Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
August-2021 Volume 59 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2021 Volume 59 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Endoplasmic reticulum stress‑induced cell death as a potential mechanism for targeted therapy in glioblastoma (Review)

  • Authors:
    • Pengfei Shi
    • Zhuohang Zhang
    • Jie Xu
    • Li Zhang
    • Hongjuan Cui
  • View Affiliations / Copyright

    Affiliations: State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China, Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China, Department of CT/MRI, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
  • Article Number: 60
    |
    Published online on: July 6, 2021
       https://doi.org/10.3892/ijo.2021.5240
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The endoplasmic reticulum (ER) is an essential organelle for protein synthesis, folding and modification, lipid synthesis, and calcium storage. When endogenous or exogenous stimuli lead to ER‑synthesized protein folding dysfunction, numerous unfolded or misfolded proteins accumulate in the ER cavity and cause a series of subsequent responses, referred to as ER stress. If ER stress is continuous, the unfolded protein response (UPR) is not enough to remove the accumulated unfolded and misfolded proteins, and thus, UPR signaling pathways will drive cell apoptosis. Glioblastoma (GBM) is currently the most aggressive and common malignant tumor of the nervous system. Since ER stress may increase the sensitivity of GBM to temozolomide, this article reviews the possible mechanisms of ER stress‑induced apoptosis and the factors affecting ER stress, and evaluates the potential of ER stress as a therapeutic target.
View Figures

Figure 1

View References

1 

Zhao Y, He J, Li Y, Lv S and Cui H: NUSAP1 potentiates chemoresistance in glioblastoma through its SAP domain to stabilize ATR. Signal Transduct Target Ther. 5:442020. View Article : Google Scholar : PubMed/NCBI

2 

Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, Nishikawa R, Rosenthal M, Wen PY, Stupp R and Reifenberger G: Glioma. Nat Rev Dis Primers. 1:150172015. View Article : Google Scholar : PubMed/NCBI

3 

Reimunde P, Pensado-López A, Carreira Crende M, Lombao Iglesias V, Sánchez L, Torrecilla-Parra M, Ramírez CM, Anfray C and Torres Andón F: Cellular and molecular mechanisms underlying glioblastoma and zebrafish models for the discovery of new treatments. Cancers (Basel). 13:10872021. View Article : Google Scholar

4 

Hoffman LM, Veldhuijzen van Zanten SEM, Colditz N, Baugh J, Chaney B, Hoffmann M, Lane A, Fuller C, Miles L, Hawkins C, et al: Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): A collaborative report from the International and european society for pediatric oncology DIPG registries. J Clin Oncol. 36:1963–1972. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Fareh M, Almairac F, Turchi L, Burel-Vandenbos F, Paquis P, Fontaine D, Lacas-Gervais S, Junier MP, Chneiweiss H and Virolle T: Cell-based therapy using miR-302-367 expressing cells represses glioblastoma growth. Cell Death Dis. 8:e27132017. View Article : Google Scholar : PubMed/NCBI

6 

Brandes AA, Tosoni A, Franceschi E, Reni M, Gatta G and Vecht C: Glioblastoma in adults. Crit Rev Oncol Hematol. 67:139–152. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Tanaka S, Louis DN, Curry WT, Batchelor TT and Dietrich J: Diagnostic and therapeutic avenues for glioblastoma: No longer a dead end? Nat Rev Clin Oncol. 10:14–26. 2013. View Article : Google Scholar

8 

Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5:82020. View Article : Google Scholar : PubMed/NCBI

9 

Aoyama-Ishiwatari S and Hirabayashi Y: Endoplasmic reticulum-mitochondria contact sites-emerging intracellular signaling hubs. Front Cell Dev Biol. 9:6538282021. View Article : Google Scholar : PubMed/NCBI

10 

Gonzalez-Gronow M, Gopal U, Austin RC and Pizzo SV: Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life. 73:843–854. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Yadav RK, Chae SW, Kim HR and Chae HJ: Endoplasmic reticulum stress and cancer. J Cancer Prev. 19:75–88. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Kavitha CV, Jain AK, Agarwal C, Pierce A, Keating A, Huber KM, Serkova NJ, Wempe MF, Agarwal R and Deep G: Asiatic acid induces endoplasmic reticulum stress and apoptotic death in glioblastoma multiforme cells both in vitro and in vivo. Mol Carcinog. 54:1417–1429. 2015. View Article : Google Scholar :

13 

Zhang D, Wang F, Pang Y, Ke XX, Zhu S, Zhao E, Zhang K, Chen L and Cui H: Down-regulation of CHERP inhibits neuroblastoma cell proliferation and induces apoptosis through ER stress induction. Oncotarget. 8:80956–80970. 2017. View Article : Google Scholar : PubMed/NCBI

14 

McGrath EP, Centonze FG, Chevet E, Avril T and Lafont E: Death sentence: The tale of a fallen endoplasmic reticulum. Biochim Biophys Acta Mol Cell Res. 1868:1190012021. View Article : Google Scholar : PubMed/NCBI

15 

Wei J and Fang D: Endoplasmic reticulum stress signaling and the pathogenesis of hepatocarcinoma. Int J Mol Sci. 22:17992021. View Article : Google Scholar : PubMed/NCBI

16 

Bernales S, Papa FR and Walter P: Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biology. 22:487–508. 2006. View Article : Google Scholar

17 

Wang M and Kaufman RJ: The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer. 14:581–597. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Stöhr D, Jeltsch A and Rehm M: TRAIL receptor signaling: From the basics of canonical signal transduction toward its entanglement with ER stress and the unfolded protein response. Int Rev Cell Mol Biol. 351:57–99. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Kim C and Kim B: Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients. 10:10212018. View Article : Google Scholar :

20 

Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M and Ron D: Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 17:5708–5717. 1998. View Article : Google Scholar : PubMed/NCBI

21 

Walter P and Ron D: The unfolded protein response: From stress pathway to homeostatic regulation. Science. 334:1081–1086. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Haze K, Yoshida H, Yanagi H, Yura T and Mori K: Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 10:3787–3799. 1999. View Article : Google Scholar : PubMed/NCBI

23 

Elmore JM, Griffin BD and Walley JW: Advances in functional proteomics to study plant-pathogen interactions. Curr Opin Plant Biol. 63:1020612021. View Article : Google Scholar : PubMed/NCBI

24 

Liu Y, Chen DQ, Han JX, Zhao TT and Li SJ: A review of traditional Chinese medicine in treating renal interstitial fibrosis via endoplasmic reticulum stress-mediated apoptosis. Biomed Res Int. 2021:66677912021.PubMed/NCBI

25 

Fusée LTS, Marín M, Fåhraeus R and López I: Alternative mechanisms of p53 action during the unfolded protein response. Cancers(Basel). 12:4012020.

26 

Storchova R, Burdova K, Palek M, Medema RH and Macurek L: A novel assay for screening WIP1 phosphatase substrates in nuclear extracts. FEBS J. May 13–2021.Epub ahead of prin. View Article : Google Scholar : PubMed/NCBI

27 

Vodicka P, Andera L, Opattova A and Vodickova L: The interactions of DNA repair, telomere homeostasis, and p53 mutational status in solid cancers: Risk, prognosis, and prediction. Cancers (Basel). 13:4792021. View Article : Google Scholar

28 

Yukimoto A, Watanabe T, Sunago K, Nakamura Y, Tanaka T, Koizumi Y, Yoshida O, Tokumoto Y, Hirooka M, Abe M and Hiasa Y: The long noncoding RNA of RMRP is downregulated by PERK, which induces apoptosis in hepatocellular carcinoma cells. Sci Rep. 11:79262021. View Article : Google Scholar : PubMed/NCBI

29 

Huang T, Xu T, Wang Y, Zhou Y, Yu D, Wang Z, He L, Chen Z, Zhang Y, Davidson D, et al: Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy. Feb 25–2021.Epub ahead of prin. View Article : Google Scholar

30 

Kuran D, Flis S, Antoszczak M, Piskorek M and Huczyński A: Ester derivatives of salinomycin efficiently eliminate breast cancer cells via ER-stress-induced apoptosis. Eur J Pharmacol. 893:1738242021. View Article : Google Scholar

31 

Bressler KR, Ross JA, Ilnytskyy S, Vanden Dungen K, Taylor K, Patel K, Zovoilis A, Kovalchuk I and Thakor N: Depletion of eukaryotic initiation factor 5B (eIF5B) reprograms the cellular transcriptome and leads to activation of endoplasmic reticulum (ER) stress and c-Jun N-terminal kinase (JNK). Cell Stress Chaperones. 26:253–264. 2021. View Article : Google Scholar

32 

González-Quiroz M, Blondel A, Sagredo A, Hetz C, Chevet E and Pedeux R: When endoplasmic reticulum proteostasis meets the DNA damage response. Trends Cell Biol. 30:881–891. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Ventura JJ, Hübner A, Zhang C, Flavell RA, Shokat KM and Davis RJ: Chemical genetic analysis of the time course of signal transduction by JNK. Mol Cell. 21:701–710. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Tabas I and Ron D: Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 13:184–190. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Farshbaf M, Khosroushahi AY, Mojarad-Jabali S, Zarebkohan A, Valizadeh H and Walker PR: Cell surface GRP78: An emerging imaging marker and therapeutic target for cancer. J Control Release. 328:932–941. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Otero JH, Lizak B and Hendershot LM: Life and death of a BiP substrate. Semin Cell Dev Biol. 21:472–478. 2010. View Article : Google Scholar :

37 

Bertolotti A, Zhang Y, Hendershot LM, Harding HP and Ron D: Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2:326–332. 2000. View Article : Google Scholar : PubMed/NCBI

38 

Shen J, Snapp EL, Lippincott-Schwartz J and Prywes R: Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Mol Cell Biol. 25:921–932. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Pincus D, Chevalier MW, Aragon T, van Anken E, Vidal SE, El-Samad H and Walter P: BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol. 8:e10004152010. View Article : Google Scholar : PubMed/NCBI

40 

Harding HP, Zhang Y, Bertolotti A, Zeng H and Ron D: Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell. 5:897–904. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Harding HP, Zhang Y and Ron D: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 397:271–274. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Kadowaki H and Nishitoh H: Signaling pathways from the endoplasmic reticulum and their roles in disease. Genes. 4:306–333. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Hetz C and Mollereau B: Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci. 15:233–249. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Dai C, Li J, Tang S, Li J and Xiao X: Colistin-induced nephrotoxicity in mice involves the mitochondrial, death receptor, and endoplasmic reticulum pathways. Antimicrob Agents Chemother. 58:4075–4085. 2014. View Article : Google Scholar : PubMed/NCBI

45 

McCullough KD, Martindale JL, Klotz LO, Aw TY and Holbrook NJ: Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 21:1249–1259. 2001. View Article : Google Scholar : PubMed/NCBI

46 

Kroemer G and Reed JC: Mitochondrial control of cell death. Nat Med. 6:513–519. 2000. View Article : Google Scholar : PubMed/NCBI

47 

Hengartner MO: The biochemistry of apoptosis. Nature. 407:770–776. 2000. View Article : Google Scholar : PubMed/NCBI

48 

Lien JC, Huang CC, Lu TJ, Tseng CH, Sung PJ, Lee HZ, Bao BY, Kuo YH and Lu TL: Naphthoquinone derivative PPE8 induces endoplasmic reticulum stress in p53 null H1299 cells. Oxid Med Cell Longev. 2015:4536792015. View Article : Google Scholar : PubMed/NCBI

49 

Kimata Y, Kimata YI, Shimizu Y, Abe H, Farcasanu IC, Takeuchi M, Rose MD and Kohno K: Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins. Mol Biol Cell. 14:2559–2569. 2003. View Article : Google Scholar : PubMed/NCBI

50 

Jabouille A, Delugin M, Pineau R, Dubrac A, Soulet F, Lhomond S, Pallares-Lupon N, Prats H, Bikfalvi A, Chevet E, et al: Glioblastoma invasion and cooption depend on IRE1alpha eSndoribonuclease activity. Oncotarget. 6:24922–24934. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, Shokat KM, Stroud RM and Walter P: The unfolded protein response signals through high-order assembly of Ire1. Nature. 457:687–693. 2009. View Article : Google Scholar

52 

Yoshida H, Matsui T, Yamamoto A, Okada T and Mori K: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107:881–891. 2001. View Article : Google Scholar

53 

Lim R, Barker G and Lappas M: TRADD, TRAF2, RIP1 and TAK1 are required for TNF-alpha-induced pro-labour mediators in human primary myometrial cells. Am J Reprod Immunol. Mar 24–2017.Epub ahead of print. View Article : Google Scholar

54 

Bluher M, Bashan N, Shai I, Harman-Boehm I, Tarnovscki T, Avinaoch E, Stumvoll M, Dietrich A, Klöting N and Rudich A: Activated Ask1-MKK4-p38MAPK/JNK stress signaling pathway in human omental fat tissue may link macrophage infiltration to whole-body Insulin sensitivity. J Clin Endocrinol Metab. 94:2507–2515. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Syc-Mazurek SB, Rausch RL, Fernandes KA, Wilson MP and Libby RT: MKK4 and MKK7 are important for retinal development and axonal injury-induced retinal ganglion cell death. Cell Death Dis. 9:10952018. View Article : Google Scholar : PubMed/NCBI

56 

Sujitha S, Dinesh P and Rasool M: Berberine modulates ASK1 signaling mediated through TLR4/TRAF2 via upregulation of miR-23a. Toxicol Appl Pharmacol. 359:34–46. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Matsui Y, Kuwabara T, Eguchi T, Nakajima K and Kondo M: Acetylation regulates the MKK4-JNK pathway in T cell receptor signaling. Immunol Lett. 194:21–28. 2018. View Article : Google Scholar

58 

Cao S, Tang J, Huang Y, Li G, Li Z, Cai W, Yuan Y, Liu J, Huang X and Zhang H: The road of solid tumor survival: From drug-induced endoplasmic reticulum stress to drug resistance. Front Mol Biosci. 8:6205142021. View Article : Google Scholar : PubMed/NCBI

59 

Bagchi AK, Malik A, Akolkar G, Zimmer A, Belló-Klein A, De Angelis K, Jassal DS, Fini MA, Stenmark KR and Singal PK: Study of ER stress and apoptotic proteins in the heart and tumor exposed to doxorubicin. Biochim Biophys Acta Mol Cell Res. 119039:20211868.

60 

Lynch JM, Maillet M, Vanhoutte D, Schloemer A, Sargent MA, Blair NS, Lynch KA, Okada T, Aronow BJ, Osinska H, et al: A thrombospondin-dependent pathway for a protective ER stress response. Cell. 149:1257–1268. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A and Mori K: ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct. 33:75–89. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Bommiasamy H, Back SH, Fagone P, Lee K, Meshinchi S, Vink E, Sriburi R, Frank M, Jackowski S, Kaufman RJ and Brewer JW: ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J Cell Sci. 122:1626–1636. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Pinkham K, Park DJ, Hashemiaghdam A, Kirov AB, Adam I, Rosiak K, da Hora CC, Teng J, Cheah PS, Carvalho L, et al: Stearoyl CoA desaturase is essential for regulation of endoplasmic reticulum homeostasis and tumor growth in glioblastoma cancer stem cells. Stem Cell Reports. 12:712–727. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Shakhparonov MI, Antipova NV, Shender VO, Shnaider PV, Arapidi GP, Pestov NB and Pavlyukov MS: Expression and intracellular localization of paraoxonase 2 in different types of malignancies. Acta Naturae. 10:92–99. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Le Mercier M, Lefranc F, Mijatovic T, Debeir O, Haibe-Kains B, Bontempi G, Decaestecker C, Kiss R and Mathieu V: Evidence of galectin-1 involvement in glioma chemoresistance. Toxicol Appl Pharmacol. 229:172–183. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Lin HY, Ko CY, Kao TJ, Yang WB, Tsai YT, Chuang JY, Hu SL, Yang PY, Lo WL and Hsu TI: CYP17A1 Maintains the survival of glioblastomas by regulating SAR1-mediated endoplasmic reticulum health and redox homeostasis. Cancers (Basel). 11:13782019. View Article : Google Scholar

67 

Jakubowicz-Gil J, Langner E, Badziul D, Wertel I and Rzeski W: Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment. Toxicol Appl Pharmacol. 273:580–589. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Horibe T, Torisawa A, Kohno M and Kawakami K: Molecular mechanism of cytotoxicity induced by Hsp90-targeted Antp-TPR hybrid peptide in glioblastoma cells. Mol Cancer. 11:592012. View Article : Google Scholar : PubMed/NCBI

69 

Choi JW, Schroeder MA, Sarkaria JN and Bram RJ: Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells. Cancer Res. 74:484–496. 2014. View Article : Google Scholar

70 

Hu Y, Chu L, Liu J, Yu L, Song SB, Yang H and Han F: Knockdown of CREB3 activates endoplasmic reticulum stress and induces apoptosis in glioblastoma. Aging (Albany NY). 11:8156–8168. 2019. View Article : Google Scholar

71 

Chen Y, Tsai YH and Tseng SH: HDAC inhibitors and RECK modulate endoplasmic reticulum stress in tumor cells. Int J Mol Sci. 18:2582017. View Article : Google Scholar :

72 

Nguyen TTT, Ishida CT, Shang E, Shu C, Bianchetti E, Karpel-Massler G and Siegelin MD: Activation of LXR receptors and inhibition of TRAP1 causes synthetic lethality in solid tumors. Cancers (Basel). 11:7882019. View Article : Google Scholar

73 

Stock K, Kumar J, Synowitz M, Petrosino S, Imperatore R, Smith ES, Wend P, Purfürst B, Nuber UA, Gurok U, et al: Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nat Med. 18:1232–1238. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Zeeshan HM, Lee GH, Kim HR and Chae HJ: Endoplasmic reticulum stress and associated ROS. Int J Mol Sci. 17:3272016. View Article : Google Scholar : PubMed/NCBI

75 

Kyani A, Tamura S, Yang S, Shergalis A, Samanta S, Kuang Y, Ljungman M and Neamati N: Discovery and mechanistic elucidation of a class of protein disulfide isomerase inhibitors for the treatment of glioblastoma. ChemMedChem. 13:164–177. 2018. View Article : Google Scholar :

76 

Chen WL, Wang CC, Lin YJ, Wu CP and Hsieh CH: Cycling hypoxia induces chemoresistance through the activation of reactive oxygen species-mediated B-cell lymphoma extra-long pathway in glioblastoma multiforme. J Transl Med. 13:3892015. View Article : Google Scholar : PubMed/NCBI

77 

Agnihotri S, Golbourn B, Huang X, Remke M, Younger S, Cairns RA, Chalil A, Smith CA, Krumholtz SL, Mackenzie D, et al: PINK1 is a negative regulator of growth and the warburg effect in glioblastoma. Cancer Res. 76:4708–4719. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Wang Q, Wang H, Jia Y, Pan H and Ding H: Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma. Cancer Chemother Pharmacol. 79:1031–1041. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Qu C, Ma J, Liu X, Xue Y, Zheng J, Liu L, Liu J, Li Z, Zhang L and Liu Y: Dihydroartemisinin exerts anti-tumor activity by inducing mitochondrion and endoplasmic reticulum apoptosis and autophagic cell death in human glioblastoma cells. Front Cell Neurosci. 11:3102017. View Article : Google Scholar : PubMed/NCBI

80 

Schito L and Semenza GL: Hypoxia-inducible factors: Master regulators of cancer progression. Trends Cancer. 2:758–770. 2016. View Article : Google Scholar

81 

Zhou J, Schmid T, Schnitzer S and Brune B: Tumor hypoxia and cancer progression. Cancer Lett. 237:10–21. 2006. View Article : Google Scholar

82 

Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI

83 

Bischoff FC, Werner A, John D, Boeckel JN, Melissari MT, Grote P, Glaser SF, Demolli S, Uchida S, Michalik KM, et al: Identification and functional characterization of hypoxia-induced endoplasmic reticulum stress regulating lncRNA (HypERlnc) in pericytes. Circ Res. 121:368–375. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Han YK, Park GY, Bae MJ, Kim JS, Jo WS and Lee CG: Hypoxia induces immunogenic cell death of cancer cells by enhancing the exposure of cell surface calreticulin in an endoplasmic reticulum stress-dependent manner. Oncol Lett. 18:6269–6274. 2019.PubMed/NCBI

85 

Minchenko DO, Riabovol OO, Ratushna OO and Minchenko OH: Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: Effect of IRE1 inhibition. Endocr Regul. 51:8–19. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Minchenko DO, Tsymbal DO, Riabovol OO, Viletska YM, Lahanovska YO, Sliusar MY, Bezrodnyi BH and Minchenko OH: Hypoxic regulation of EDN1, EDNRA, EDNRB, and ECE1 gene expressions in ERN1 knockdown U87 glioma cells. Endocr Regul. 53:250–262. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Minchenko OH, Tsymbal DO, Minchenko DO, Kovalevska OV, Karbovskyi LL and Bikfalvi A: Inhibition of ERN1 signaling enzyme affects hypoxic regulation of the expression of E2F8, EPAS1, HOXC6, ATF3, TBX3 and FOXF1 genes in U87 glioma cells. Ukr Biochem J. 87:76–87. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Minchenko OH, Tsymbal DO, Minchenko DO and Kubaychuk OO: Hypoxic regulation of MYBL1, MEST, TCF3, TCF8, GTF2B, GTF2F2 and SNAI2 genes expression in U87 glioma cells upon IRE1 inhibition. Ukr Biochem J. 88:52–62. 2016. View Article : Google Scholar

89 

Minchenko DO, Kharkova AP, Tsymbal DO, Karbovskyi LL and Minchenko OH: IRE1 inhibition affects the expression of insulin-like growth factor binding protein genes and modifies its sensitivity to glucose deprivation in U87 glioma cells. Endocr Regul. 49:185–197. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Minchenko OH, Kharkova AP, Minchenko DO and Karbovskyi LL: Effect of hypoxia on the expression of genes that encode some IGFBP and ccn proteins in U87 glioma cells depends on IRE1 signaling. Ukr Biochem J. 87:52–63. 2015. View Article : Google Scholar

91 

Minami N, Tanaka K, Sasayama T, Kohmura E, Saya H and Sampetrean O: Lactate reprograms energy and lipid metabolism in glucose-deprived oxidative glioma stem cells. Metabolites. 11:3252021. View Article : Google Scholar : PubMed/NCBI

92 

Liberti MV and Locasale JW: The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Crabtree HG: Observations on the carbohydrate metabolism of tumours. Biochem J. 23:536–545. 1929. View Article : Google Scholar : PubMed/NCBI

94 

Racker E: Bioenergetics and the problem of tumor growth. Am Sci. 60:56–63. 1972.PubMed/NCBI

95 

Shim H, Chun YS, Lewis BC and Dang CV: A unique glucose-dependent apoptotic pathway induced by c-Myc. Proc Natl Acad Sci USA. 95:1511–1516. 1998. View Article : Google Scholar : PubMed/NCBI

96 

Gu M, Gao Y and Chang P: KRAS mutation dictates the cancer immune environment in pancreatic ductal adenocarcinoma and other adenocarcinomas. Cancers (Basel). 13:24292021. View Article : Google Scholar

97 

Khrabrova DA, Yakubovskaya MG and Gromova ES: AML-associated mutations in DNA methyltransferase DNMT3A. Biochemistry (Mosc). 86:307–318. 2021. View Article : Google Scholar

98 

Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Mechelli R, Romano S, Romano C, Morena E, Buscarinu MC, Bigi R, Bellucci G, Reniè R, Pellicciari G, Salvetti M and Ristori G: MAIT cells and microbiota in multiple sclerosis and other autoimmune diseases. Microorganisms. 9:11322021. View Article : Google Scholar : PubMed/NCBI

100 

Pyrko P, Schonthal AH, Hofman FM, Chen TC and Lee AS: The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res. 67:9809–9816. 2007. View Article : Google Scholar : PubMed/NCBI

101 

Soejima E, Ohki T, Kurita Y, Yuan X, Tanaka K, Kakino S, Hara K, Nakayama H, Tajiri Y and Yamada K: Protective effect of 3-hydroxybutyrate against endoplasmic reticulum stress-associated vascular endothelial cell damage induced by low glucose exposure. PLoS One. 13:e01911472018. View Article : Google Scholar : PubMed/NCBI

102 

Zhang Y, Ishida CT, Ishida W, Lo SL, Zhao J, Shu C, Bianchetti E, Kleiner G, Sanchez-Quintero MJ, Quinzii CM, et al: Combined HDAC and bromodomain protein inhibition reprograms tumor cell metabolism and elicits synthetic lethality in glioblastoma. Clin Cancer Res. 24:3941–3954. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Minchenko DO, Hubenya OV, Terletsky BM, Moenner M and Minchenko OH: Effect of glutamine or glucose deprivation on the expression of cyclin and cyclin-dependent kinase genes in glioma cell line U87 and its subline with suppressed activity of signaling enzyme of endoplasmic reticulum-nuclei-1. Ukr Biokhim Zh (1999). 83:18–29. 2011.

104 

Ma L, Wei J, Wan J, Wang W, Wang L, Yuan Y, Yang Z, Liu X and Ming L: Low glucose and metformin-induced apoptosis of human ovarian cancer cells is connected to ASK1 via mitochondrial and endoplasmic reticulum stress-associated pathways. J Exp Clin Cancer Res. 38:772019. View Article : Google Scholar : PubMed/NCBI

105 

Schornack PA and Gillies RJ: Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia. 5:135–145. 2003. View Article : Google Scholar : PubMed/NCBI

106 

Tannock IF and Rotin D: Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49:4373–4384. 1989.PubMed/NCBI

107 

Rofstad EK, Mathiesen B, Kindem K and Galappathi K: Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res. 66:6699–6707. 2006. View Article : Google Scholar : PubMed/NCBI

108 

Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J, Lathia JD, McLendon R, Lindner D, Sloan A and Rich JN: Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 18:829–840. 2011. View Article : Google Scholar :

109 

Park HJ, Lyons JC, Ohtsubo T and Song CW: Acidic environment causes apoptosis by increasing caspase activity. Br J Cancer. 80:1892–1897. 1999. View Article : Google Scholar : PubMed/NCBI

110 

Kato Y, Lambert CA, Colige AC, Mineur P, Noël A, Frankenne F, Foidart JM, Baba M, Hata R, Miyazaki K and Tsukuda M: Acidic extracellular pH induces matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phospholipase D-mitogen-activated protein kinase signaling. J Biol Chem. 280:10938–10944. 2005. View Article : Google Scholar : PubMed/NCBI

111 

Xu L, Fukumura D and Jain RK: Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: Mechanism of low pH-induced VEGF. J Biol Chemistry. 277:11368–11374. 2002. View Article : Google Scholar

112 

Reichert M, Steinbach JP, Supra P and Weller M: Modulation of growth and radiochemosensitivity of human malignant glioma cells by acidosis. Cancer. 95:1113–1119. 2002. View Article : Google Scholar : PubMed/NCBI

113 

Xie ZY, Chen L, Wang F, Liu L, Zhang C, Wang K, Cai F, Sinkemanni A, Hong X and Wu XT: Endoplasmic reticulum stress is involved in nucleus pulposus degeneration and attenuates low pH-Induced apoptosis of rat nucleus pulposus cells. DNA Cell Biol. 36:627–637. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Dong L, Krewson EA and Yang LV: Acidosis Activates endoplasmic reticulum stress pathways through GPR4 in human vascular endothelial cells. Int J Mol Sci. 18:2782017. View Article : Google Scholar :

115 

Christensen SB, Andersen A, Kromann H, Treiman M, Tombal B, Denmeade S and Isaacs JT: Thapsigargin analogues for targeting programmed death of androgen-independent prostate cancer cells. Bioorg Med Chem. 7:1273–1280. 1999. View Article : Google Scholar : PubMed/NCBI

116 

Jansen S, Arning J and Beyersmann D: Effects of the Ca ionophore a23187 on zinc-induced apoptosis in C6 glioma cells. Biol Trace Elem Res. 96:133–142. 2003. View Article : Google Scholar

117 

Grant SK, Bansal A, Mitra A, Feighner SD, Dai G, Kaczorowski GJ and Middleton RE: Delay of intracellular calcium transients using a calcium chelator: Application to high-throughput screening of the capsaicin receptor ion channel and G-protein-coupled receptors. Anal Biochem. 294:27–35. 2001. View Article : Google Scholar : PubMed/NCBI

118 

Ciechomska IA, Gabrusiewicz K, Szczepankiewicz AA and Kaminska B: Endoplasmic reticulum stress triggers autophagy in malignant glioma cells undergoing cyclosporine a-induced cell death. Oncogene. 32:1518–1529. 2013. View Article : Google Scholar

119 

Kaul A and Maltese WA: Killing of cancer cells by the photoactivatable protein kinase C inhibitor, calphostin C, involves induction of endoplasmic reticulum stress. Neoplasia. 11:823–834. 2009. View Article : Google Scholar : PubMed/NCBI

120 

Martinez NJ, Rai G, Yasgar A, Lea WA, Sun H, Wang Y, Luci DK, Yang SM, Nishihara K, Takeda S, et al: A high-throughput screen identifies 2,9-diazaspiro[5.5]Undecanes as inducers of the endoplasmic reticulum stress response with cytotoxic activity in 3D glioma cell models. PLoS One. 11:e01614862016. View Article : Google Scholar

121 

Yu SN, Kim SH, Kim KY, Ji JH, Seo YK, Yu HS and Ahn SC: Salinomycin induces endoplasmic reticulum stressmediated autophagy and apoptosis through generation of reactive oxygen species in human glioma U87MG cells. Oncol Rep. 37:3321–3328. 2017. View Article : Google Scholar : PubMed/NCBI

122 

White MC, Johnson GG, Zhang W, Hobrath JV, Piazza GA and Grimaldi M: Sulindac sulfide inhibits sarcoendoplasmic reticulum Ca2+ ATPase, induces endoplasmic reticulum stress response, and exerts toxicity in glioma cells: Relevant similarities to and important differences from celecoxib. J Neurosci Res. 91:393–406. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Yoon MJ, Kang YJ, Kim IY, Kim EH, Lee JA, Lim JH, Kwon TK and Choi KS: Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation. Carcinogenesis. 34:1918–1928. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Han J and Kaufman RJ: The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res. 57:1329–1338. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Thibault G, Shui G, Kim W, McAlister GC, Ismail N, Gygi SP, Wenk MR and Ng DT: The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network. Mol Cell. 48:16–27. 2012. View Article : Google Scholar : PubMed/NCBI

126 

Guo W, Wong S, Xie W, Lei T and Luo Z: Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. Am J Physiol Endocrinol Metab. 293:E576–E586. 2007. View Article : Google Scholar : PubMed/NCBI

127 

Griffiths B, Lewis CA, Bensaad K, Ros S, Zhang Q, Ferber EC, Konisti S, Peck B, Miess H, East P, et al: Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth. Cancer Metab. 1:32013. View Article : Google Scholar : PubMed/NCBI

128 

Williams KJ, Argus JP, Zhu Y, Wilks MQ, Marbois BN, York AG, Kidani Y, Pourzia AL, Akhavan D, Lisiero DN, et al: An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Res. 73:2850–2862. 2013. View Article : Google Scholar : PubMed/NCBI

129 

Ackerman D and Simon MC: Hypoxia, lipids, and cancer: Surviving the harsh tumor microenvironment. Trends Cell Biol. 24:472–478. 2014. View Article : Google Scholar : PubMed/NCBI

130 

He Y, Su J, Lan B, Gao Y and Zhao J: Targeting off-target effects: Endoplasmic reticulum stress and autophagy as effective strategies to enhance temozolomide treatment. Onco Targets Ther. 12:1857–1865. 2019. View Article : Google Scholar : PubMed/NCBI

131 

Zhang Y, Tseng CC, Tsai YL, Fu X, Schiff R and Lee AS: Cancer cells resistant to therapy promote cell surface relocalization of GRP78 which complexes with PI3K and enhances PI(3,4,5)P3 production. PLoS One. 8:e800712013. View Article : Google Scholar : PubMed/NCBI

132 

Misra UK, Deedwania R and Pizzo SV: Binding of activated alpha2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. J Biol Chem. 280:26278–26286. 2005. View Article : Google Scholar : PubMed/NCBI

133 

Liu K, Tsung K and Attenello FJ: Characterizing cell stress and GRP78 in glioma to enhance tumor treatment. Front Oncol. 10:6089112020. View Article : Google Scholar : PubMed/NCBI

134 

Hseu YC, Lin RW, Shen YC, Lin KY, Liao JW, Thiyagarajan V and Yang HL: Flavokawain B and doxorubicin work synergistically to impede the propagation of gastric cancer cells via ROS-mediated apoptosis and autophagy Pathways. Cancers (Basel). 12:4752020. View Article : Google Scholar

135 

Doultsinos D, Carlesso A, Chintha C, Paton JC, Paton AW, Samali A, Chevet E and Eriksson LA: Peptidomimetic-based identification of FDA-approved compounds inhibiting IRE1 activity. FEBS J. 288:945–960. 2021. View Article : Google Scholar

136 

Hua R, Pei Y, Gu H, Sun Y and He Y: Antitumor effects of flavokawain-B flavonoid in gemcitabine-resistant lung cancer cells are mediated via mitochondrial-mediated apoptosis, ROS production, cell migration and cell invasion inhibition and blocking of PI3K/AKT Signaling pathway. J BUON. 25:262–267. 2020.PubMed/NCBI

137 

Wang J, Qi Q, Zhou W, Feng Z, Huang B, Chen A, Zhang D, Li W, Zhang Q, Jiang Z, et al: Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. Autophagy. 14:2007–2022. 2018. View Article : Google Scholar : PubMed/NCBI

138 

Kim TH, Song J, Kim SH, Parikh AK, Mo X, Palanichamy K, Kaur B, Yu J, Yoon SO, Nakano I and Kwon CH: Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells. Neuro Oncol. 16:1354–1364. 2014. View Article : Google Scholar : PubMed/NCBI

139 

Tsai SF, Tao M, Ho LI, Chiou TW, Lin SZ, Su HL and Harn HJ: Isochaihulactone-induced DDIT3 causes ER stress-PERK independent apoptosis in glioblastoma multiforme cells. Oncotarget. 8:4051–4061. 2017. View Article : Google Scholar :

140 

Lu DY, Chang CS, Yeh WL, Tang CH, Cheung CW, Leung YM, Liu JF and Wong KL: The novel phloroglucinol derivative BFP induces apoptosis of glioma cancer through reactive oxygen species and endoplasmic reticulum stress pathways. Phytomedicine. 19:1093–1100. 2012. View Article : Google Scholar : PubMed/NCBI

141 

Guzman M: Cannabinoids: Potential anticancer agents. Nat Rev Cancer. 3:745–755. 2003. View Article : Google Scholar : PubMed/NCBI

142 

Carracedo A, Lorente M, Egia A, Blázquez C, García S, Giroux V, Malicet C, Villuendas R, Gironella M, González-Feria L, et al: The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell. 9:301–312. 2006. View Article : Google Scholar : PubMed/NCBI

143 

Ma X, Yu M, Hao C and Yang W: Shikonin induces tumor apoptosis in glioma cells via endoplasmic reticulum stress, and Bax/Bak mediated mitochondrial outer membrane permeability. J Ethnopharmacol. 263:1130592020. View Article : Google Scholar : PubMed/NCBI

144 

Pan JM, Zhou L, Wang GB, Xia GW, Xue K, Cui XG, Shi HZ, Liu JH and Hu J: Fatsioside A inhibits the growth of glioma cells via the induction of endoplasmic reticulum stress-mediated apoptosis. Mol Med Rep. 11:3493–3498. 2015. View Article : Google Scholar : PubMed/NCBI

145 

Das A, Banik NL and Ray SK: Garlic compounds generate reactive oxygen species leading to activation of stress kinases and cysteine proteases for apoptosis in human glioblastoma T98G and U87MG cells. Cancer. 110:1083–1095. 2007. View Article : Google Scholar : PubMed/NCBI

146 

Das A, Banik NL and Ray SK: Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. Cancer. 116:164–176. 2010.

147 

Djerir D, Iddir M, Bourgault S, Lamy S and Annabi B: Biophysical evidence for differential gallated green tea catechins binding to membrane type-1 matrix metalloproteinase and its interactors. Biophys Chem. 234:34–41. 2018. View Article : Google Scholar : PubMed/NCBI

148 

Ma J, Qiu Y, Yang L, Peng L, Xia Z, Hou LN, Fang C, Qi H and Chen HZ: Desipramine induces apoptosis in rat glioma cells via endoplasmic reticulum stress-dependent CHOP pathway. J Neurooncol. 101:41–48. 2011. View Article : Google Scholar

149 

Garrido-Armas M, Corona JC, Escobar ML, Torres L, Ordóñez-Romero F, Hernández-Hernández A and Arenas-Huertero F: Paraptosis in human glioblastoma cell line induced by curcumin. Toxicol In Vitro. 51:63–73. 2018. View Article : Google Scholar : PubMed/NCBI

150 

Sansalone L, Veliz EA, Myrthil NG, Stathias V, Walters W, Torrens II, Schürer SC, Vanni S, Leblanc RM and Graham RM: Novel Curcumin Inspired Bis-chalcone promotes endoplasmic reticulum stress and glioblastoma neurosphere cell death. Cancers (Basel). 11:3572019. View Article : Google Scholar

151 

Ma YY, Di ZM, Cao Q, Xu WS, Bi SX, Yu JS, Shen YJ, Yu YQ, Shen YX and Feng LJ: Xanthatin induces glioma cell apoptosis and inhibits tumor growth via activating endoplasmic reticulum stress-dependent CHOP pathway. Acta Pharmacol Sin. 41:404–414. 2020. View Article : Google Scholar :

152 

Martin S, Lamb HK, Brady C, Lefkove B, Bonner MY, Thompson P, Lovat PE, Arbiser JL, Hawkins AR and Redfern CP: Inducing apoptosis of cancer cells using small-molecule plant compounds that bind to GRP78. Br J Cancer. 109:433–443. 2013. View Article : Google Scholar : PubMed/NCBI

153 

Li ZY, Zhang C, Chen L, Chen BD, Li QZ, Zhang XJ and Li WP: Radicol, a novel trinorguaiane-type sesquiterpene, induces temozolomide-resistant glioma cell apoptosis via ER stress and Akt/mTOR pathway blockade. Phytother Res. 31:729–739. 2017. View Article : Google Scholar : PubMed/NCBI

154 

Chou YC, Chang MY, Wang MJ, Harnod T, Hung CH, Lee HT, Shen CC and Chung JG: PEITC induces apoptosis of human brain glioblastoma GBM8401 cells through the extrinsic- and intrinsic-signaling pathways. Neurochem Int. 81:32–40. 2015. View Article : Google Scholar : PubMed/NCBI

155 

Chou YC, Chang MY, Wang MJ, Liu HC, Chang SJ, Harnod T, Hung CH, Lee HT, Shen CC and Chung JG: Phenethyl isothiocyanate alters the gene expression and the levels of protein associated with cell cycle regulation in human glioblastoma GBM 8401 cells. Environ Toxicol. 32:176–187. 2017. View Article : Google Scholar

156 

Meng X, Leyva ML, Jenny M, Gross I, Benosman S, Fricker B, Harlepp S, Hébraud P, Boos A, Wlosik P, et al: A ruthenium-containing organometallic compound reduces tumor growth through induction of the endoplasmic reticulum stress gene CHOP. Cancer Res. 69:5458–5466. 2009. View Article : Google Scholar : PubMed/NCBI

157 

Badr CE, Van Hoppe S, Dumbuya H, Tjon-Kon-Fat LA and Tannous BA: Targeting cancer cells with the natural compound obtusaquinone. J Natl Cancer Inst. 105:643–653. 2013. View Article : Google Scholar : PubMed/NCBI

158 

Liu H, Xiong C, Liu J, Sun T, Ren Z, Li Y, Geng J and Li X: Aspirin exerts anti-tumor effect through inhibiting Blimp1 and activating ATF4/CHOP pathway in multiple myeloma. Biomed Pharmacother. 125:1100052020. View Article : Google Scholar : PubMed/NCBI

159 

Nishimura N, Radwan MO, Amano M, Endo S, Fujii E, Hayashi H, Ueno S, Ueno N, Tatetsu H, Hata H, et al: Novel p97/VCP inhibitor induces endoplasmic reticulum stress and apoptosis in both bortezomib-sensitive and -resistant multiple myeloma cells. Cancer Sci. 110:3275–3287. 2019. View Article : Google Scholar : PubMed/NCBI

160 

Alper P, Salomatina OV, Salakhutdinov NF, Ulukaya E and Ari F: Soloxolone methyl, as a 18βH-glycyrrhetinic acid derivate, may result in endoplasmic reticulum stress to induce apoptosis in breast cancer cells. Bioorg Med Chem. 30:1159632021. View Article : Google Scholar

161 

Ren M, Zhou X, Gu M, Jiao W, Yu M, Wang Y, Liu S, Yang J and Ji F: Resveratrol synergizes with cisplatin in antineoplastic effects against AGS gastric cancer cells by inducing endoplasmic reticulum stress-mediated apoptosis and G2/M phase arrest. Oncol Rep. 44:1605–1615. 2020.PubMed/NCBI

162 

De Wang X, Li T, Li Y, Yuan WH and Zhao YQ: 2-Pyrazine-PPD, a novel dammarane derivative, showed anticancer activity by reactive oxygen species-mediate apoptosis and endoplasmic reticulum stress in gastric cancer cells. Eur J Pharmacol. 881:1732112020. View Article : Google Scholar : PubMed/NCBI

163 

Zhang Q, Chen M, Cao L, Ren Y, Guo X, Wu X and Xu K: Phenethyl isothiocyanate synergistically induces apoptosis with Gefitinib in non-small cell lung cancer cells via endoplasmic reticulum stress-mediated degradation of Mcl-1. Mol Carcinog. 59:590–603. 2020. View Article : Google Scholar : PubMed/NCBI

164 

Zhu J, Xu S, Gao W, Feng J and Zhao G: Honokiol induces endoplasmic reticulum stress-mediated apoptosis in human lung cancer cells. Life Sci. 221:204–211. 2019. View Article : Google Scholar : PubMed/NCBI

165 

Peñaranda-Fajardo NM, Meijer C, Liang Y, Dijkstra BM, Aguirre-Gamboa R, den Dunnen WFA and Kruyt FAE: ER stress and UPR activation in glioblastoma: Identification of a noncanonical PERK mechanism regulating GBM stem cells through SOX2 modulation. Cell Death Dis. 10:6902019. View Article : Google Scholar : PubMed/NCBI

166 

Dadey DYA, Kapoor V, Khudanyan A, Thotala D and Hallahan DE: PERK regulates glioblastoma sensitivity to ER stress although promoting radiation resistance. Mol Cancer Res. 16:1447–1453. 2018. View Article : Google Scholar : PubMed/NCBI

167 

Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant SW, Li WH, Heerding DA, Minthorn E, Mencken T, et al: Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem. 55:7193–7207. 2012. View Article : Google Scholar : PubMed/NCBI

168 

Rozpędek W, Pytel D, Wawrzynkiewicz A, Siwecka N, Dziki A, Dziki Ł, Diehl JA and Majsterek I: Use of Small-molecule inhibitory compound of PERK-dependent signaling pathway as a promising target-based therapy for colorectal cancer. Curr Cancer Drug Targets. 20:223–238. 2020. View Article : Google Scholar

169 

Nishikawa S, Itoh Y, Tokugawa M, Inoue Y, Nakashima KI, Hori Y, Miyajima C, Yoshida K, Morishita D, Ohoka N, et al: Kurarinone from Sophora Flavescens roots triggers ATF4 activation and cytostatic effects through PERK phosphorylation. Molecules. 24:31102019. View Article : Google Scholar :

170 

Scheffer D, Kulcsár G, Nagyéri G, Kiss-Merki M, Rékási Z, Maloy M and Czömpöly T: Active mixture of serum-circulating small molecules selectively inhibits proliferation and triggers apoptosis in cancer cells via induction of ER stress. Cell Signal. 65:1094262020. View Article : Google Scholar

171 

Guirao-Abad JP, Weichert M, Albee A, Deck K and Askew DS: A Human IRE1 inhibitor blocks the unfolded protein response in the pathogenic fungus aspergillus fumigatus and suggests noncanonical functions within the pathway. mSphere. 5:e00879–20. 2020. View Article : Google Scholar : PubMed/NCBI

172 

Cross BC, Bond PJ, Sadowski PG, Jha BK, Zak J, Goodman JM, Silverman RH, Neubert TA, Baxendale IR, Ron D and Harding HP: The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci USA. 109:E869–E878. 2012. View Article : Google Scholar : PubMed/NCBI

173 

Chen X, Li H, Fan X, Zhao C, Ye K, Zhao Z, Hu L, Ma H, Wang H and Fang Z: Protein palmitoylation regulates cell survival by modulating XBP1 activity in glioblastoma multiforme. Mol Ther Oncolytics. 17:518–530. 2020. View Article : Google Scholar : PubMed/NCBI

174 

Grandjean JMD, Madhavan A, Cech L, Seguinot BO, Paxman RJ, Smith E, Scampavia L, Powers ET, Cooley CB, Plate L, et al: Pharmacologic IRE1/XBP1s activation confers targeted ER proteostasis reprogramming. Nat Chem Biol. 16:1052–1061. 2020. View Article : Google Scholar : PubMed/NCBI

175 

Cho HY, Thein TZ, Wang W, Swenson SD, Fayngor RA, Ou M, Marín-Ramos NI, Schönthal AH, Hofman FM and Chen TC: The Rolipram-Perillyl alcohol conjugate (NEO214) is a mediator of cell death through the death receptor pathway. Mol Cancer Ther. 18:517–530. 2019. View Article : Google Scholar : PubMed/NCBI

176 

McCubrey JA, Lahair MM and Franklin RA: OSU-03012 in the treatment of glioblastoma. Mol Pharmacol. 70:437–439. 2006. View Article : Google Scholar : PubMed/NCBI

177 

Cho HY, Wang W, Jhaveri N, Lee DJ, Sharma N, Dubeau L, Schönthal AH, Hofman FM and Chen TC: NEO212, temozolomide conjugated to perillyl alcohol, is a novel drug for effective treatment of a broad range of temozolomide-resistant gliomas. Mol Cancer Ther. 13:2004–2017. 2014. View Article : Google Scholar : PubMed/NCBI

178 

Marin-Ramos NI, Perez-Hernandez M, Tam A, Swenson SD, Cho HY, Thein TZ, Hofman FM and Chen TC: Inhibition of motility by NEO100 through the calpain-1/RhoA pathway. J Neurosurgery. Aug 16–2019.Epub ahead of print. View Article : Google Scholar

179 

Chen HY, He LJ, Li SQ, Zhang YJ, Huang JH, Qin HX, Wang JL, Li QY and Yang DL: A derivate of benzimidazole-isoquinolinone induces SKP2 transcriptional inhibition to exert anti-tumor activity in glioblastoma cells. Molecules. 24:27222019. View Article : Google Scholar :

180 

Koncarevic S, Urig S, Steiner K, Rahlfs S, Herold-Mende C, Sueltmann H and Becker K: Differential genomic and proteomic profiling of glioblastoma cells exposed to terpyridineplatinum(II) complexes. Free Radic Biol Med. 46:1096–1108. 2009. View Article : Google Scholar : PubMed/NCBI

181 

Li Z, Ma J, Liu L, Liu X, Wang P, Liu Y, Li Z, Zheng J, Chen J, Tao W and Xue Y: Endothelial-monocyte activating polypeptide II suppresses the in vitro glioblastoma-induced angiogenesis by inducing autophagy. Front Mol Neurosci. 10:2082017. View Article : Google Scholar :

182 

Eom KS, Kim HJ, So HS, Park R and Kim TY: Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biol Pharm Bull. 33:1644–1649. 2010. View Article : Google Scholar : PubMed/NCBI

183 

Wang L, Gundelach JH and Bram RJ: Cycloheximide promotes paraptosis induced by inhibition of cyclophilins in glioblastoma multiforme. Cell Death Dis. 8:e28072017. View Article : Google Scholar : PubMed/NCBI

184 

Suzuki K, Gerelchuluun A, Hong Z, Sun L, Zenkoh J, Moritake T and Tsuboi K: Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress. Neuro Oncol. 15:1186–1199. 2013. View Article : Google Scholar : PubMed/NCBI

185 

Ye T, Wei L, Shi J, Jiang K, Xu H, Hu L, Kong L, Zhang Y, Meng S and Piao H: Sirtuin1 activator SRT2183 suppresses glioma cell growth involving activation of endoplasmic reticulum stress pathway. BMC Cancer. 19:7062019. View Article : Google Scholar : PubMed/NCBI

186 

Jia W, Loria RM, Park MA, Yacoub A, Dent P and Graf MR: The neuro-steroid, 5-androstene 3β,17α diol; induces endoplasmic reticulum stress and autophagy through PERK/eIF2α signaling in malignant glioma cells and transformed fibroblasts. Int J Biochem Cell Biol. 42:2019–2029. 2010. View Article : Google Scholar : PubMed/NCBI

187 

Liu WT, Huang CY, Lu IC and Gean PW: Inhibition of glioma growth by minocycline is mediated through endoplasmic reticulum stress-induced apoptosis and autophagic cell death. Neuro Oncol. 15:1127–1141. 2013. View Article : Google Scholar : PubMed/NCBI

188 

Shen S, Zhang Y, Zhang R, Tu X and Gong X: Ursolic acid induces autophagy in U87MG cells via ROS-dependent endoplasmic reticulum stress. Chem Biol Interact. 218:28–41. 2014. View Article : Google Scholar : PubMed/NCBI

189 

Bown CD, Wang JF and Young LT: Increased expression of endoplasmic reticulum stress proteins following chronic valproate treatment of rat C6 glioma cells. Neuropharmacology. 39:2162–2169. 2000. View Article : Google Scholar : PubMed/NCBI

190 

Park E, Gim J, Kim DK, Kim CS and Chun HS: Protective effects of alpha-lipoic acid on glutamate-induced cytotoxicity in C6 glioma cells. Biol Pharm Bull. 42:94–102. 2019. View Article : Google Scholar : PubMed/NCBI

191 

Kim IY, Kwon M, Choi MK, Lee D, Lee DM, Seo MJ and Choi KS: Ophiobolin A kills human glioblastoma cells by inducing endoplasmic reticulum stress via disruption of thiol proteostasis. Oncotarget. 8:106740–106752. 2017. View Article : Google Scholar :

192 

Qaisiya M, Brischetto C, Jasprova J, Vitek L, Tiribelli C and Bellarosa C: Bilirubin-induced ER stress contributes to the inflammatory response and apoptosis in neuronal cells. Arch Toxicol. 91:1847–1858. 2017. View Article : Google Scholar

193 

Mahoney DJ, Lefebvre C, Allan K, Brun J, Sanaei CA, Baird S, Pearce N, Grönberg S, Wilson B, Prakesh M, et al: Virus-tumor interactome screen reveals ER stress response can reprogram resistant cancers for oncolytic virus-triggered caspase-2 cell death. Cancer Cell. 20:443–456. 2011. View Article : Google Scholar : PubMed/NCBI

194 

Abraham R, Mudaliar P, Padmanabhan A and Sreekumar E: Induction of cytopathogenicity in human glioblastoma cells by chikungunya virus. PLoS One. 8:e758542013. View Article : Google Scholar : PubMed/NCBI

195 

Kusaczuk M, Kretowski R, Naumowicz M, Stypulkowska A and Cechowska-Pasko M: Silica nanoparticle-induced oxidative stress and mitochondrial damage is followed by activation of intrinsic apoptosis pathway in glioblastoma cells. Int J Nanomedicine. 13:2279–2294. 2018. View Article : Google Scholar : PubMed/NCBI

196 

Rubiolo JA, Lopez-Alonso H, Martínez P, Millán A, Cagide E, Vieytes MR, Vega FV and Botana LM: Yessotoxin induces ER-stress followed by autophagic cell death in glioma cells mediated by mTOR and BNIP3. Cell Signal. 26:419–432. 2014. View Article : Google Scholar : PubMed/NCBI

197 

Kim IY, Kang YJ, Yoon MJ, Kim EH, Kim SU, Kwon TK, Kim IA and Choi KS: Amiodarone sensitizes human glioma cells but not astrocytes to TRAIL-induced apoptosis via CHOP-mediated DR5 upregulation. Neuro Oncol. 13:267–279. 2011. View Article : Google Scholar : PubMed/NCBI

198 

Golden EB, Cho HY, Jahanian A, Hofman FM, Louie SG, Schönthal AH and Chen TC: Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg Focus. 37:E122014. View Article : Google Scholar : PubMed/NCBI

199 

Przystal JM, Waramit S, Pranjol MZI, Yan W, Chu G, Chongchai A, Samarth G, Olaciregui NG, Tabatabai G, Carcaboso AM, et al: Efficacy of systemic temozolomide-activated phage-targeted gene therapy in human glioblastoma. EMBO Mol Med. 11:e84922019. View Article : Google Scholar : PubMed/NCBI

200 

Sun Y and Zhang X: Bufothionine promotes apoptosis via triggering ER stress and synergizes with temozolomide in glioblastoma multiforme cells. Anat Rec (Hoboken). 302:1950–1957. 2019. View Article : Google Scholar

201 

Zhao H, Chen G and Liang H: Dual PI3K/mTOR inhibitor, XL765, suppresses glioblastoma growth by inducing ER stress-dependent apoptosis. Onco Targets Ther. 12:5415–5424. 2019. View Article : Google Scholar : PubMed/NCBI

202 

Ma J, Yang YR, Chen W, Chen MH, Wang H, Wang XD, Sun LL, Wang FZ and Wang DC: Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells. Oncol Rep. 36:676–684. 2016. View Article : Google Scholar : PubMed/NCBI

203 

Sun S, Lee D, Ho AS, Pu JK, Zhang XQ, Lee NP, Day PJ, Lui WM, Fung CF and Leung GK: Inhibition of prolyl 4-hydroxylase, beta polypeptide (P4HB) attenuates temozolomide resistance in malignant glioma via the endoplasmic reticulum stress response (ERSR) pathways. Neuro Pncol. 15:562–577. 2013.

204 

Golden EB, Cho HY, Hofman FM, Louie SG, Schonthal AH and Chen TC: Quinoline-based antimalarial drugs: A novel class of autophagy inhibitors. Neurosurg Focus. 38:E122015. View Article : Google Scholar : PubMed/NCBI

205 

Shteingauz A, Porat Y, Voloshin T, Schneiderman RS, Munster M, Zeevi E, Kaynan N, Gotlib K, Giladi M, Kirson ED, et al: AMPK-dependent autophagy upregulation serves as a survival mechanism in response to Tumor Treating Fields (TTFields). Cell Death Dis. 9:10742018. View Article : Google Scholar : PubMed/NCBI

206 

Weatherbee JL, Kraus JL and Ross AH: ER stress in temozolomide-treated glioblastomas interferes with DNA repair and induces apoptosis. Oncotarget. 7:43820–43834. 2016. View Article : Google Scholar : PubMed/NCBI

207 

Kardosh A, Golden EB, Pyrko P, Uddin J, Hofman FM, Chen TC, Louie SG, Petasis NA and Schönthal AH: Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res. 68:843–851. 2008. View Article : Google Scholar : PubMed/NCBI

208 

Wang D, Fu L, Sun H, Guo L and DuBois RN: Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology. 149:1884–1895.e4. 2015. View Article : Google Scholar : PubMed/NCBI

209 

Grandjean JM and Wiseman RL: Small molecule strategies to harness the unfolded protein response: Where do we go from here? J Biol Chemistry. 295:15692–15711. 2020. View Article : Google Scholar

210 

Bian T, Tagmount A, Vulpe C, Vijendra KC and Xing C: CXL146, a novel 4H-chromene derivative, targets GRP78 to selectively eliminate multidrug-resistant cancer cells. Mol Pharmacol. 97:402–408. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shi P, Zhang Z, Xu J, Zhang L and Cui H: Endoplasmic reticulum stress‑induced cell death as a potential mechanism for targeted therapy in glioblastoma (Review). Int J Oncol 59: 60, 2021.
APA
Shi, P., Zhang, Z., Xu, J., Zhang, L., & Cui, H. (2021). Endoplasmic reticulum stress‑induced cell death as a potential mechanism for targeted therapy in glioblastoma (Review). International Journal of Oncology, 59, 60. https://doi.org/10.3892/ijo.2021.5240
MLA
Shi, P., Zhang, Z., Xu, J., Zhang, L., Cui, H."Endoplasmic reticulum stress‑induced cell death as a potential mechanism for targeted therapy in glioblastoma (Review)". International Journal of Oncology 59.2 (2021): 60.
Chicago
Shi, P., Zhang, Z., Xu, J., Zhang, L., Cui, H."Endoplasmic reticulum stress‑induced cell death as a potential mechanism for targeted therapy in glioblastoma (Review)". International Journal of Oncology 59, no. 2 (2021): 60. https://doi.org/10.3892/ijo.2021.5240
Copy and paste a formatted citation
x
Spandidos Publications style
Shi P, Zhang Z, Xu J, Zhang L and Cui H: Endoplasmic reticulum stress‑induced cell death as a potential mechanism for targeted therapy in glioblastoma (Review). Int J Oncol 59: 60, 2021.
APA
Shi, P., Zhang, Z., Xu, J., Zhang, L., & Cui, H. (2021). Endoplasmic reticulum stress‑induced cell death as a potential mechanism for targeted therapy in glioblastoma (Review). International Journal of Oncology, 59, 60. https://doi.org/10.3892/ijo.2021.5240
MLA
Shi, P., Zhang, Z., Xu, J., Zhang, L., Cui, H."Endoplasmic reticulum stress‑induced cell death as a potential mechanism for targeted therapy in glioblastoma (Review)". International Journal of Oncology 59.2 (2021): 60.
Chicago
Shi, P., Zhang, Z., Xu, J., Zhang, L., Cui, H."Endoplasmic reticulum stress‑induced cell death as a potential mechanism for targeted therapy in glioblastoma (Review)". International Journal of Oncology 59, no. 2 (2021): 60. https://doi.org/10.3892/ijo.2021.5240
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team