol. 10:1025–1034. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Abd-El-Barr MM and Chiocca EA: How much is enough? The question of extent of resection in glioblastoma multiforme. World Neurosurg. 82:e109–e110. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ryken TC, Parney I, Buatti J, Kalkanis SN and Olson JJ: The role of radiotherapy in the management of patients with diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline. J Neurooncol. 125:551–583. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Niyazi M, Brada M, Chalmers AJ, Combs SE, Erridge SC, Fiorentino A, Grosu AL, Lagerwaard FJ, Minniti G, Mirimanoff RO, et al: ESTRO-ACROP guideline 'target delineation of glioblastomas'. Radiother Oncol. 118:35–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wick W, Platten M, Meisner C, Felsberg J, Tabatabai G, Simon M, Nikkhah G, Papsdorf K, Steinbach JP, Sabel M, et al: Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: The NOA-08 randomised, phase 3 trial. Lancet Oncol. 13:707–715. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Rusthoven CG, Koshy M and Sher DJ: Radiation plus temozolomide in patients with glioblastoma. N Engl J Med. 376:2195–2197. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Perry JR, Laperriere N, O'Callaghan CJ, Brandes AA, Menten J, Phillips C, Fay M, Nishikawa R, Cairncross JG, Roa W, et al: Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 376:1027–1037. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
McGranahan T, Therkelsen KE, Ahmad S and Nagpal S: Current state of immunotherapy for treatment of glioblastoma. Curr Treat Options Oncol. 20:242019. View Article : Google Scholar : PubMed/NCBI | |
|
Rominiyi O, Vanderlinden A, Clenton SJ, Bridgewater C, Al-Tamimi Y and Collis SJ: Tumour treating fields therapy for glioblastoma: Current advances and future directions. Br J Cancer. 124:697–709. 2021. View Article : Google Scholar | |
|
Geletneky K, Hajda J, Angelova AL, Leuchs B, Capper D, Bartsch AJ, Neumann JO, Schöning T, Hüsing J, Beelte B, et al: Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. Mol Ther. 25:2620–2634. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, Shacter E and Levine M: Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a prodrug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA. 102:13604–13609. 2005. View Article : Google Scholar | |
|
Chen Q, Espey MG, Sun AY, Lee JH, Krishna MC, Shacter E, Choyke PL, Pooput C, Kirk KL, Buettner GR and Levine M: Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci USA. 104:8749–8754. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, Sandhu S, Carlisle TL, Smith MC, Abu Hejleh T, et al: O2− and H2O2-mediated disruption of fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell. 32:2682017. View Article : Google Scholar | |
|
Klingelhoeffer C, Kämmerer U, Koospal M, Mühling B, Schneider M, Kapp M, Kübler A, Germer CT and Otto C: Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress. BMC Complement Altern Med. 12:612012. View Article : Google Scholar : PubMed/NCBI | |
|
Sauberlich HE: Pharmacology of vitamin C. Annu Rev Nutr. 14:371–391. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Nishikimi M and Yagi K: Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. Am J Clin Nutr. 54(Suppl 6): 1203S–1208S. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Padayatty SJ and Levine M: Vitamin C: The known and the unknown and goldilocks. Oral Dis. 22:463–493. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Carr A and Frei B: Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 13:1007–1024. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Levine M, Wang Y, Katz A, Eck P, Kwon O, Chen S, Lee JH and Padayatty SJ: Ideal vitamin C intake. Biofactors. 15:71–74. 2001. View Article : Google Scholar | |
|
Carr AC and Lykkesfeldt J: Discrepancies in global vitamin C recommendations: A review of RDA criteria and underlying health perspectives. Crit Rev Food Sci Nutr. 61:742–755. 2021. View Article : Google Scholar | |
|
Levine M, Conry-Cantilena C, Wang Y, Welch RW, Washko PW, Dhariwal KR, Park JB, Lazarev A, Graumlich JF, King J and Cantilena LR: Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc Natl Acad Sci USA. 93:3704–3709. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Hoffer LJ, Levine M, Assouline S, Melnychuk D, Padayatty SJ, Rosadiuk K, Rousseau C, Robitaille L and Miller WH Jr: Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Ann Oncol. 19:1969–1974. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Padayatty SJ, Sun AY, Chen Q, Espey MG, Drisko J and Levine M: Vitamin C: Intravenous use by complementary and alternative medicine practitioners and adverse effects. PLoS One. 5:e114142010. View Article : Google Scholar : PubMed/NCBI | |
|
Nielsen TK, Højgaard M, Andersen JT, Poulsen HE, Lykkesfeldt J and Mikines KJ: Elimination of ascorbic acid after high-dose infusion in prostate cancer patients: A pharmacokinetic evaluation. Basic Clin Pharmacol Toxicol. 116:343–348. 2015. View Article : Google Scholar | |
|
Stephenson CM, Levin RD, Spector T and Lis CG: Phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with advanced cancer. Cancer Chemother Pharmacol. 72:139–146. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Torun M, Yardim S, Gönenç A, Sargin H, Menevşe A and Símşek B: Serum beta-carotene, vitamin E, vitamin C and malondialdehyde levels in several types of cancer. J Clin Pharm Ther. 20:259–263. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Mahdavi R, Faramarzi E, Seyedrezazadeh E, Mohammad-Zadeh M and Pourmoghaddam M: Evaluation of oxidative stress, antioxidant status and serum vitamin C levels in cancer patients. Biol Trace Elem Res. 130:1–6. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma A, Tripathi M, Satyam A and Kumar L: Study of antioxidant levels in patients with multiple myeloma. Leuk Lymphoma. 50:809–815. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Emri S, Kilickap S, Kadilar C, Halil MG, Akay H and Besler T: Serum levels of alpha-tocopherol, vitamin C, beta-carotene, and retinol in malignant pleural mesothelioma. Asian Pac J Cancer Prev. 13:3025–3029. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mehdi WA, Zainulabdeen JA and Mehde AA: Investigation of the antioxidant status in multiple myeloma patients: Effects of therapy. Asian Pac J Cancer Prev. 14:3663–3667. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Huijskens MJ, Wodzig WK, Walczak M, Germeraad WT and Bos GM: Ascorbic acid serum levels are reduced in patients with hematological malignancies. Results Immunol. 6:8–10. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fain O, Mathieu E and Thomas M: Scurvy in patients with cancer. BMJ. 316:1661–1662. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Mayland CR, Bennett MI and Allan K: Vitamin C deficiency in cancer patients. Palliat Med. 19:17–20. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Riordan HD, Riordan NH, Jackson JA, Casciari JJ, Hunninghake R, González MJ, Mora EM, Miranda-Massari JR, Rosario N and Rivera A: Intravenous vitamin C as a chemo-therapy agent: A report on clinical cases. P R Health Sci J. 23:115–118. 2004.PubMed/NCBI | |
|
Hoffer LJ, Robitaille L, Zakarian R, Melnychuk D, Kavan P, Agulnik J, Cohen V, Small D and Miller WH Jr: High-dose intravenous vitamin C combined with cytotoxic chemotherapy in patients with advanced cancer: A phase I-II clinical trial. PLoS One. 10:e01202282015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu M, Ohtani H, Zhou W, Ørskov AD, Charlet J, Zhang YW, Shen H, Baylin SB, Liang G, Grønbæk K and Jones PA: Vitamin C increases viral mimicry induced by 5-aza-2′-deoxycytidine. Proc Natl Acad Sci USA. 113:10238–10244. 2016. View Article : Google Scholar | |
|
Shenoy N, Bhagat T, Nieves E, Stenson M, Lawson J, Choudhary GS, Habermann T, Nowakowski G, Singh R, Wu X, et al: Upregulation of TET activity with ascorbic acid induces epigenetic modulation of lymphoma cells. Blood Cancer J. 7:e5872017. View Article : Google Scholar : PubMed/NCBI | |
|
Anthony HM and Schorah CJ: Severe hypovitaminosis C in lung-cancer patients: The utilization of vitamin C in surgical repair and lymphocyte-related host resistance. Br J Cancer. 46:354–367. 1982. View Article : Google Scholar : PubMed/NCBI | |
|
Ramaswamy G and Krishnamoorthy L: Serum carotene, vitamin A, and vitamin C levels in breast cancer and cancer of the uterine cervix. Nutr Cancer. 25:173–177. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Khanzode SS, Muddeshwar MG, Khanzode SD and Dakhale GN: Antioxidant enzymes and lipid peroxidation in different stages of breast cancer. Free Radic Res. 38:81–85. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Popa-Wagner A, Mitran S, Sivanesan S, Chang E and Buga AM: ROS and brain diseases: The good, the bad, and the ugly. Oxid Med Cell Longev. 2013:9635202013. View Article : Google Scholar | |
|
Levine M, Padayatty SJ and Espey MG: Vitamin C: A concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr. 2:78–88. 2011. View Article : Google Scholar : | |
|
Du J, Cullen JJ and Buettner GR: Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim Biophys Acta. 1826:443–457. 2012.PubMed/NCBI | |
|
Harrison FE and May JM: Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radic Biol Med. 46:719–730. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kaźmierczak-Barańska J, Boguszewska K, Adamus-Grabicka A and Karwowski BT: Two faces of vitamin C-antioxidative and pro-oxidative agent. Nutrients. 12:15012020. View Article : Google Scholar | |
|
Lykkesfeldt J and Tveden-Nyborg P: The pharmacokinetics of vitamin C. Nutrients. 11:24122019. View Article : Google Scholar : | |
|
Abbott NJ: Dynamics of CNS barriers: Evolution, differentiation, and modulation. Cell Mol Neurobiol. 25:5–23. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Nualart F, Mack L, García A, Cisternas P, Bongarzone ER, Heitzer M, Jara N, Martínez F, Ferrada L, Espinoza F, et al: Vitamin C transporters, recycling and the bystander effect in the nervous system: SVCT2 versus gluts. J Stem Cell Res Ther. 4:2092014. View Article : Google Scholar : PubMed/NCBI | |
|
Angelow S, Haselbach M and Galla HJ: Functional characterisation of the active ascorbic acid transport into cerebrospinal fluid using primary cultured choroid plexus cells. Brain Res. 988:105–113. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Haselbach M, Wegener J, Decker S, Engelbertz C and Galla HJ: Porcine choroid plexus epithelial cells in culture: Regulation of barrier properties and transport processes. Microsc Res Tech. 52:137–152. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Shi LZ, Li GJ, Wang S and Zheng W: Use of Z310 cells as an in vitro blood-cerebrospinal fluid barrier model: Tight junction proteins and transport properties. Toxicol In Vitro. 22:190–199. 2008. View Article : Google Scholar | |
|
Strazielle N and Ghersi-Egea JF: Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. J Neurosci. 19:6275–6289. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Sotiriou S, Gispert S, Cheng J, Wang Y, Chen A, Hoogstraten-Miller S, Miller GF, Kwon O, Levine M, Guttentag SH and Nussbaum RL: Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nat Med. 8:514–517. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF and Hediger MA: A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature. 399:70–75. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Daruwala R, Song J, Koh WS, Rumsey SC and Levine M: Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett. 460:480–484. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Christensen K, Chawla K, Xiao G, Krebsbach PH and Franceschi RT: Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone Miner Res. 14:893–903. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Mackenzie B, Tsukaguchi H, Weremowicz S, Morton CC and Hediger MA: Human vitamin C (L-ascorbic acid) transporter SVCT1. Biochem Biophys Res Commun. 267:488–494. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Wohlrab C, Phillips E and Dachs GU: Vitamin C transporters in cancer: Current understanding and gaps in knowledge. Front Oncol. 7:742017. View Article : Google Scholar : PubMed/NCBI | |
|
Agus DB, Gambhir SS, Pardridge WM, Spielholz C, Baselga J, Vera JC and Golde DW: Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest. 100:2842–2848. 1997. View Article : Google Scholar | |
|
Ho HTB, Dahlin A and Wang J: Expression profiling of solute carrier gene families at the blood-CSF barrier. Front Pharmacol. 3:1542012. View Article : Google Scholar : PubMed/NCBI | |
|
Bürzle M, Suzuki Y, Ackermann D, Miyazaki H, Maeda N, Clémençon B, Burrier R and Hediger MA: The sodium-dependent ascorbic acid transporter family SLC23. Mol Aspects Med. 34:436–454. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rice ME: Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 23:209–216. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Spector R, Keep RF, Robert Snodgrass S, Smith QR and Johanson CE: A balanced view of choroid plexus structure and function: Focus on adult humans. Exp Neurol. 267:78–86. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mun GH, Kim MJ, Lee JH, Kim HJ, Chung YH, Chung YB, Kang JS, Hwang YI, Oh SH, Kim JG, et al: Immunohistochemical study of the distribution of sodium-dependent vitamin C trans-porters in adult rat brain. J Neurosci Res. 83:919–928. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Ulloa V, García-Robles M, Martínez F, Salazar K, Reinicke K, Pérez F, Godoy DF, Godoy AS and Nualart F: Human choroid plexus papilloma cells efficiently transport glucose and vitamin C. J Neurochem. 127:403–414. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rice M and Russo-Menna I: Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience. 82:1213–1223. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Castro M, Caprile T, Astuya A, Millán C, Reinicke K, Vera JC, Vásquez O, Aguayo LG and Nualart F: High-affinity sodium-vitamin C co-transporters (SVCT) expression in embryonic mouse neurons. J Neurochem. 78:815–823. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Nualart FJ, Rivas CI, Montecinos VP, Godoy AS, Guaiquil VH, Golde DW and Vera JC: Recycling of vitamin C by a bystander effect. J Biol Chem. 278:10128–10133. 2003. View Article : Google Scholar | |
|
Kaufman S: Coenzymes and hydroxylases: Ascorbate and dopamine-beta-hydroxylase; tetrahydropteridines and phenyl-alanine and tyrosine hydroxylases. Pharmacol Rev. 18:61–69. 1966.PubMed/NCBI | |
|
Eipper BA, Milgram SL, Husten EJ, Yun HY and Mains RE: Peptidylglycine alpha-amidating monooxygenase: A multifunctional protein with catalytic, processing, and routing domains. Protein Sci. 2:489–497. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Eldridge CF, Bunge MB, Bunge RP and Wood PM: Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol. 105:1023–1034. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu S, Li L, Weeber EJ and May JM: Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J Neurosci Res. 85:1046–1056. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Rebec GV and Pierce RC: A vitamin as neuromodulator: Ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol. 43:537–565. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Pastor P, Cisternas P, Salazar K, Silva-Alvarez C, Oyarce K, Jara N, Espinoza F, Martínez AD and Nualart F: SVCT2 vitamin C transporter expression in progenitor cells of the post-natal neurogenic niche. Front Cell Neurosci. 7:1192013. View Article : Google Scholar | |
|
Oyarce K, Bongarzone ER and Nualart F: Unconventional neurogenic niches and neurogenesis modulation by vitamins. J Stem Cell Res Ther. 4:1842014.PubMed/NCBI | |
|
Davson H and Oldendorf WH: Symposium on membrane transport. Transport in the central nervous system. Proc R Soc Med. 60:326–329. 1967.PubMed/NCBI | |
|
Reiber H, Ruff M and Uhr M: Ascorbate concentration in human cerebrospinal fluid (CSF) and serum. Intrathecal accumulation and CSF flow rate. Clinica Chimica Acta. 217:163–173. 1993. View Article : Google Scholar | |
|
Cameron E and Pauling L: Supplemental ascorbate in the supportive treatment of cancer: Prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 73:3685–3689. 1976. View Article : Google Scholar : PubMed/NCBI | |
|
Creagan ET, Moertel CG, O'Fallon JR, Schutt AJ, O'Connell MJ, Rubin J and Frytak S: Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N Engl J Med. 301:687–690. 1979. View Article : Google Scholar : PubMed/NCBI | |
|
Moertel CG, Fleming TR, Creagan ET, Rubin J, O'Connell MJ and Ames MM: High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison. N Engl J Med. 312:137–141. 1985. View Article : Google Scholar : PubMed/NCBI | |
|
Monti DA, Mitchell E, Bazzan AJ, Littman S, Zabrecky G, Yeo CJ, Pillai MV, Newberg AB, Deshmukh S and Levine M: Phase I evaluation of intravenous ascorbic acid in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. PLoS One. 7:e297942012. View Article : Google Scholar : PubMed/NCBI | |
|
Welsh JL, Wagner BA, van't Erve TJ, Zehr PS, Berg DJ, Halfdanarson TR, Yee NS, Bodeker KL, Du J, Roberts LJ II, et al: Pharmacological ascorbate with gemcitabine for the control of metastatic and node-positive pancreatic cancer (PACMAN): Results from a phase I clinical trial. Cancer Chemother Pharmacol. 71:765–775. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Herst PM, Broadley KWR, Harper JL and McConnell MJ: Pharmacological concentrations of ascorbate radiosensitize glio-blastoma multiforme primary cells by increasing oxidative DNA damage and inhibiting G2/M arrest. Free Radic Biol Med. 52:1486–1493. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Y, Chapman J, Levine M, Polireddy K, Drisko J and Chen Q: High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. 6:222ra182014. View Article : Google Scholar : PubMed/NCBI | |
|
Fritz H, Flower G, Weeks L, Cooley K, Callachan M, McGowan J, Skidmore B, Kirchner L and Seely D: Intravenous vitamin C and cancer: A systematic review. Integr Cancer Ther. 13:280–300. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Carr AC and Cook J: Intravenous vitamin C for cancer therapy-identifying the current gaps in our knowledge. Front Physiol. 9:11822018. View Article : Google Scholar | |
|
Violet PC and Levine M: Pharmacologic ascorbate in myeloma treatment: Doses matter. EBioMedicine. 18:9–10. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Schoenfeld JD, Alexander MS, Waldron TJ, Sibenaller ZA, Spitz DR, Buettner GR, Allen BG and Cullen JJ: Pharmacological ascorbate as a means of sensitizing cancer cells to radio-chemo-therapy while protecting normal tissue. Semin Radiat Oncol. 29:25–32. 2019. View Article : Google Scholar | |
|
Bienert GP, Schjoerring JK and Jahn TP: Membrane transport of hydrogen peroxide. Biochim Biophys Acta. 1758:994–1003. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK and Jahn TP: Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem. 282:1183–1192. 2007. View Article : Google Scholar | |
|
Erudaitius D, Huang A, Kazmi S, Buettner GR and Rodgers VG: Peroxiporin expression is an important factor for cancer cell susceptibility to therapeutic H2O2: Implications for pharmacological ascorbate therapy. PLoS One. 12:e01704422017. View Article : Google Scholar | |
|
Deubzer B, Mayer F, Kuçi Z, Niewisch M, Merkel G, Handgretinger R and Bruchelt G: H(2)O(2)-mediated cytotoxicity of pharmacologic ascorbate concentrations to neuroblastoma cells: Potential role of lactate and ferritin. Cell Physiol Biochem. 25:767–774. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Olney KE, Du J, van 't Erve TJ, Witmer JR, Sibenaller ZA, Wagner BA, Buettner GR and Cullen JJ: Inhibitors of hydroperoxide metabolism enhance ascorbate-induced cytotoxicity. Free Radic Res. 47:154–163. 2013. View Article : Google Scholar : | |
|
Du J, Martin SM, Levine M, Wagner BA, Buettner GR, Wang S, Taghiyev AF, Du C, Knudson CM and Cullen JJ: Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer. Clin Cancer Res. 16:509–520. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ibrahim WH, Habib HM, Kamal H, St Clair DK and Chow CK: Mitochondrial superoxide mediates labile iron level: Evidence from Mn-SOD-transgenic mice and heterozygous knockout mice and isolated rat liver mitochondria. Free Radic Biol Med. 65:143–149. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Doskey CM, Buranasudja V, Wagner BA, Wilkes JG, Du J, Cullen JJ and Buettner GR: Tumor cells have decreased ability to metabolize H2O2: Implications for pharmacological ascorbate in cancer therapy. Redox Biol. 10:274–284. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sinnberg T, Noor S, Venturelli S, Berger A, Schuler P, Garbe C and Busch C: The ROS-induced cytotoxicity of ascorbate is attenuated by hypoxia and HIF-1alpha in the NCI60 cancer cell lines. J Cell Mol Med. 18:530–541. 2014. View Article : Google Scholar : | |
|
Du J, Cieslak JA III, Welsh JL, Sibenaller ZA, Allen BG, Wagner BA, Kalen AL, Doskey CM, Strother RK, Button AM, et al: Pharmacological ascorbate radiosensitizes pancreatic cancer. Cancer Res. 75:3314–3326. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Torti SV and Torti FM: Iron and cancer: More ore to be mined. Nat Rev Cancer. 13:342–355. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Uetaki M, Tabata S, Nakasuka F, Soga T and Tomita M: Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stress. Sci Rep. 5:138962015. View Article : Google Scholar : PubMed/NCBI | |
|
El Banna N, Hatem E, Heneman-Masurel A, Léger T, Baïlle D, Vernis L, Garcia C, Martineau S, Dupuy C, Vagner S, et al: Redox modifications of cysteine-containing proteins, cell cycle arrest and translation inhibition: Involvement in vitamin C-induced breast cancer cell death. Redox Biol. 26:1012902019. View Article : Google Scholar : PubMed/NCBI | |
|
Frömberg A, Gutsch D, Schulze D, Vollbracht C, Weiss G, Czubayko F and Aigner A: Ascorbate exerts anti-proliferative effects through cell cycle inhibition and sensitizes tumor cells towards cytostatic drugs. Cancer Chemother Pharmacol. 67:1157–1166. 2011. View Article : Google Scholar : | |
|
Marklund SL, Westman NG, Lundgren E and Roos G: Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res. 42:1955–1961. 1982.PubMed/NCBI | |
|
Johnson RM, Ho YS, Yu DY, Kuypers FA, Ravindranath Y and Goyette GW: The effects of disruption of genes for peroxire-doxin-2, glutathione peroxidase-1, and catalase on erythrocyte oxidative metabolism. Free Radic Biol Med. 48:519–525. 2010. View Article : Google Scholar | |
|
Vaupel P, Höckel M and Mayer A: Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal. 9:1221–1235. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Moulder JE and Rockwell S: Hypoxic fractions of solid tumors: Experimental techniques, methods of analysis, and a survey of existing data. Int J Radiat Oncol Biol Phys. 10:695–712. 1984. View Article : Google Scholar : PubMed/NCBI | |
|
Vaupel P, Mayer A and Höckel M: Tumor hypoxia and malignant progression. Methods Enzymol. 381:335–354. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng W, Liu P, Pan W, Singh SR and Wei Y: Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett. 356:263–267. 2015. View Article : Google Scholar | |
|
Korkolopoulou P, Patsouris E, Konstantinidou AE, Pavlopoulos PM, Kavantzas N, Boviatsis E, Thymara I, Perdiki M, Thomas-Tsagli E, Angelidakis D, et al: Hypoxia-inducible factor 1alpha/vascular endothelial growth factor axis in astrocytomas. Associations with microvessel morphometry, proliferation and prognosis. Neuropathol Appl Neurobiol. 30:267–278. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Mashiko R, Takano S, Ishikawa E, Yamamoto T, Nakai K and Matsumura A: Hypoxia-inducible factor 1α expression is a prognostic biomarker in patients with astrocytic tumors associated with necrosis on MR image. J Neurooncol. 102:43–50. 2011. View Article : Google Scholar | |
|
Søndergaard KL, Hilton DA, Penney M, Ollerenshaw M and Demaine AG: Expression of hypoxia-inducible factor 1alpha in tumours of patients with glioblastoma. Neuropathol Appl Neurobiol. 28:210–217. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Bao L, Chen Y, Lai HT, Wu SY, Wang JE, Hatanpaa KJ, Raisanen JM, Fontenot M, Lega B, Chiang CM, et al: Methylation of hypoxia-inducible factor (HIF)-1α by G9a/GLP inhibits HIF-1 transcriptional activity and cell migration. Nucleic Acids Res. 46:6576–6591. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Campbell EJ, Dachs GU, Morrin HR, Davey VC, Robinson BA and Vissers MCM: Activation of the hypoxia pathway in breast cancer tissue and patient survival are inversely associated with tumor ascorbate levels. BMC Cancer. 19:3072019. View Article : Google Scholar : PubMed/NCBI | |
|
Camarena V and Wang G: The epigenetic role of vitamin C in health and disease. Cell Mol Life Sci. 73:1645–1658. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Satheesh NJ, Samuel SM and Büsselberg D: Combination therapy with vitamin c could eradicate cancer stem cells. Biomolecules. 10:792020. View Article : Google Scholar : | |
|
O'Leary BR, Houwen FK, Johnson CL, Allen BG, Mezhir JJ, Berg DJ, Cullen JJ and Spitz DR: Pharmacological ascorbate as an adjuvant for enhancing radiation-chemotherapy responses in gastric adenocarcinoma. Radiat Res. 189:456–465. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Espey MG, Chen P, Chalmers B, Drisko J, Sun AY, Levine M and Chen Q: Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer. Free Radic Biol Med. 50:1610–1619. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Moser JC, Rawal M, Wagner BA, Du J, Cullen JJ and Buettner GR: Pharmacological ascorbate and ionizing radiation (IR) increase labile iron in pancreatic cancer. Redox Biol. 2:22–27. 2013. View Article : Google Scholar | |
|
Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, Khosh DB, Drisko J and Levine M: Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA. 105:11105–11109. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Lu YX, Wu QN, Chen DL, Chen LZ, Wang ZX, Ren C, Mo HY, Chen Y, Sheng H, Wang YN, et al: Pharmacological ascorbate suppresses growth of gastric cancer cells with GLUT1 overexpression and enhances the efficacy of oxaliplatin through redox modulation. Theranostics. 8:1312–1326. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Oka N, Komuro A, Amano H, Dash S, Honda M, Ota K, Nishimura S, Ueda T, Akagi M and Okada H: Ascorbate sensitizes human osteosarcoma cells to the cytostatic effects of cisplatin. Pharmacol Res Perspect. 8:e006322020. View Article : Google Scholar : PubMed/NCBI | |
|
Kanter M and Akpolat M: Vitamin C protects against ionizing radiation damage to goblet cells of the ileum in rats. Acta Histochem. 110:481–490. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ito Y, Kinoshita M, Yamamoto T, Sato T, Obara T, Saitoh D, Seki S and Takahashi Y: A combination of pre- and post-exposure ascorbic acid rescues mice from radiation-induced lethal gastrointestinal damage. Int J Mol Sci. 14:19618–19635. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Vollbracht C, Schneider B, Leendert V, Weiss G, Auerbach L and Beuth J: Intravenous vitamin C administration improves quality of life in breast cancer patients during chemo-/radiotherapy and aftercare: Results of a retrospective, multicentre, epidemiological cohort study in Germany. In Vivo. 25:983–990. 2011.PubMed/NCBI | |
|
Polireddy K, Dong R, Reed G, Yu J, Chen P, Williamson S, Violet PC, Pessetto Z, Godwin AK, Fan F, et al: High dose parenteral ascorbate inhibited pancreatic cancer growth and metastasis: Mechanisms and a phase I/IIa study. Sci Rep. 7:171882017. View Article : Google Scholar : PubMed/NCBI | |
|
Nauman G, Gray JC, Parkinson R, Levine M and Paller CJ: Systematic review of intravenous ascorbate in cancer clinical trials. Antioxidants (Basel). 7:892018. View Article : Google Scholar | |
|
Nielsen TK, Højgaard M, Andersen JT, Jørgensen NR, Zerahn B, Kristensen B, Henriksen T, Lykkesfeldt J, Mikines KJ and Poulsen HE: Weekly ascorbic acid infusion in castration-resistant prostate cancer patients: A single-arm phase II trial. Transl Androl Urol. 6:517–528. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang F, He MM, Wang ZX, Li S, Jin Y, Ren C, Shi SM, Bi BT, Chen SZ, Lv ZD, et al: Phase I study of high-dose ascorbic acid with mFOLFOX6 or FOLFIRI in patients with metastatic colorectal cancer or gastric cancer. BMC Cancer. 19:4602019. View Article : Google Scholar : PubMed/NCBI | |
|
Alexander MS, Wilkes JG, Schroeder SR, Buettner GR, Wagner BA, Du J, Gibson-Corley K, O'Leary BR, Spitz DR, Buatti JM, et al: Pharmacologic ascorbate reduces radiation-induced normal tissue toxicity and enhances tumor radiosensitization in pancreatic cancer. Cancer Res. 78:6838–6851. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ou J, Zhu X, Chen P, Du Y, Lu Y, Peng X, Bao S, Wang J, Zhang X, Zhang T and Pang CLK: A randomized phase II trial of best supportive care with or without hyperthermia and vitamin C for heavily pretreated, advanced, refractory non-small-cell lung cancer. J Adv Res. 24:175–182. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Allen BG, Bodeker KL, Smith MC, Monga V, Sandhu S, Hohl R, Carlisle T, Brown H, Hollenbeck N, Vollstedt S, et al: First-in-human phase I clinical trial of pharmacologic ascorbate combined with radiation and temozolomide for newly diagnosed glioblastoma. Clin Cancer Res. 25:6590–6597. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Baillie N, Carr AC and Peng S: The use of intravenous vitamin C as a supportive therapy for a patient with glioblastoma multiforme. Antioxidants (Basel). 7:1152018. View Article : Google Scholar | |
|
Cushing CM, Petronek MS, Bodeker KL, Vollstedt S, Brown HA, Opat E, Hollenbeck NJ, Shanks T, Berg DJ, Smith BJ, et al: Magnetic resonance imaging (MRI) of pharmacological ascorbate-induced iron redox state as a biomarker in subjects undergoing radio-chemotherapy. Redox Biol. 38:1018042021. View Article : Google Scholar | |
|
Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, Wesley RA and Levine M: Vitamin C pharmacokinetics: Implications for oral and intravenous use. Ann Intern Med. 140:533–537. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Fowler AA III, Syed AA, Knowlson S, Sculthorpe R, Farthing D, DeWilde C, Farthing CA, Larus TL, Martin E, Brophy DF, et al: Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 12:322014. View Article : Google Scholar : PubMed/NCBI | |
|
Zabet MH, Mohammadi M, Ramezani M and Khalili H: Effect of high-dose ascorbic acid on vasopressor's requirement in septic shock. J Res Pharm Pract. 5:94–100. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka H, Matsuda T, Miyagantani Y, Yukioka T, Matsuda H and Shimazaki S: Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: A randomized, prospective study. Arch Surg. 135:326–331. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Li G, Qin Z, Chen Z, Xie L, Wang R and Zhao H: Tumor microenvironment in treatment of glioma. Open Med (Wars). 12:247–251. 2017. View Article : Google Scholar | |
|
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, et al: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 330:841–845. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Charles NA, Holland EC, Gilbertson R, Glass R and Kettenmann H: The brain tumor microenvironment. Glia. 60:502–514. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Poon CC, Sarkar S, Yong VW and Kelly JJP: Glioblastoma-associated microglia and macrophages: Targets for therapies to improve prognosis. Brain. 140:1548–1560. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Poon CC, Gordon PMK, Liu K, Yang R, Sarkar S, Mirzaei R, Ahmad ST, Hughes ML, Yong VW and Kelly JJP: Differential microglia and macrophage profiles in human IDH-mutant and -wild type glioblastoma. Oncotarget. 10:3129–3143. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tomaszewski W, Sanchez-Perez L, Gajewski TF and Sampson JH: Brain tumor microenvironment and host state: Implications for immunotherapy. Clin Cancer Res. 25:4202–4210. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hwang SY, Yoo BC, Jung J, Oh ES, Hwang JS, Shin JA, Kim SY, Cha SH and Han IO: Induction of glioma apoptosis by microglia-secreted molecules: The role of nitric oxide and cathepsin B. Biochim Biophys Acta. 1793:1656–1668. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Chicoine MR, Zahner M, Won EK, Kalra RR, Kitamura T, Perry A and Higashikubo R: The in vivo antitumoral effects of lipopolysaccharide against glioblastoma multiforme are mediated in part by Toll-like receptor 4. Neurosurgery. 60:372–381. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Martins TA, Schmassmann P, Shekarian T, Boulay JL, Ritz MF, Zanganeh S, vom Berg J and Hutter G: Microglia-centered combinatorial strategies against glioblastoma. Front Immunol. 11:5719512020. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta K and Burns TC: Radiation-induced alterations in the recurrent glioblastoma microenvironment: Therapeutic implications. Front Oncol. 8:5032018. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshimura M, Itasaka S, Harada H and Hiraoka M: Micro-environment and radiation therapy. Biomed Res Int. 2013:6853082013. View Article : Google Scholar | |
|
Bellail AC, Hunter SB, Brat DJ, Tan C and van Meir EG: Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol. 36:1046–1069. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Wild-Bode C, Weller M, Rimner A, Dichgans J and Wick W: Sublethal irradiation promotes migration and invasiveness of glioma cells: Implications for radiotherapy of human glioblastoma. Cancer Res. 61:2744–2750. 2001.PubMed/NCBI | |
|
Shankar A, Kumar S, Iskander AS, Varma NR, Janic B, deCarvalho A, Mikkelsen T, Frank JA, Ali MM, Knight RA, et al: Subcurative radiation significantly increases cell proliferation, invasion, and migration of primary glioblastoma multiforme in vivo. Chin J Cancer. 33:148–158. 2014. View Article : Google Scholar : | |
|
Wank M, Schilling D, Reindl J, Meyer B, Gempt J, Motov S, Alexander F, Wilkens JJ, Schlegel J, Schmid TE and Combs SE: Evaluation of radiation-related invasion in primary patient-derived glioma cells and validation with established cell lines: Impact of different radiation qualities with differing LET. J Neurooncol. 139:583–590. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wank M, Schilling D, Schmid TE, Meyer B, Gempt J, Barz M, Schlegel J, Liesche F, Kessel KA, Wiestler B, et al: Human glioma migration and infiltration properties as a target for personalized radiation medicine. Cancers (Basel). 10:4562018. View Article : Google Scholar | |
|
Zhang X, Wang X, Xu R, Ji J, Xu Y, Han M, Wei Y, Huang B, Chen A, Zhang Q, et al: YM155 decreases radiation-induced invasion and reverses epithelial-mesenchymal transition by targeting STAT3 in glioblastoma. J Transl Med. 16:792018. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta K, Vuckovic I, Zhang S, Xiong Y, Carlson BL, Jacobs J, Olson I, Petterson XM, Macura SI, Sarkaria J and Burns TC: Radiation induced metabolic alterations associate with tumor aggressiveness and poor outcome in glioblastoma. Front Oncol. 10:5352020. View Article : Google Scholar : PubMed/NCBI | |
|
Dixit S, Bernardo A, Walker JM, Kennard JA, Kim GY, Kessler ES and Harrison FE: Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice. ACS Chem Neurosci. 6:570–581. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Portugal CC, Socodato R and Relvas JB: The ascorbate transporter SVCT2 to target microglia-dependent inflammation. Oncotarget. 8:99217–99218. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Azzolini C, Fiorani M, Cerioni L, Guidarelli A and Cantoni O: Sodium-dependent transport of ascorbic acid in U937 cell mitochondria. IUBMB Life. 65:149–153. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Muñoz-Montesino C, Roa FJ, Peña E, González M, Sotomayor K, Inostroza E, Muñoz CA, González I, Maldonado M, Soliz C, et al: Mitochondrial ascorbic acid transport is mediated by a low-affinity form of the sodium-coupled ascorbic acid transporter-2. Free Radic Biol Med. 70:241–254. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Peña E, Roa FJ, Inostroza E, Sotomayor K, González M, Gutierrez-Castro FA, Maurin M, Sweet K, Labrousse C, Gatica M, et al: Increased expression of mitochondrial sodium-coupled ascorbic acid transporter-2 (mitSVCT2) as a central feature in breast cancer. Free Radic Biol Med. 135:283–292. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Roa FJ, Peña E, Gatica M, Escobar-Acuña K, Saavedra P, Maldonado M, Cuevas ME, Moraga-Cid G, Rivas CI and Muñoz-Montesino C: Therapeutic use of vitamin C in cancer: Physiological considerations. Front Pharmacol. 11:2112020. View Article : Google Scholar : PubMed/NCBI | |
|
McCaffrey G, Staatz WD, Quigley CA, Nametz N, Seelbach MJ, Campos CR, Brooks TA, Egleton RD and Davis TP: Tight junctions contain oligomeric protein assembly critical for maintaining blood-brain barrier integrity in vivo. J Neurochem. 103:2540–2555. 2007.PubMed/NCBI | |
|
Kook SY, Lee KM, Kim Y, Cha MY, Kang S, Baik SH, Lee H, Park R and Mook-Jung I: High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell Death Dis. 5:e10832014. View Article : Google Scholar : PubMed/NCBI | |
|
Dubois LG, Campanati L, Righy C, D'Andrea-Meira I, Spohr TC, Porto-Carreiro I, Pereira CM, Balça-Silva J, Kahn SA, DosSantos MF, et al: Gliomas and the vascular fragility of the blood brain barrier. Front Cell Neurosci. 8:4182014. View Article : Google Scholar | |
|
Prata C, Hrelia S and Fiorentini D: Peroxiporins in cancer. Int J Mol Sci. 20:13712019. View Article : Google Scholar : | |
|
Henzler T and Steudle E: Transport and metabolic degradation of hydrogen peroxide in Chara corallina: Model calculations and measurements with the pressure probe suggest transport of H(2)O(2) across water channels. J Exp Bot. 51:2053–2066. 2000. View Article : Google Scholar | |
|
Noell S, Ritz R, Wolburg-Buchholz K, Wolburg H and Fallier-Becker P: An allograft glioma model reveals the depen-dence of aquaporin-4 expression on the brain microenvironment. PLoS One. 7:e365552012. View Article : Google Scholar | |
|
Warth A, Kröger S and Wolburg H: Redistribution of aqua-porin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol. 107:311–318. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Markert JM, Fuller CM, Gillespie GY, Bubien JK, McLean LA, Hong RL, Lee K, Gullans SR, Mapstone TB and Benos DJ: Differential gene expression profiling in human brain tumors. Physiol Genomics. 5:21–33. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Papadopoulos MC and Saadoun S: Key roles of aquaporins in tumor biology. Biochim Biophys Acta. 1848:2576–2583. 2015. View Article : Google Scholar | |
|
Labak CM, Wang PY, Arora R, Guda MR, Asuthkar S, Tsung AJ and Velpula KK: Glucose transport: Meeting the metabolic demands of cancer, and applications in glioblastoma treatment. Am J Cancer Res. 6:1599–1608. 2016.PubMed/NCBI | |
|
Castro MA, Pozo M, Cortés C, García Mde L, Concha II and Nualart F: Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes. J Neurochem. 102:773–782. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Azzalin A, Nato G, Parmigiani E, Garello F, Buffo A and Magrassi L: Inhibitors of GLUT/SLC2A enhance the action of BCNU and temozolomide against high-grade gliomas. Neoplasia. 19:364–373. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Astuya A, Caprile T, Castro M, Salazar K, García Mde L, Reinicke K, Rodríguez F, Vera JC, Millán C, Ulloa V, et al: Vitamin C uptake and recycling among normal and tumor cells from the central nervous system. J Neurosci Res. 79:146–156. 2005. View Article : Google Scholar | |
|
Chen S, Roffey DM, Dion CA, Arab A and Wai EK: Effect of perioperative vitamin C supplementation on postoperative pain and the incidence of chronic regional pain syndrome: A systematic review and meta-analysis. Clin J Pain. 32:179–185. 2016. View Article : Google Scholar | |
|
Salazar K, Martínez F, Pérez-Martín M, Cifuentes M, Trigueros L, Ferrada L, Espinoza F, Saldivia N, Bertinat R, Forman K, et al: SVCT2 expression and function in reactive astrocytes is a common event in different brain pathologies. Mol Neurobiol. 55:5439–5452. 2018. View Article : Google Scholar | |
|
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, et al: Neuroinflammation in Alzheimer's disease. Lancet Neurol. 14:388–405. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Berger UV, Lu XC, Liu W, Tang Z, Slusher BS and Hediger MA: Effect of middle cerebral artery occlusion on mRNA expression for the sodium-coupled vitamin C transporter SVCT2 in rat brain. J Neurochem. 86:896–906. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Savini I, Rossi A, Catani MV, Ceci R and Avigliano L: Redox regulation of vitamin C transporter SVCT2 in C2C12 myotubes. Biochem Biophys Res Commun. 361:385–390. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Reuter S, Gupta SC, Chaturvedi MM and Aggarwal BB: Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med. 49:1603–1616. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Harris HR, Orsini N and Wolk A: Vitamin C and survival among women with breast cancer: A meta-analysis. Eur J Cancer. 50:1223–1231. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wilson MK, Baguley BC, Wall C, Jameson MB and Findlay MP: Review of high-dose intravenous vitamin C as an anticancer agent. Asia Pac J Clin Oncol. 10:22–37. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hunnisett A, Davies S, McLaren-Howard J, Gravett P, Finn M and Gueret-Wardle D: Lipoperoxides as an index of free radical activity in bone marrow transplant recipients. Preliminary observations. Biol Trace Elem Res. 47:125–132. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Nan-Ya K, Kajihara M, Kojima N and Degawa M: Usefulness of urinary kidney injury molecule-1 (Kim-1) as a biomarker for cisplatin-induced sub-chronic kidney injury. J Appl Toxicol. 35:124–132. 2015. View Article : Google Scholar | |
|
Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, Sandhu S, Carlisle TL, Smith MC, Abu Hejleh T, et al: O2− and H2O2-mediated disruption of fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell. 31:487–500.e8. 2017. View Article : Google Scholar | |
|
Attia M, Essa EA, Zaki RM and Elkordy AA: An overview of the antioxidant effects of ascorbic acid and alpha lipoic acid (in liposomal forms) as adjuvant in cancer treatment. Antioxidants (Basel). 9:3592020. View Article : Google Scholar | |
|
Milletti F: Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov Today. 17:850–860. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hultqvist G, Syvänen S, Fang XT, Lannfelt L and Sehlin D: Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor. Theranostics. 7:308–318. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Staquicini FI, Ozawa MG, Moya CA, Driessen WH, Barbu EM, Nishimori H, Soghomonyan S, Flores LG, Liang X II, Paolillo V, et al: Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J Clin Invest. 121:161–173. 2011. View Article : Google Scholar : | |
|
Tong HI, Kang W, Davy PM, Shi Y, Sun S, Allsopp RC and Lu Y: Monocyte trafficking, engraftment, and delivery of nanoparticles and an exogenous gene into the acutely inflamed brain tissue-evaluations on monocyte-based delivery system for the central nervous system. PLoS One. 11:e01540222016. View Article : Google Scholar | |
|
Di Tacchio M, Macas J, Weissenberger J, Sommer K, Bähr O, Steinbach JP, Senft C, Seifert V, Glas M, Herrlinger U, et al: Tumor vessel normalization, immunostimulatory reprogramming, and improved survival in glioblastoma with combined inhibition of PD-1, angiopoietin-2, and VEGF. Cancer Immunol Res. 7:1910–1927. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Przystal JM, Waramit S, Pranjol MZI, Yan W, Chu G, Chongchai A, Samarth G, Olaciregui NG, Tabatabai G, Carcaboso AM, et al: Efficacy of systemic temozolomide-activated phage-targeted gene therapy in human glioblastoma. EMBO Mol Med. 11:e84922019. View Article : Google Scholar : PubMed/NCBI | |
|
Carr A, Wohlrab C, Young P and Bellomo R: Stability of intravenous vitamin C solutions: A technical report. Crit Care Resusc. 20:180–181. 2018.PubMed/NCBI |