|
1
|
Al-Hamadani M, Habermann TM, Cerhan JR,
Macon WR, Maurer MJ and Go RS: Non-Hodgkin lymphoma subtype
distribution, geodemographic patterns, and survival in the US: A
longitudinal analysis of the National cancer data base from 1998 to
2011. Am J Hematol. 90:790–795. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Alessandri AJ, Pritchard SL, Schultz KR
and Massing BG: A population-based study of pediatric anaplastic
large cell lymphoma. Cancer. 94:1830–1835. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Swerdlow SH, Harris NL, Jaffe ES, Pileri
SA, Stein H and Thiele J: WHO classification of tumours of
hematopoietic and lymphoid tissues. 2. 4th edition. International
Agency for Research on Cancer (IARC); Lyon: 2017
|
|
4
|
Morris SW, Kirstein MN, Valentine MB,
Dittmer KG, Shapiro DN, Saltman DL and Look AT: Fusion of a kinase
gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's
lymphoma. Science. 263:1281–1284. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ma Z, Cools J, Marynen P, Cui X, Siebert
R, Gesk S, Schlegelberger B, Peeters B, De Wolf-Peeters C,
Wlodarska I and Morris SW: Inv(2)(p23q35) in anaplastic large-cell
lymphoma induces constitutive anaplastic lymphoma kinase (ALK)
tyrosine kinase activation by fusion to ATIC, an enzyme involved in
purine nucleotide biosynthesis. Blood. 95:2144–2149. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hernández L, Pinyol M, Hernández S, Beà S,
Pulford K, Rosenwald A, Lamant L, Falini B, Ott G, Mason DY, et al:
TRK-fused gene (TFG) is a new partner of ALK in anaplastic large
cell lymphoma producing two structurally different TFG-ALK
translocations. Blood. 94:3265–3268. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lamant L, Dastugue N, Pulford K, Delsol G
and Mariamé B: A new fusion gene TPM3-ALK in anaplastic large cell
lymphoma created by a (1;2)(q25;p23) translocation. Blood.
93:3088–3095. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Tort F, Pinyol M, Pulford K, Roncador G,
Hernandez L, Nayach I, Kluin-Nelemans HC, Kluin P, Touriol C,
Delsol G, et al: Molecular characterization of a new ALK
translocation involving moesin (MSN-ALK) in anaplastic large cell
lymphoma. Lab Invest. 81:419–426. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Savage KJ, Harris NL, Vose JM, Ullrich F,
Jaffe ES, Connors JM, Rimsza L, Pileri SA, Chhanabhai M, Gascoyne
RD, et al: ALK-anaplastic large-cell lymphoma is clinically and
immunophenotypically different from both ALK+ ALCL and peripheral
T-cell lymphoma, not otherwise specified: Report from the
International peripheral t-cell lymphoma project. Blood.
111:5496–5504. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Larose H, Burke GAA, Lowe EJ and Turner
SD: From bench to bedside: The past, present and future of therapy
for systemic paediatric ALCL, ALK. Br J Haematol. 185:1043–1054.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Schmitz N, Trumper L, Ziepert M, Nickelsen
M, Ho AD, Metzner B, Peter N, Loeffler M, Rosenwald A and
Pfreundschuh M: Treatment and prognosis of mature T-cell and
NK-cell lymphoma: An analysis of patients with T-cell lymphoma
treated in studies of the German high-grade non-hodgkin lymphoma
study group. Blood. 116:3418–3425. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sibon D, Nguyen DP, Schmitz N, Suzuki R,
Feldman AL, Gressin R, Lamant L, Weisenburger DD, Rosenwald A,
Nakamura S, et al: ALK-positive anaplastic large-cell lymphoma in
adults: An individual patient data pooled analysis of 263 patients.
Haematologica. 104:e562–e565. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Abramson JS, Feldman T, Kroll-Desrosiers
AR, Muffly LS, Winer E, Flowers CR, Lansigan F, Nabhan C, Nastoupil
LJ, Nath R, et al: Peripheral T-cell lymphomas in a large US
multicenter cohort: Prognostication in the modern era including
impact of frontline therapy. Ann Oncol. 25:2211–2217. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Escalon MP, Liu NS, Yang Y, Hess M, Walker
PL, Smith TL and Dang NH: Prognostic factors and treatment of
patients with T-cell non-Hodgkin lymphoma: The M D Anderson cancer
center experience. Cancer. 103:2091–2098. 2005. View Article : Google Scholar
|
|
15
|
Simon A, Peoch M, Casassus P, Deconinck E,
Colombat P, Desablens B, Tournilhac O, Eghbali H, Foussard C,
Jaubert J, et al: Upfront VIP-reinforced-ABVD (VIP-rABVD) is not
superior to CHOP/21 in newly diagnosed peripheral T cell lymphoma.
Results of the randomized phase III trial GOELAMS-LTP95. Br J
Haematol. 151:159–166. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sibon D, Fournier M, Brière J, Lamant L,
Haioun C, Coiffier B, Bologna S, Morel P, Gabarre J, Hermine O, et
al: Long-term outcome of adults with systemic anaplastic large-cell
lymphoma treated within the groupe d'etude des lymphomes de
l'adulte trials. J Clin Oncol. 30:3939–3946. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Brugières L, Quartier P, Le Deley MC,
Pacquement H, Perel Y, Bergeron C, Schmitt C, Landmann J, Patte C,
Terrier-Lacombe MJ, et al: Relapses of childhood anaplastic
large-cell lymphoma: Treatment results in a series of 41 children-a
report from the French society of pediatric oncology. Ann Oncol.
11:53–58. 2000. View Article : Google Scholar
|
|
18
|
Corradini P, Tarella C, Zallio F, Dodero
A, Zanni M, Valagussa P, Gianni AM, Rambaldi A, Barbui T and
Cortelazzo S: Long-term follow-up of patients with peripheral
T-cell lymphomas treated up-front with high-dose chemotherapy
followed by autologous stem cell transplantation. Leukemia.
20:1533–1538. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
d'Amore F, Relander T, Lauritzsen GF,
Jantunen E, Hagberg H, Anderson H, Holte H, Österborg A, Merup M,
Brown P, et al: Up-front autologous stem-cell transplantation in
peripheral T-cell lymphoma: NLG-T-01. J Clin Oncol. 30:3093–3099.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Reimer P, Rudiger T, Geissinger E,
Weissinger F, Nerl C, Schmitz N, Engert A, Einsele H,
Müller-Hermelink HK and Wilhelm M: Autologous stem-cell
transplantation as first-line therapy in peripheral T-cell
lymphomas: Results of a prospective multicenter study. J Clin
Oncol. 27:106–113. 2009. View Article : Google Scholar
|
|
21
|
Wilhelm M, Smetak M, Reimer P, Geissinger
E, Ruediger T, Metzner B, Schmitz N, Engert A, Schaefer-Eckart K
and Birkmann J: First-line therapy of peripheral T-cell lymphoma:
Extension and long-term follow-up of a study investigating the role
of autologous stem cell transplantation. Blood Cancer J.
6:e4522016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Rodriguez J, Conde E, Gutierrez A, Arranz
R, León A, Marín J, Bendandi M, Albo C and Caballero MD: The
results of consolidation with autologous stem-cell transplantation
in patients with peripheral T-cell lymphoma (PTCL) in first
complete remission: The Spanish lymphoma and autologous
transplantation group experience. Ann Oncol. 18:652–657. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
He XH, Li B, Zou SM, Dong M, Zhou SY, Yang
JL, Xue LY, Yang S, Liu P, Qin Y, et al: Efficacy of peripheral
blood stem cell transplantation versus conventional chemotherapy on
anaplastic large-cell lymphoma: A retrospective study of 64
patients from a single center. Chin J Cancer. 31:532–540. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mehta N, Maragulia JC, Moskowitz A, Hamlin
PA, Lunning MA, Moskowitz CH, Zelenetz A, Matasar MJ, Sauter C,
Goldberg J and Horwitz SM: A retrospective analysis of peripheral
T-cell lymphoma treated with the intention to transplant in the
first remission. Clin Lymphoma Myeloma Leuk. 13:664–670. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ellin F, Landstrom J, Jerkeman M and
Relander T: Real-world data on prognostic factors and treatment in
peripheral T-cell lymphomas: A study from the Swedish lymphoma
registry. Blood. 124:1570–1577. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Horwitz SM, Ansell S, Ai WZ, Barnes J,
Barta SK, Clemens MW, Dogan A, Goodman AM, Goyal G, Guitart J, et
al: NCCN Guidelines Insights: T-Cell Lymphomas, Version 1.2021. J
Natl Compr Canc Netw. 18:1460–1467. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kharfan-Dabaja MA, Kumar A, Ayala E,
Hamadani M, Reimer P, Gisselbrecht C, d'Amore F, Jantunen E, Ishida
T, Bazarbachi A, et al: Clinical practice recommendations on
indication and timing of hematopoietic cell transplantation in
Mature T cell and NK/T cell lymphomas: An International
collaborative effort on behalf of the guidelines committee of the
American society for blood and marrow transplantation. Biol Blood
Marrow Transplant. 23:1826–1838. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Park SI, Horwitz SM, Foss FM, Pinter-Brown
LC, Carson KR, Rosen ST, Pro B, His ED, Federico M, Gisselbrecht C,
et al: The role of autologous stem cell transplantation in patients
with nodal peripheral T-cell lymphomas in first complete remission:
Report from COMPLETE, a prospective, multicenter cohort study.
Cancer. 125:1507–1517. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Fossard G, Broussais F, Coelho I, Bailly
S, Nicolas-Virelizier E, Toussaint E, Lancesseur C, Le Bras F,
Willems E, Tchernonog E, et al: Role of up-front autologous
stem-cell transplantation in peripheral T-cell lymphoma for
patients in response after induction: An analysis of patients from
LYSA centers. Ann Oncol. 29:715–723. 2018. View Article : Google Scholar
|
|
30
|
Domingo-Domenech E, Boumendil A, Climent
F, Sengeloev H, Wahlin B, Wattad W, Arat M, Finel H, Schapp N,
Ganser A, et al: Autologous hematopoietic stem cell transplantation
for relapsed/refractory systemic anaplastic large cell lymphoma. A
retrospective analysis of the lymphoma working party (LWP) of the
EBMT. Bone Marrow Transplant. 55:796–803. 2020. View Article : Google Scholar
|
|
31
|
Domingo-Domenech E, Boumendil A, Climent
F, Socié G, Kroschinsky F, Finel H, Vandenbergue E, Nemet D,
Stelljes M, Bittenbring JT, et al: Allogeneic hematopoietic stem
cell transplantation for patients with relapsed/refractory systemic
anaplastic large cell lymphoma. A retrospective analysis of the
lymphoma working party of the European society for blood and marrow
transplantation. Bone Marrow Transplant. 55:633–640. 2020.
View Article : Google Scholar
|
|
32
|
Fukano R, Mori T, Kobayashi R, Mitsui T,
Fujita N, Iwasaki F, Suzumiya J, Chin M, Goto H, Takahashi Y, et
al: Haematopoietic stem cell transplantation for relapsed or
refractory anaplastic large cell lymphoma: A study of children and
adolescents in Japan. Br J Haematol. 168:557–563. 2015. View Article : Google Scholar
|
|
33
|
Fukano R, Mori T, Fujita N, Kobayashi R,
Mitsui T, Kato K, Suzuki R, Suzumiya J, Fukuda T, Shindo M, et al:
Successful outcome with reduced-intensity condition regimen
followed by allogeneic hematopoietic stem cell transplantation for
relapsed or refractory anaplastic large-cell lymphoma. Int J
Hematol. 110:723–728. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Smith SM, Burns LJ, van Besien K,
Lerademacher J, He W, Fenske TS, Suzuki R, Hsu JW, Schouten HC,
Hale GA, et al: Hematopoietic cell transplantation for systemic
mature T-cell non-Hodgkin lymphoma. J Clin Oncol. 31:3100–3109.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Katz J, Janik JE and Younes A: Brentuximab
Vedotin (SGN-35). Clin Cancer Res. 17:6428–6436. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Smith CA, Farrah T and Goodwin RG: The TNF
receptor superfamily of cellular and viral proteins: Activation,
costimulation, and death. Cell. 76:959–962. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Younes A and Kadin ME: Emerging
applications of the tumor necrosis factor family of ligands and
receptors in cancer therapy. J Clin Oncol. 21:3526–3534. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ansell SM: Brentuximab vedotin: Delivering
an antimitotic drug to activated lymphoma cells. Expert Opin
Investig Drugs. 20:99–105. 2011. View Article : Google Scholar
|
|
39
|
Shustov A and Soma L: Anaplastic large
cell lymphoma: Contemporary concepts and optimal management. Cancer
Treat Res. 176:127–144. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
2011 Notifications. https://www.fda.gov/drugs/resources-information-approved-drugs/2011-notifications.
Journal 2021. U.S Food and Drug Adminstration; 2018
|
|
41
|
Broccoli A, Pellegrini C, Di Rocco A,
Puccini B, Patti C, Gini G, Mannina D, Tani M, Rusconi C, Romano A,
et al: Italian real-life experience with brentuximab vedotin:
Results of a large observational study of 40 cases of
relapsed/refractory systemic anaplastic large cell lymphoma.
Haematologica. 102:1931–1935. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pro B, Advani R, Brice P, Bartlett NL,
Rosenblatt JD, Illidge T, Matous J, Ramchandren R, Fanale M,
Connors JM, et al: Five-year results of brentuximab vedotin in
patients with relapsed or refractory systemic anaplastic large cell
lymphoma. Blood. 130:2709–2717. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Bartlett NL, Chen R, Fanale MA, Brice P,
Gopal A, Smith SE, Advani R, Matous JV, Ramchandren R, Rosenblatt
JD, et al: Retreatment with brentuximab vedotin in patients with
CD30-positive hematologic malignancies. J Hematol Oncol. 7:242014.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Fukuhara N, Yamamoto G, Tsujimura H, Chou
T, Shibayama H, Yanai T, Shibuya K and Izutsu K: Retreatment with
brentuximab vedotin in patients with relapsed/refractory classical
Hodgkin lymphoma or systemic anaplastic large-cell lymphoma: A
multicenter retrospective study. Leuk Lymphoma. 61:176–180. 2020.
View Article : Google Scholar
|
|
45
|
Fanale MA, Horwitz SM, Forero-Torres A,
Bartlett NL, Advani RH, Pro B, Chen RW, Davies A, Illidge T,
Uttarwar M, et al: Five-year outcomes for frontline brentuximab
vedotin with CHP for CD30-expressing peripheral T-cell lymphomas.
Blood. 131:2120–2124. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Horwitz S, O'Connor OA, Pro B, Illidge T,
Fanale M, Advani R, Bartlett NL, Christensen JH, Morschhauser F,
Domingo-Domenech E, et al: Brentuximab vedotin with chemotherapy
for CD30-positive peripheral T-cell lymphoma (ECHELON-2): A global,
double-blind, randomised, phase 3 trial. Lancet. 393:229–240. 2019.
View Article : Google Scholar :
|
|
47
|
U.S. Food and Drug (FDA): FDA approves
first-line treatment for peripheral T-cell lymphoma under new
review pilot. FDA; Silver Spring, MD: 2018, https://www.fda.gov/news-events/press-announcements/fda-approves-first-line-treatment-peripheralt-cell-lymphoma-under-new-review-pilot.
Accessed November 16, 2018.
|
|
48
|
Vu K and Ai W: Update on the treatment of
anaplastic large cell lymphoma. Curr Hematol Malig Rep. 13:135–141.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Malik SM, Liu K, Qiang X, Sridhara R, Tang
S, McGuinn WD Jr, Verbois SL, Marathe A, Williams GM, Bullock J, et
al: Folotyn (pralatrexate injection) for the treatment of patients
with relapsed or refractory peripheral T-cell lymphoma: U.S. food
and drug administration drug approval summary. Clin Cancer Res.
16:4921–4927. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
O'Connor OA, Pro B, Pinter-Brown L,
Bartlett N, Popplewell L, Coiffier B, Lechowicz MJ, Savage KJ,
Shustov AR, Gisselbrecht C, et al: Pralatrexate in patients with
relapsed or refractory peripheral T-cell lymphoma: Results from the
pivotal PROPEL study. J Clin Oncol. 29:1182–1189. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
O'Connor OA, Marchi E, Volinn W, Shi J,
Mehrling T and Kim WS: Strategy for assessing new drug value in
orphan diseases: An international case match control analysis of
the PROPEL study. JNCI Cancer Spectr. 2:pky0382018. View Article : Google Scholar
|
|
52
|
Advani RH, Ansell SM, Lechowicz MJ, Beaven
AW, Loberiza F, Carson KR, Evens AM, Foss F, Horwitz S, Pro B, et
al: A phase II study of cyclophosphamide, etoposide, vincristine
and prednisone (CEOP) Alternating with Pralatrexate (P) as front
line therapy for patients with peripheral T-cell lymphoma (PTCL):
Final results from the T-cell consortium trial. Br J Haematol.
172:535–544. 2016. View Article : Google Scholar
|
|
53
|
Coiffier B, Pro B, Prince HM, Foss F,
Sokol L, Greenwood M, Caballero D, Borchmann P, Morschhauser F,
Wilhelm M, et al: Results from a pivotal, open-label, phase II
study of romidepsin in relapsed or refractory peripheral T-cell
lymphoma after prior systemic therapy. J Clin Oncol. 30:631–636.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
O'Connor OA, Horwitz S, Masszi T, Van Hoof
A, Brown P, Doorduijn J, Hess G, Jurczak W, Knoblauch P, Chawla S,
et al: Belinostat in patients with relapsed or refractory
peripheral T-Cell Lymphoma: Results of the pivotal phase II BELIEF
(CLN-19) study. J Clin Oncol. 33:2492–2499. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Shi Y, Dong M, Hong X, Zhang W, Feng J,
Zhu J, Yu L, Ke X, Huang H, Shen Z, et al: Results from a
multicenter, open-label, pivotal phase II study of chidamide in
relapsed or refractory peripheral T-cell lymphoma. Ann Oncol.
26:1766–1771. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Shi Y, Jia B, Xu W, Li W, Liu T, Liu P,
Zhao W, Zhang H, Sun X, Yang H, et al: Chidamide in relapsed or
refractory peripheral T cell lymphoma: A multicenter real-world
study in China. J Hematol Oncol. 10:692017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Coiffier B, Pro B, Prince HM, Foss F,
Sokol L, Greenwood M, Caballero D, Morschhauser F, Wilhelm M,
Pinter-Brown L, et al: Romidepsin for the treatment of
relapsed/refractory peripheral T-cell lymphoma: Pivotal study
update demonstrates durable responses. J Hematol Oncol. 7:112014.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Dupuis J, Morschhauser F, Ghesquières H,
Tilly H, Casasnovas O, Thieblemont C, Ribrag V, Bossard C, Le Bras
F, Bachy E, et al: Combination of romidepsin with cyclophosphamide,
doxorubicin, vincristine, and prednisone in previously untreated
patients with peripheral T-cell lymphoma: A non-randomised, phase
1b/2 study. Lancet Haematol. 2:e160–e165. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Johnston PB, Cashen AF, Nikolinakos PG,
Beaven AW, Barta SK, Bhat G, Hasal SJ, De Vos S, Oki Y, Deng C and
Foss FM: Belinostat in combination with standard cyclophosphamide,
doxorubicin, vincristine and prednisone as first-line treatment for
patients with newly diagnosed peripheral T-cell lymphoma. Exp
Hematol Oncol. 10:152021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang W, Su L, Liu L, Gao Y, Wang Q, Su H,
Song Y, Zhang H, Shen J, Jing H, et al: The combination of
chidamide with the CHOEP regimen in previously untreated patients
with peripheral T-cell lymphoma: A prospective, multicenter, single
arm, phase 1b/2 study. Cancer Biol Med. Mar 23–2021.Epub ahead of
print. View Article : Google Scholar
|
|
61
|
Jäger R, Hahne J, Jacob A, Egert A,
Schenkel J, Wernert N, Schorle H and Wellmann A: Mice transgenic
for NPM-ALK develop non-Hodgkin lymphomas. Anticancer Res.
25:3191–3196. 2005.PubMed/NCBI
|
|
62
|
Chiarle R, Gong JZ, Guasparri I, Pesci A,
Cai J, Liu J, Simmons WJ, Dhall G, Howes J, Piva R and Inghirami G:
NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and
plasma cell tumors. Blood. 101:1919–1927. 2003. View Article : Google Scholar
|
|
63
|
Kuefer MU, Look AT, Pulford K, Behm FG,
Pattengale PK, Mason DY and Morris SW: Retrovirus-mediated gene
transfer of NPM-ALK causes lymphoid malignancy in mice. Blood.
90:2901–2910. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Waqar SN and Morgensztern D: Lorlatinib: A
new-generation drug for ALK-positive NSCLC. Lancet Oncol.
19:1555–1557. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gambacorti Passerini C, Farina F, Stasia
A, Redaelli S, Ceccon M, Mologni L, Messa C, Guerra L, Giudici G,
Sala E, et al: Crizotinib in advanced, chemoresistant anaplastic
lymphoma kinase-positive lymphoma patients. J Natl Cancer Inst.
106:djt3782014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mossé YP, Voss SD, Lim MS, Rolland D,
Minard CG, Fox E, Adamson P, Wilner K, Blaney SM and Weigel BJ:
Targeting ALK with crizotinib in pediatric anaplastic large cell
lymphoma and inflammatory myofibroblastic tumor: A children's
oncology group study. J Clin Oncol. 35:3215–3221. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gambacorti-Passerini C, Orlov S, Zhang L,
Braiteh F, Huang H, Esaki T, Horibe K, Ahn JS, Beck JT, Edenfield
WJ, et al: Long-term effects of crizotinib in ALK-positive tumors
(excluding NSCLC): A phase 1b open-label study. Am J Hematol.
93:607–614. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
U.S. Food and Drug (FDA): FDA approves
crizotinib for children and young adults with relapsed or
refractory, systemic anaplastic large cell lymphoma. FDA; Silver
Spring, MD: 2021, https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-crizotinib-children-and-young-adults-relapsed-orrefractory-systemic-anaplastic-large.
Accessed January 15, 2021.
|
|
69
|
Mahuad CV, Repáraz Mde L, Zerga ME,
Aizpurua MF, Casali C and Garate G: Three years sustained complete
remission achieved in a primary refractory ALK-positive anaplastic
T large cell lymphoma treated with crizotinib. Rare Tumors.
8:62662016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
John TD, Naik S, Leung K, Sasa G, Martinez
C and Krance RA: Allogeneic hematopoietic cell transplant following
crizotinib monotherapy for relapsed/refractory anaplastic large
cell lymphoma. Pediatr Transplant. 22:e132102018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ordemann R, Stöhlmacher J,
Beuthien-Baumann B, Platzek I, van den Hoff J, Kroschinsky F,
Middeke JM, Platzbecker U, Zietz C, Bornhäuser M and Ehninger G:
Use of targeted therapy for refractory ALK-positive anaplastic
large cell lymphoma as a bridging strategy prior to allogeneic
transplantation. Ann Hematol. 92:125–127. 2013. View Article : Google Scholar
|
|
72
|
Cleary JM, Rodig S, Barr PM, Shinagare AB,
Clark JW, Shapiro GI and Armand P: Crizotinib as salvage and
maintenance with allogeneic stem cell transplantation for
refractory anaplastic large cell lymphoma. J Natl Compr Canc Netw.
12:323–326. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Shelikhova LN, Fominykh VV, Abramov DS,
Myakova NV, Maschan MA and Maschan AA: Use of crizotinib for
refractory ALK-positive lymphomas. Ter Arkh. 89:51–56. 2017.
|
|
74
|
Sun X, Fang X and Jiang Y: Successful
combination of crizotinib and hematopoietic stem cell
transplantation in relapsed ALK-positive ALCL. Indian J Cancer.
58:108–111. 2021.PubMed/NCBI
|
|
75
|
Reed DR, Hall RD, Gentzler RD, Volodin L,
Douvas MG and Portell CA: Treatment of refractory ALK rearranged
anaplastic large cell lymphoma with alectinib. Clin Lymphoma
Myeloma Leuk. 19:e247–e250. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Gambacorti-Passerini C, Mussolin L and
Brugieres L: Abrupt relapse of ALK-Positive lymphoma after
discontinuation of crizotinib. N Engl J Med. 374:95–96. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chihara D, Wong S, Feldman T, Fanale MA,
Sanchez L, Connors JM, Savage KJ and Oki Y: Outcome of patients
with relapsed or refractory anaplastic large cell lymphoma who have
failed brentuximab vedotin. Hematol Oncol. 37:35–38. 2019.
View Article : Google Scholar
|
|
78
|
Mathas S, Hinz M, Anagnostopoulos I,
Krappmann D, Lietz A, Jundt F, Bommert K, Mechta-Grigoriou F, Stein
H, Dörken B and Scheidereit C: Aberrantly expressed c-Jun and JunB
are a hallmark of Hodgkin lymphoma cells, stimulate proliferation
and synergize with NF-kappa B. EMBO J. 21:4104–4113. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Staber PB, Vesely P, Haq N, Ott RG, Funato
K, Bambach I, Fuchs C, Schauer S, Linkesch W, Hrzenjak A, et al:
The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces
JUNB transcription via ERK1/2 and JunB translation via mTOR
signaling. Blood. 110:3374–3383. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Laimer D, Dolznig H, Kollmann K, Vesely
PW, Schlederer M, Merkel O, Schiefer AI, Hassler MR, Heider S,
Amenitsch L, et al: PDGFR blockade is a rational and effective
therapy for NPM-ALK-driven lymphomas. Nat Med. 18:1699–1704. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Laimer-Gruber D: Blockade of the PDGF
receptor: A new and effective therapy option for NPM-ALK-dependent
lymphoma. Pathologe. 35(Suppl 2): S185–S186. 2014. View Article : Google Scholar
|
|
82
|
Slupianek A, Nieborowska-Skorska M, Hoser
G, Morrione A, Majewski M, Xue L, Morris SW, Wasik MA and Skorski
T: Role of phosphatidylinositol 3-kinase-Akt pathway in
nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis.
Cancer Res. 61:2194–2199. 2001.PubMed/NCBI
|
|
83
|
Bai RY, Ouyang T, Miething C, Morris SW,
Peschel C and Duyster J: Nucleophosmin-anaplastic lymphoma kinase
associated with anaplastic large-cell lymphoma activates the
phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway.
Blood. 96:4319–4327. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Slupianek A and Skorski T: NPM/ALK
downregulates p27Kip1 in a PI-3K-dependent manner. Exp Hematol.
32:1265–1271. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Rassidakis GZ, Feretzaki M, Atwell C,
Grammatikakis I, Lin Q, Lai R, Claret FX, Medeiros LJ and Amin HM:
Inhibition of Akt increases p27Kip1 levels and induces cell cycle
arrest in anaplastic large cell lymphoma. Blood. 105:827–829. 2005.
View Article : Google Scholar
|
|
86
|
Chiarle R, Simmons WJ, Cai H, Dhall G,
Zamo A, Raz R, Karras JG, Levy DE and Inghirami G: Stat3 is
required for ALK-mediated lymphomagenesis and provides a possible
therapeutic target. Nat Med. 11:623–629. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhang Q, Raghunath PN, Xue L, Majewski M,
Carpentieri DF, Odum N, Morris S, Skorski T and Wasik MA:
Multilevel dysregulation of STAT3 activation in anaplastic lymphoma
kinase-positive T/null-cell lymphoma. J Immunol. 168:466–474. 2002.
View Article : Google Scholar
|
|
88
|
Marzec M, Kasprzycka M, Liu X, Raghunath
PN, Wlodarski P and Wasik MA: Oncogenic tyrosine kinase NPM/ALK
induces activation of the MEK/ERK signaling pathway independently
of c-Raf. Oncogene. 26:813–821. 2007. View Article : Google Scholar
|
|
89
|
Marzec M, Kasprzycka M, Liu X, El-Salem M,
Halasa K, Raghunath PN, Bucki R, Wlodarski P and Wasik MA:
Oncogenic tyrosine kinase NPM/ALK induces activation of the
rapamycin-sensitive mTOR signaling pathway. Oncogene. 26:5606–5614.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Vega F, Medeiros LJ, Leventaki V, Atwell
C, Cho-Vega JH, Tian L, Claret FX and Rassidakis GZ: Activation of
mammalian target of rapamycin signaling pathway contributes to
tumor cell survival in anaplastic lymphoma kinase-positive
anaplastic large cell lymphoma. Cancer Res. 66:6589–6597. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Gao J, Yin M, Zhu Y, Gu L, Zhang Y, Li Q,
Jia C and Ma Z: Prognostic significance and therapeutic potential
of the activation of anaplastic lymphoma kinase/protein kinase
B/mammalian target of rapamycin signaling pathway in anaplastic
large cell lymphoma. BMC cancer. 13:4712013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li JF, Li GD, Gu L, Liu WP, Li FY, Liao DY
and Ma ZG: Study on activation of AKT/mTOR pathway in anaplastic
large cell lymphoma. Zhonghua Xue Ye Xue Za Zhi. 29:649–653.
2008.In Chinese.
|
|
93
|
Jundt F, Raetzel N, Müller C, Calkhoven
CF, Kley K, Mathas S, Lietz A, Leutz A and Dörken B: A rapamycin
derivative (everolimus) controls proliferation through
down-regulation of truncated CCAAT enhancer binding protein {beta}
and NF-{kappa}B activity in Hodgkin and anaplastic large cell
lymphomas. Blood. 106:1801–1807. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Witzig TE, Reeder C, Han JJ, LaPlant B,
Stenson M, Tun HW, Macon W, Ansell SM, Habermann TM, Inwards DJ, et
al: The mTORC1 inhibitor everolimus has antitumor activity in vitro
and produces tumor responses in patients with relapsed T-cell
lymphoma. Blood. 126:328–335. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kim SJ, Shin DY, Kim JS, Yoon DH, Lee WS,
Lee H, Do YR, Kang HJ, Eom HS, Ko YH, et al: A phase II study of
everolimus (RAD001), an mTOR inhibitor plus CHOP for newly
diagnosed peripheral T-cell lymphomas. Ann Oncol. 27:712–718. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Chumsri S, Zhao M, Garofalo M, Burger A,
Hamburger A, Zhao F and Rapoport A: Inhibition of the mammalian
target of rapamycin (mTOR) in a case of refractory primary
cutaneous anaplastic large cell lymphoma. Leuk Lymphoma.
49:359–361. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kim D, Koh Y and Yoon SS: Synergistic
effect of alectinib and everolimus on ALK-positive anaplastic large
cell lymphoma growth inhibition. Anticancer Res. 40:1395–1403.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Xu W, Kim JW, Jung WJ, Koh Y and Yoon SS:
Crizotinib in combination with everolimus synergistically inhibits
proliferation of anaplastic lymphoma kinase-positive anaplastic
large cell lymphoma. Cancer Res Treat. 50:599–613. 2018. View Article : Google Scholar
|
|
99
|
Butte MJ, Keir ME, Phamduy TB, Sharpe AH
and Freeman GJ: Programmed death-1 ligand 1 interacts specifically
with the B7-1 costimulatory molecule to inhibit T cell responses.
Immunity. 27:111–122. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Freeman GJ, Long AJ, Iwai Y, Bourque K,
Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne
MC, et al: Engagement of the PD-1 immunoinhibitory receptor by a
novel B7 family member leads to negative regulation of lymphocyte
activation. J Exp Med. 192:1027–1034. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Sun C, Mezzadra R and Schumacher TN:
Regulation and function of the PD-L1 checkpoint. Immunity.
48:434–452. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
U.S. Food and Drug (FDA): FDA expands
pembrolizumab indication for first-line treatment of NSCLC (TPS
≥1%). FDA; Silver Spring, MD: 2019, https://www.fda.gov/drugs/fda-expands-pembrolizumabindication-first-line-treatment-nsclc-tps-1.
Accessed April 11, 2019.
|
|
103
|
U.S. Food and Drug (FDA): FDA extends
approval of pembrolizumab for classical Hodgkin lymphoma. FDA;
Silver Spring, MD: 2020, https://www.fda.gov/drugs/drug-approvals-and-databases/fda-extends-approval-pembrolizumab-classical-hodgkin-lymphoma.
Accessed November 10, 2020.
|
|
104
|
Durvalumab (Imfinzi). https://www.fda.gov/drugs/resourcesinformation-approved-drugs/durvalumab-imfinzi.
Journal. 2017
|
|
105
|
Yamamoto R, Nishikori M, Tashima M, Sakai
T, Ichinohe T, Takaori-Kondo A, Ohmori K and Uchiyama T: B7-H1
expression is regulated by MEK/ERK signaling pathway in anaplastic
large cell lymphoma and Hodgkin lymphoma. Cancer Sci.
100:2093–2100. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhang JP, Song Z, Wang HB, Lang L, Yang
YZ, Xiao W, Webster DE, Wei W, Barta SK, Kadin ME, et al: A novel
model of controlling PD-L1 expression in ALK+ anaplastic
large cell lymphoma revealed by CRISPR screening. Blood.
134:171–185. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Marzec M, Zhang Q, Goradia A, Raghunath
PN, Liu X, Paessler M, Wang HY, Wysocka M, Cheng M, Ruggeri BA and
Wasik MA: Oncogenic kinase NPM/ALK induces through STAT3 expression
of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad
Sci USA. 105:20852–20857. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Shen J, Li S, Medeiros LJ, Lin P, Wang SA,
Tang G, Yin CC, You MJ, Khoury JD, Iyer SP, et al: PD-L1 expression
is associated with ALK positivity and STAT3 activation, but not
outcome in patients with systemic anaplastic large cell lymphoma.
Mod Pathol. 33:324–333. 2020. View Article : Google Scholar
|
|
109
|
Kong J, Dasari S and Feldman AL: PD-L1
expression in anaplastic large cell lymphoma. Mod Pathol.
33:1232–1233. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Rigaud C, Abbou S, Minard-Colin V,
Geoerger B, Scoazec JY, Vassal G, Jaff N and Heuberger L:
Valteau-Couanet D and Brugieres L: Efficacy of nivolumab in a
patient with systemic refractory ALK+ anaplastic large cell
lymphoma. Pediatr Blood Cancer. 65:e269022018. View Article : Google Scholar
|
|
111
|
Hebart H, Lang P and Woessmann W:
Nivolumab for refractory anaplastic large cell lymphoma: A case
report. Ann Intern Med. 165:607–608. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Chan TS, Khong PL and Kwong YL:
Pembrolizumab for relapsed anaplastic large cell lymphoma after
allogeneic haematopoietic stem cell transplantation: Efficacy and
safety. Ann Hematol. 95:1913–1915. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Neelapu SS, Locke FL, Bartlett NL, Lekakis
LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T,
Lin Y, et al: Axicabtagene ciloleucel CAR T-cell therapy in
refractory large B-cell lymphoma. N Engl J Med. 377:2531–2544.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Schuster SJ, Bishop MR, Tam CS, Waller EK,
Borchmann P, McGuirk JP, Jäger U, Jaglowski S, Andreadis C, Westin
JR, et al: Tisagenlecleucel in adult relapsed or refractory diffuse
large B-cell lymphoma. N Engl J Med. 380:45–56. 2019. View Article : Google Scholar
|
|
115
|
Rogers AM and Brammer JE: Hematopoietic
cell transplantation and adoptive cell therapy in peripheral T cell
lymphoma. Curr Hematol Malig Rep. 15:316–332. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Lollies A, Hartmann S, Schneider M, Bracht
T, Weiß AL, Arnolds J, Klein-Hitpass L, Sitek B, Hansmann ML,
Küppers R and Weniger MA: An oncogenic axis of STAT-mediated BATF3
upregulation causing MYC activity in classical Hodgkin lymphoma and
anaplastic large cell lymphoma. Leukemia. 32:92–101. 2018.
View Article : Google Scholar
|
|
117
|
Weilemann A, Grau M, Erdmann T, Merkel O,
Sobhiafshar U, Anagnostopoulos I, Hummel M, Siegert A, Hayford C,
Madle H, et al: Essential role of IRF4 and MYC signaling for
survival of anaplastic large cell lymphoma. Blood. 125:124–132.
2015. View Article : Google Scholar
|
|
118
|
Casey SC, Tong L, Li Y, Do R, Walz S,
Fitzgerald KN, Gouw AM, Baylot V, Gütgemann I, Eilers M and Felsher
DW: MYC regulates the antitumor immune response through CD47 and
PD-L1. Science. 352:227–231. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Atsaves V, Tsesmetzis N, Chioureas D, Kis
L, Leventaki V, Drakos E, Panaretakis T, Grander D, Medeiros LJ,
Young KH and Rassidakis GZ: PD-L1 is commonly expressed and
transcriptionally regulated by STAT3 and MYC in ALK-negative
anaplastic large-cell lymphoma. Leukemia. 31:1633–1637. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Shao RG and Zhen YS: Enediyne anticancer
antibiotic lidamycin: Chemistry, biology and pharmacology.
Anticancer Agents Med Chem. 8:123–131. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Shao RG and Zhen YS: Relationship between
the molecular composition of C1027, a new macromolecular antibiotic
with enediyne chromophore, and its antitumor activity. Yao Xue Xue
Bao. 30:336–342. 1995.In Chinese.
|
|
122
|
Wang R, Li L, Zhang S, Li Y, Wang X, Miao
Q and Zhen Y: A novel enediyne-integrated antibody-drug conjugate
shows promising antitumor efficacy against CD30+
lymphomas. Mol Oncol. 12:339–355. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wang R, Li L, Duan A, Li Y, Liu X, Miao Q,
Gong J and Zhen Y: Crizotinib enhances anti-CD30-LDM induced
antitumor efficacy in NPM-ALK positive anaplastic large cell
lymphoma. Cancer Lett. 448:84–93. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Hwang J, Song I, Lee K, Kim HR, Hong EH,
Hwang JS, Ahn SH and Lee J: KRCA-0008 suppresses ALK-positive
anaplastic large-cell lymphoma growth. Invest New Drugs.
38:1282–1291. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Shen J, Wang J, Du J, Wang L, Zhou X,
Chang X, Li Z, Zhai X, Zuo D and Wu Y: A novel ALK inhibitor ZYY
inhibits Karpas299 cell growth in vitro and in a mouse xenograft
model and induces protective autophagy. Toxicol Appl Pharmacol.
383:1147812019. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Prutsch N, Gurnhofer E, Suske T, Liang HC,
Schlederer M, Roos S, Wu LC, Simonitsch-Klupp I, Alvarez-Hernandez
A, Kornauth C, et al: Dependency on the TYK2/STAT1/MCL1 axis in
anaplastic large cell lymphoma. Leukemia. 33:696–709. 2019.
View Article : Google Scholar
|